
J .  Fluid Mech. (1991), vol. 226, p p .  34S369 
Printed in Great Britain 

349 

Convection and particle entrainment driven by 
differential sedimentation 

By HERBERT E. HUPPERT', ROSS C. KERR2, 
JOHN R. LISTER'? AND J. STEWART TURNER2 

Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical 
Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, IJK 

Research School of Earth Sciences, Australian National University, GPO Box 4, 
Canberra 2601, ACT, Australia 

(Received 19 June 1990) 

When a suspension of small particles is overlain by a clear fluid whose density is 
greater than that of the interstitial fluid, but less than that of the bulk suspension, 
the settling of the dense suspended particles can lead to vigorous convection in the 
overlying fluid. This novel situation is investigated experimentally and theoretically. 
A sharp interface is observed between the convecting upper region and a stagnant 
lower region in which there is unimpeded sedimentation at low Reynolds number. 
There is no transport of fluid from the upper region into the lower, though there is 
mixing of both buoyant fluid and entrained particles from the lower region into the 
upper. The interface between the two regions is found to descend at  a constant 
velocity. Systematic laboratory measurements have determined how this velocity 
depends on the densities of the layers and the distributions of settling velocities of 
the particles. A theoretical description is developed which calculates the evolution of 
the density of the lower region due to differential sedimentation of polydisperse 
particles. Buoyancy arguments based on the calculated density profile are used to 
placc upper and lower bounds on the amount of particle entrainment into the upper 
layer and on the rate of fall of the interface between the convecting and sedimenting 
regions. The theoretical predictions are in good agreement with the experimental 
observations. The analysis of the interaction between convection and sedimentation 
in the system considered here may be particularly relevant to the description of 
evolving crystal-rich layers in magma chambers and of silt-laden outflow from rivers, 
and has a wide range of other industrial, environmental and geological applications. 

1. Introduction 
The fluid dynamics of convecting, particulate suspensions is of great relevance to 

chemical and civil engineers, geologists, metallurgists and oceanographers. Diverse 
applications include the transport of soil, silt and sand in rivers and estuaries, 
volcanic flows of suspensions of hot air and ash, the evolution of bodies of magma rich 
in crystals and the cooling and solidification of molten alloys containing suspended 
crystals and impurities. Most studies are based totally on the equations of low- 
Reynolds-number hydrodynamics because of the small size of the particles, as 
reviewed by Davis & Acrivos (1985). In  this paper we will describe laboratory 
experiments and a related theoretical description in which, while some of the small 
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particles sediment in the usual way, others are transported in released, relatively 
light fluid that undergoes vigorous convective motions. 

Consider a well-mixed suspension of heavy particles, for which the bulk density of 
the suspension will exceed that of the interstitial fluid. For a simple suspension of 
particles of uniform size and density the behaviour is well understood : the particles 
sediment a t  a rate which is dependent on their initial concentration and clear fluid 
is left behind a relatively sharp interface. Our interest lies in the novel situation 
which arises when a suspension is overlain by a fluid whose density pu is intermediate 
between that of the bulk suspension pB and that of the interstitial fluid pI. Although 
the initial bulk-density gradient is statically stable, the settling of the dense particles 
in the lower layer leaves behind light interstitial fluid. This fluid convects into the 
upper layer and carries with it some of the particles. As a result of the entrainment 
of particles into the upper layer, the interface at  the top of the sedimenting region 
can fall much more rapidly than if there were no overlying fluid. For the case of a 
polydisperse suspension, the differential sedimentation of the particles creates a 
growing stratified region at  the top of the lower layer in which the local bulk density 
of the suspension decreases from pB towards pI. We shall show that the rate of 
entrainment into the upper layer and the rate of fall of the interface a t  the top of the 
sedimenting region depend greatly on the rate of growth of this stratified region and 
hence on the distribution of particle sizes. 

A particular motivation for our investigation of the phenomena described above 
is provided by the occurrence of sedimentation from rivers as they flow into the sea. 
Under suitable conditions the freshwater outflow, laden with sand and silt, will 
initially underlie the sea water; our results show that the subsequent convective 
mixing will be controlled by the settling of the suspended load. Our work also finds 
application in describing the deposition of crystals within layered, convecting 
magma chambers. In both these particular cases and virtually all geophysical 
applications the suspended particles vary greatly in both shape and size and 
therefore in settling velocity. It thus seemed to us appropriate to perform 
experiments with particles that were non-spherical and had a fairly wide distribution 
in size: This immediately distinguishes our work from the many studies that employ 
monodisperse spherical particles. From our results, we are able to show that the 
differential sedimentation of particles of different sizes plays a major role in 
determining the evolution of many natural systems. This conclusion is a clear 
consequence of the theoretical description below and is discussed further in the final 
section. Our approach to this result is as follows. 

In $2, we describe our initial laboratory experiments which provide observations 
of sediment-driven convection in such a two-layered system. The two layers are 
separated by a sharp interface which descends at  a constant velocity. These 
observations are consistent with the theoretical description of this system that we 
develop in $ 3. The description embodies existing theories for the differential 
sedimentation of polydisperse suspensions and uses buoyancy arguments to bound 
the extent of entrainment of particles into the upper layer. The range of interfacial 
velocities predicted by these bounds is compared favourably in $4 with our 
experimental measurements for a number of particle-size distributions. Our findings 
are summarized and discussed in $5.  
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FIGURE 1. Photographs of the carborundum particles used in our experiments : 
(a) type I (of finer grade); (b) type 2 (of coarser grade). 

2. Experiments 
In order to conduct laboratory experiments with particles that settled out at low 

Reynolds number in a fluid that was sufficiently inviscid for the overlying convection 
to be vigorous, we needed readily available, small, dense particles. Monodisperse 
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FIGURE 2.  The cumulative distributions (by volume) of the settling velocity u of the particles in 
water. The distributions are shown discretized since both the original sedigraph measurements and 
the numerical results described later are based on discrete particle sizes. The discrete distribution 
is an approximation t o  the true continuous distribution as discussed in the Appendix. Also 
indicated are the effective diameters of spherical particles corresponding to  these settling velocities. 

particles that are sufficiently small for the laboratory experiments we had in mind 
are prohibitively expensive for the quantity we would have needed. In  addition, our 
theoretical description shows that the effects under investigation arc accentuated by 
polydispersion. Accordingly, after considerable searching we decided that suitable 
particles would be provided by two grades of commercially available carborundum 
(silicon carbide) grinding powders. The particles had a common density pp = 

3.218 g cm-3 and were irregular in shape with a typical aspect ratio of about two. 
Photographs of a sample of each grade are shown in figure 1. The distributions of the 
settling velocities of the particles in water were determined by the sedigraph 
technique (Jones, McCave & Pate1 1988) and are shown in figure 2. From these 
velocity distributions and the known density of the particles we can evaluate the size 
distribution of the particles. The particles of type 1 (technical grade C600) had an 
effective median diameter of 8.7 pm. while those of type 2 (technical grade C400) had 
an effective median diameter of 25.0 pm, where the effective diameter is the diameter 
of the spherical particle that would have the same settling velocity in water a t  20 "C. 
We chose water as the interstitial fluid to suspend the particles in the lower layer, and 
all fluids and particles used in the experiments were at room temperature ( z 20 "C). 
Early trial experiments used aqueous salt solutions for the upper layer, but led to 
unrepeatable results. The explanation may be that in an ionic solution the surface 
charges on each particle are screened by the surrounding ions, which allows the 
particles to approach each other closely enough for coagulation to occur (Jeffery & 
Acrivos 1976; Hunter 1987). In  the subsequent experiments reported here the salt 
solutions were thus replaced by aqueous solutions of sugar (sucrose), which seemed 
to eliminate the problems. 

The majority of the experiments were conducted in a Perspex tank which consisted 
of a lower region, 19.5 cm x 3 cm in cross-section and 20 cm in depth, joined a t  its top 
into the base of a much larger region, 19.5 cm x 40 cm in cross-section and 30 cm in 
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FIGURE 3. The Perspex tank used for the majority of our experiments. 

depth (figure 3). The purpose of this larger region was to provide an upper fluid layer 
of such a large volume that its properties (and, in particular, its density) did not 
change significantly during the course of an experiment. A wire mesh with 2 mm 
openings was used to help shield the convection in the lower region from large-scale 
circulation in the upper region. It was observed that the mesh did not have a 
significant effect on the smaller-scale convection driven by the breaking away of 
buoyant fluid from the top of the sedimenting region. 

Two different experimental procedures were used to  set up the initial configuration. 
In many of the experiments the tank was first filled with the sugar solution. The 
dense suspension was then added under the sugar solution using a pipe leading from 
a continuously stirred reservoir to the bottom of the tank. This procedure, which 
typically produced a lower layer of 10 em depth in a time of a half to one 
minute, resulted in negligible mixing between the fluids provided that the volume 
concentration of the stabilizing suspended particles was greater than approximately 
1 %. The remaining experiments, in particular those with lower concentrations of 
suspended particles, used a different filling procedure in which the entire lower region 
was first rapidly filled with the stirred suspension. A metal plate was then placed over 
the opening between the two regions and the upper region of the tank was filled with 
the sugar solution. Finally, the plate was gently displaced laterally and replaced by 
the wire mesh. This procedure took about half a minute. 

Direct observations of the experiments were supplemented by both photographs 
and a movie. A photograph taken shortly after the start of a typical experiment is 
shown in figure 4. It may be seen that the settling of the particles left behind buoyant 
interstitial fluid. This fluid rose in thin streamers and sheets, while still carrying some 
suspended particles, into the overlying sugar solution where it drove vigorous 
convection ; the convection extended through the entire depth of the overlying fluid 
and the lifted particles were well mixed to near the top of the tank. Detailed 
examination using a microscope revealed that a very sharp interface separated the 
convecting region from an underlying sedimenting region. Just  below the interface 
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FIGURE 4. Convection in an aqueous sugar solution driven by sedimentation in an underlying 
suspension of carborundum grit in water. Notice the sharp interface between the two layers at 
approximately 60 mm from the base of the tank and also the sediment that is entrained into the 
upper layer. The photograph was taken 26 s after the initiation of the experiment. 

wave-like motions were observed, driven by the convective motions above the 
interface. Further below the interface, no such motions were observed and the 
particles fell vertically. 

These qualitative observations are consistent with three further observations 
made during the course of some preliminary experiments conducted in a smaller 
Perspex tank 15 cm x 5 cm in cross-section and 25 cm in depth. First, measurements 
of the refractive index of the interstitial fluid in samples drawn from the lower layer 
showed no detectable difference from fresh water; it follows that sugar was not 
transported down into the lower layer. Secondly, a number of samples were 
withdrawn by syringe a t  a given height in the sedimenting region. Measurements of 
the total weight of each sample and of the sediment content alone revealed that the 
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FIGURE 5. The variation with time of the volume fraction @ ( t )  (normalized by its initial value @ ( O ) )  
of particles at a height of 2 cm above the base of the tank. The data are taken from two experiments 
with type-2 particles. In both experiments the initial bulk density of the lower layer pB = 
1.076 g In  the first experiment (a) the density of the upper layer pu = 1.030 g cm-3, whereas 
in the second ( 0 )  there was no upper layer. In both experiments the particle concentration was 
initially constant and then decreased gradually. The theoretical prediction represented by the 
curve is calculated from the model described in $3 which is based on a discrete distribution of 
particle sizes. 
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FIGURE 6. The depth of sediment accumulated at the base of the tank, in two experiments with 
type-2 particles. In  the first experiment (m) pB = 1.076 g cm-8 and pu = 1.030 g cm-S, whereas in 
the second ( 0 )  there was no upper layer. The measured evolution is identical after allowing for 
slight errors in the start times of both experiments. The rate of accumulation is seen initially to be 
constant and then t o  decrease gradually. The theoretical prediction represented by the curve is 
based on the model described in $3. 

local concentration of particles decreased with time (figure 5 ) .  (The calculated 
prediction also shown in this figure will be discussed in $4 following the development 
of a theoretical description.) Comparison with a control experiment in which there 
was no upper layer, but which also exhibited a time-dependent concentration in the 
lower layer, showed that the rate of the decrease in the concentration was not 
affected by the presence or absence of a convecting upper layer. Thirdly, a 



356 H. E. Huppert, R.  C. Kerr, J .  R.  Lister and J .  S .  Turner 

100 

80 

20 

Pr. (g cm-Y 
+ 1.0010 
0 1.0110 
W 1.0170 
0 1.0225 
0 1.0350 
0 1.0500 
A 1.0655 

R 
0.01 
0.14 
0.22 
0.28 
0.44 
0.63 
0.84 

0 5 10 15 20 

t (min) 

FIQURE 7 .  A typical set of measurements of the interfacial position from experiments which used 
type- 1 particles, pB = 1.079 g cm-3 (and therefore @ = 0.0356), and a number of values of pr shown 
in the legend. Also shown are the corresponding values of the dimensionless ratio R = 
( p c - p l ) / ( p B - p , ) .  The origin of time in each experiment was adjusted slightly so that  the best-fit 
lines pass through a common point. The results show both tha t  the interfacial velocity is constant 
during a n  experiment and tha t  it is a monotonically increasing function of R. 

microscope was used to provide direct measurements of the deposition of sediment 
on the base of the tank. The rate of accumulation was found initially to be constant 
and then to decrease gradually (figure 6). This behaviour was also unaffected by the 
presence or absence of a convecting upper layer. The inference to be drawn from 
these observations is that the process of sedimentation in the lower layer is largely 
independent of the motion in the upper layer. 

In  the majority of the experiments. which were conducted in the tank shown in 
figure 3, the position of the interface between the upper and lower layers was 
monitored as a function of time until it reached the base of the tank. The 
measurements for a particular valuc of the initial bulk density of the lower layer are 
shown in figure 7 .  In  each experiment the interface was observed to fall at a constant 
velocity V .  In addition, it was apparent that, for a given distribution of the particle 
sizes and a given density of the lower layer, there was a systematic increase in the 
interfacial velocity as the density of the upper layer was increased. Both these 
important observations can be understood in terms of the theoretical description 
given below. In this description we first evaluate the fall velocity of the sediment in 
the lower layer. We then calculate the amount of buoyant fluid and trapped particles 
that is released from the top of the layer. 

3. Theoretical description 
Consider an initially well-mixed sediment-laden fluid region of bulk density ps 

which consists of a volume fraction @ of dense particles of density pp and a volume 
fraction 1 -@ of interstitial fluid of density pl .  The bulk density of the suspension is 
related to the densities of the particles and of the interstitial fluid by pB = 
pI+@(pP-pI). Let the sediment-laden region be overlain by a large volume of fluid 
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of density pv so that, provided pB > pr, ,  the initial bulk-density gradient is statically 
stable. \.lie wish to calculate the subsequent effects of the sedimentation of the dense 
particles in the lower region. 

In general, the suspended particles will be polydisperse with a range of settling 
velocities. Wc believe that an understanding of the fundamental concepts is most 
easily obtaincd in terms of a discrete distribution of particle sizes. Then the results 
for a continuous distribution may be obtained in the usual way as the limit of a large 
number of closely spaced particle sizes ; the consequent modifications to the analysis 
are outlined in the Appendix. Thus we suppose that the particles have a discrete 
distribution of particle sizes with a proportion f i  (by volume) of particles of 
Stokes settling velocity ui for i = 1, ..., n. The volume fraction of i-particles in 
the lower region is then initially @fi.  We let the particles be ordered by size so that 
u, > u2 > ... > u,. 

3.1. Upper region of lesser density 

I n  order to make the case in which there is overlying convection more accessible, we 
first review the simpler case in which pu < pr and there is no mixing between fluid 
regions. The most important effect is that large particles can sediment away from the 
top of the lower region more rapidly than small particles. As a result, once the 
sedimentation begins a number of layers form and grow a t  the top of the lower 
region; each layer contains only particles smaller than a certain size and the 
interfaces between the layers are defined by the vertical distances through which the 
different-sized particles have fallen since the beginning of sedimentation. 

More specifically, as shown a t  a particular time in figure 8(a),  owing to this 
differential sedimentation a total of n interfaces form at  the top of the sedimenting 
region: the kth interface divides the layers out of which all the k-particles have 
sedimented from the layers which still contain k-particles. Thus each interface 
propagates downwards a t  a characteristic speed given by the sedimentation velocity 
of the 'last ' particles of a certain size. 

Below the first interface all the particle species are present in their original 
concentrations qil = @fi.  Between interface k and interface k +  1 only particles of 
species i = k +  1 ,  ..., n are present; we denote their concentrations by Tit (with 
qik = 0 for i < k). Above the nth interface no particles are present. We denote the 
three layers so defined as layers 0, k and n respectively. Let the velocity of an 
i-particle in layer k be uik and let the total volume fraction of particles in layer k be 

The velocity vk of the kth interface is given by the velocity uk, k-l of the k-particles 
just below the interface. The volume fractions qik may be found numerically, once 
the uik arc specified, by solving the equations for the continuity of particle flux across 
each interface (Smith 1966) 

qik(z . ' k -u ik )  =qi,k-l(vk-Ui,&l), = k + l ,  . . . ,n,  ( 3 4  
successively for k = 1 ,  ..., n. 

The remaining problem is to find expressions for the settling velocities uik of the 
particles in each layer. If the suspension is very dilute then each particle falls nearly 
independently of the others and the settling velocity of each particle is approximately 
equal to its isolated Stokes settling velocity ui. I n  this simple case, vk = u k ,  as can be 
shown formally from (3.2). In fact, the essence of the mechanism of layer formation 
described above can most readily be understood by neglecting the particle 
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FIGURE 8. (a) The differential sedimentation of a suspension of particles of n discrete sizes into 
n f  1 layers, each one homogeneous and with a characteristic volume fraction of particles, bulk 
density and settling velocity. ( b )  Calculated positions of some of the layers of constant bulk density 
for the differential sedimentation of a suspension of type-1 particles. The suspension initially has 
a uniform volume fraction @ = 0.0356 of particles, which corresponds t o  p B  = 1.079 g and has 
a total depth of 10 cm. There is no convective mixing with the overlying fluid since it is assumed 
that  pI > p,,. (c) A schematic representation of the successive development and convective 
detachment of some of the sedimenting layers for the case pI < pu. The detachment of the layers 
results in the descent at a constant velocity of the interface between the convecting and 
sedimenting regions. 
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interactions entirely and interpreting the interfacial velocities in figure 8 (a )  as the 
unhindered Stokes settling velocities. 

However, for less dilute suspensions the settling of individual particles will be 
hindered by the presence of neighbouring particles and by the necessary upward 
return flow of interstitial fluid, and a formulation that includes these effects can be 
constructed as follows. As suggested by Greenspan & Ungarish (1982), i t  is 
convenient mathematically to write the hindering effects in the form 

(3.3) 

where Uk is the mean fluid velocity in the kth layer and the Fzk are hindered-settling 
coefficients which depend on all the vik. (In ignoring the possibility of dependence on 
spatial gradients of the vik, we have neglected both Brownian diffusion, because our 
particles are large, and self-induced hydrodynamic diffusion (Davis & Hassen 1988), 
which is only significant for the settling a t  early times of suspensions of small 
dispersivity.) The velocity of the return flow Uk can be eliminated between (3.3) and 
t.he equation of continuity to obtain 

n 

showing that the uik are coupled through their effect on the return flow. The 
functions Fik have been evaluated to first order in q5k by Batchelor (1982) and 
Batchelor & Wen (1982), but are unknown for general q5k.  For the purpose of the 
present calculations, therefore, we make two simplifying assumptions : first, that the 
Fik depend only on the local total volume fraction of particles through a single 
hindered-settling function F(q5k) and not on the individual vik ; secondly, that the 
form of the hindered-settling function is adequately represented by the empirical fit 

= F ( $ k )  = (1-q5k)5 (3.5) 
suggested by Davis & Birdsell (1988). Combining (3.4) and (3.5) gives 

(3.6) 

In summary, the coupled equations (3.2) and (3.6) may be solved numerically to 
give the size distribution and total concentration of particles within each layer and 
the velocities of the interfaces between the layers. From the total concentration of 
particles the bulk density of each layer is readily calculated as pk = pI + &( pp -pI) ; 
the densities of the layers decrease from pB in the lowest layer to pI in the uppermost 
layer as successively smaller particles fall out of the suspension. Thus we have a 
complete description of the sedimenting region for the case in which there is no 
convcctivc mixing. 

As an example, we show in figure 8 ( b )  calculated solutions of (3.2) and (3.6) for a 
suspension of type-l particles with @ = 0.0356. For simplicity, only some of the 
layers of constant density are shown. 

3.2. Upper region of greater density 
Now consider the case in which pB > pu > pr. Although the initial sedimentation will 
still yield the sedimenting layers shown in figure 8 ( a ) ,  some of the uppermost layers 
will now be less dense than the overlying fluid. As the interfaces between the layers 
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propagate downwards, the vertical scale of these buoyant layers will grow linearly 
with time. When a local Rayleigh number based on the unstable stratification is 
sufficiently large the buoyant layers will become unstable, detach and mix 
convectively with the overlying fluid. This phenomenon can be likened to the 
detachment of a growing thermal boundary layer from a heated horizontal boundary 
(Lick 1965; Howard 1966). In the case considored here, during the detachment of the 
buoyant layers a number of the (negatively buoyant) underlying layers may also bc 
entrained, by viscous or inertial coupling, and carried upwards. The detached 
material will have a negligible effect on the density of thc upper region provided that 
the volume of that  region is very large. 

If the fluid viscosities are sufficiently small then, by analogy with thermal 
convection a t  large Rayleigh number, we envisage a cycle of repeated detachments 
as illustrated schematically in figure S ( c ) .  After a certain number of layers detach 
from the sedimenting region, these layers will redevelop at the top of the sedimenting 
region; moreover, from the results of $3.1 their densities and rates of fall will be 
exactly the same as in the previous cycle. The density of the upper region will also 
be virtually unchanged since the volume of the upper region is large. Since the 
detachment of buoyant material must depend on the density structure in the 
neighbourhood of the interface between the upper and lower regions and this 
structure is the same from cycle to cycle, we deduce that exactly the same layers will 
detach in each cycle. It follows that the interface between the convecting and the 
sedimenting regions will fall at a constant velocity V .  

It should be noted that this description of the interaction between the convecting 
and sedimenting regions is consistent with a number of experimental observations. 
Particles which fall faster than I/ play no role in the overlying convection and the 
layers in the interior of the sedimenting region evolve in the same way as the 
corresponding layers in thc non-convecting case. Convection is driven by the 
generation of buoyancy in a boundary layer at the top of the sedimenting region. The 
sharpness of the experimental interface and the nearly continuous detachment of 
buoyant material are in accord with the thin boundary layers and short timescales 
of inst'ability which are expected in convection at large Rayleigh number. 

Though we have a good qualitative understanding of the mechanism that gives rise 
to a constant interfacial velocity V ,  we havc not yet been able to predict the value 
of V quantitatively since we cannot calculate how much non-buoyant material is 
entrained by the convection. We can, however, place theoretical bounds on V from 
consideration of the net buoyancy of the material which detaches and convects into 
the upper region. It is convenient first to define dimcnsionless densities by 

and 

(3.7) 

where p k  = pI + $ k ( p P - p I )  is the bulk dcnsity of layer k .  In the present case of a 
discrete distribution of particle sizes it is convenient to let r(v) be the piecewise- 
constant function given by the rk and the corresponding interfacial velocities vk.  (As 
shown in the Appendix. an analogous function arises naturally for a continuous 
distribution.) Thus, in the absence of convection, r(v) is the dimensionless density at  
z = vt, where z is the distance below the initial position of the interface and t is the 
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time since the onset of sedimentation. It follows that R - r is proportional to the local 
buoyancy of the suspension relative to the fluid in the upper region. 

The first bound on V arises from the condition that all the layers with positive 
buoyancy must detach. This allows us to identify a lower bound for V as the 
maximum velocity of an interface such that all the overlying layers are buoyant 
relative to the density of the fluid in the upper region. The buoyant layers are those 
for which pk  < pu, or in non-dimensional terms rk < K. Thus the lower bound, Vmin, 
is given by the velocity of that  interface which separates r < R and r > R. Such a 
condition may be expressed mathematically as 

Vmi, = max {vk: rk < R}. 
k 

(3.9) 

Secondly, an upper bound on V is given by the condition that the net buoyancy 
of all the detaching layers, rather than the buoyancy of each individual layer, must 
be positive. This condition on the net buoyancy provides an upper limit to the 
amount of entrainment of negativcly buoyant material that can be effected by the 
detaching layers that  have positive buoyancy. This upper limit includes any scouring 
of particle-laden fluid by convective motions in the upper region since it is clear that 
thc convection itself can only be sustained if there is a net positive release of 
buoyancy at  the base of the region. The total amount of entrainment, therefore, must 
be less than the value that gives rise to zero nct release of buoyancy and we obtain 
the upper bound, Vmax, on V given by 

[R-r(v)]du = 0, (3.10) 

where an integral is used rather than a sum in order to include the possibility that 
vk < V,,, < zik+l for some k, this possibility corresponding to entrainment of part of 
a layer. 

The bounds Vmin and V,,, correspond to no entrainment and to maximum 
entrainment of negatively buoyant material respectively. Both the functions Vmin(R) 
and V,,,(R) arc monotonically increasing functions of R and therefore we reasonably 
expect that the interfacial velocity V ( R ) ,  which is constrained by 

1: 

vmin(R) v(R) L a x ( R )  > (3.11) 

will also increase monotonically with R ;  and this indeed appears to be the case. 
An important consequence of the detachment of the buoyant and entrained layers 

from the sedimenting region and the subsequent convective mixing with the 
overlying fluid is that  some of the suspended particles are carried into the upper 
layer. The fraction (by volume) X of the initial suspended particle load of the lowcr 
layer. that is subsequently lifted and mixed into the overlying fluid may be expressed 
in terms of V and the concentration of the particles in the detaching layers. The 
portion X@ of the initial suspended volume fraction that gets lifted is equal to the 
average volume fraction of particles in the detaching layers, which are defined by 
0 < v < V .  We recall that r@ is the local volume fraction of suspended particles in 
order to express this average as an integral with respect to v and thereby obtain the 
expression 

(3.12a) 
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after cancelling the common factor @ on each side. Equation (3.10) may be 
rearranged in a form identical to that of (3.12a), which shows that the functional 
relationship between X and V is the same as that between R and V,,,. It follows that 
( 3 . 1 2 ~ )  may neatly be rewritten to  obtain the alternative expression 

(3.12b) 

where V&, is the inverse function of V,,,. Equations (3.12) may then be used with 
(3.9) and (3.10) to place bounds on X .  If V = Vmin we obtain from (3.9) and ( 3 . 1 2 ~ )  
the lower bound 

(3.13) 

where the sum is taken over the values of k that correspond to buoyant layers 
(rk < R) .  In  the case V = V,,, it is clear from (3.12b) that the lifted fraction is given 
by the upper bound 

X,,, = R. (3.14) 

In the simple case of a monodisperse distribution there are only two layers : layer 
0 with density pB and volume fraction @ and layer 1 with density pI and volume 
fraction zero. Thus vl = u l F ( @ )  and (3.11) becomes 

v , < V < -  V1 

1-R' (3.15) 

The lower bound for V corresponds to the detachment of only the buoyant clear layer 
of density pI and no entrainment of underlying suspension ; thus Xmin = 0 in this 
case. The upper bound corresponds to  the maximum amount of entrainment of the 
densc suspended particles from layer 0 into the overlying convection. 

In the general case, unless R is very small, V is greater than the settling velocity 
v, of the smallest particles. As R+ 1, we find experimentally that V b vn, which 
indicates an important outcome of our investigation, namely that the rate of descent 
of the. top of the sedimenting region can be greatly enhanced by the overlying 
convection. The strong dependence of V on R can be attributed to the wide range of 
settling velocities in our experiments and the consequently very different velocities 
of the various constant-density layers a t  the top of the sedimenting region ; such a 
spread in velocities will also be a feature of virtually all geophysical applications. In  
the idealized case of a monodisperse suspension, we would expect the dependence on 
R to be much weaker. I n  this case the variation of V will be due entirely to the 
entrainment, which will gradually increase as the buoyancy of the interstitial fluid 
is increased relative to the stabilizing negative buoyancy of the initial bulk 
suspension. 

4. Comparison of theoretical description and experimental results 
The theoretical description is in good agreement with both the qualitative and 

quantitative experimental observations. We have observed that experimentally the 
process of sedimentation in the lower layer is independent of the motion in the upper 
layer ; the particle trajectories and concentrations below the interface and the rate of 
accumulation at  the base of the tank were all unaffected by the presence or absence 
of an overlying convecting layer. Theory shows that the bulk density of the 
polydisperse suspension in the lower layer is stably stratified (inhibiting convection) 
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FIGURE 9. The interfacial velocities observed in experiments with type-1 particles as a function of 
the density ratio R for differing initial volume fractions @ of sediment : (a) @ = 0.0023 ; ( b )  0.0083 ; 
(c) 0.0126; ( d )  0.0194; (e) 0.0266 and (f) 0.0356. Error bars, where large enough to be shown, are 
calculated from the statistical variation of the interfacial position with time. The curves indicate 
the bounding velocities, Vmin(R) and VmaX(R), that are predicted by (3.9) and (3.10). The step-like 
nature of the lower bounds results from the discrete representation of the distributions of settling 
velocity given in figure 2. 

and suggests that convective motions are driven by a thin boundary layer a t  the 
interface and are confined to the upper layer. Hence, the motion in the lower layer 
consists simply of the differential sedimentation and the return flow of the interstitial 
fluid, in agreement with observation. This description also accounts for the decrease 
in the concentration of particles a t  a fixed point, for the decrease in the rate of 
accumulation a t  the base of the tank and for the constant velocity of the interface. 
From (3.2) and (3.6) the concentration of particles a t  a point and the rate of 
accumulation of sediment a t  the base of the tank may readily be calculated. The 
theoretical predictions, shown in figures 5 and 6, are in reasonable agreement with 
experimental measurements. The less satisfactory agreement a t  early times is 
probably due to the sedimentation being somewhat disrupted until the large-scale 
residual eddies generated during the input of the lower layer had died away. 

A series of experimental measurements of the interfacial velocity V for a suspension 
of type-1 particles are presented in figure 9 (a-f)  which indicates the dependence on 
R for six different values of @. Also shown are the corresponding curves for Vm,, and 
V,,, predicted from our theoretical description. We note that the experimental 
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FIGUKE 10. Measurements ( 0 )  of the fraction X of lifted particles in the experiments with type- 
2 partides and @ = 0.0071. Also shown are the values ( + )  calculated from the observed velocity 
(with error bars) using (3.12) and curves giving the bounds, X,,,, and predicted by the 
theoretical model. 

dependence on R is in good qualitative agreement with the predicted trend; this 
trend is due primarily to  the polydispcrsivity of the particles. We note the 
satisfactory result that  all the experimental observations are bounded below by Ti,,,, . 
The comparison with V,,, is less satisfactory, however, with some of thc 
observations from the experiments with the intermediate values of @ or small valucs 
of R lying a little above our computed theoretical maximum velocity.? However, 
neither the variation of V relative to  the appropriate values of the theoretical 
bounds, nor thc variation of V with @ for a fixed value of R, is explained by our 
theoretical description. but we plan to  tackle this problem in future investigations. 

In  a series of experiments with type-2 particles the residual fluid was decanted 
immediately after the end of an  experimcnt and before the lifted particles had time 
to settle. The decanted particles and those that  had already settled were then 
weighed separately, thus allowing the fraction of particles which had been lifted to  
be evaluated. The experimental observations, shown in figure 10 for @ = 0.0071, lie 
close to  the theoretical minimum and agree well with the values predicted from the 
intcrfacial velocity using (3.12). In  this series of experiments some of the observed 
values of V were slightly less than V,,, (though by no more than experimental 
uncertainties). The consistency between the measurements of V and X and (3.12), 
however. supports the dcseription given in $3.  

Further strong support for the theoretical description is provided by the results 
presented in figure 11, which show the dramatic effeet of varying the distribution of 

t In order to test whether this discrepancy was due t o  premature sedimentation in the lower 
layer during the filling procedure, a few experiments were conducted in which the metal plate 
separating the upper and lower layers m a b  not replaced by the wire mesh until five minutes after 
tilling. M'hen the plate was eventually displaced there was a rapid overturn of the acwrnulated 
untlerlying buoyant fluid. However, the interface subsequently fell a t  the same velocity as i n  
experiments with undelayed starts and SO this explanation must be discarded. 



Convection driven by diflerential sedimentation 365 

I I 1 I I 
0 0.2 0.4 0.6 0.8 1 .o 

R 
FIGURE 1 1 .  Measurements of the interfacial velocity in experiments that used a volume fraction 
@ = 0.0356 of type-1 particles (v),  of type-2 particles (+) or of a mixture of equal quantities of 
both types of particle (a). Also shown are the corresponding maximum and minimum velocities 
predicted for each distribution by our theoretical model. 

settling Velocities and the consequent effects of polydispersion. These results are 
taken from three series of experiments, all with CD = 0.0356, which used, respectively, 
type-l particles, type-2 particles and an equal mixture of both types. Also shown in 
figure 1 1  are the corresponding theoretical bounds (with the allowed range of 
Velocities for each distribution stippled), which successfully bracket nearly all the 
observations. The similar qualitative and quantitative behaviour of the theoretical 
and experimental results indicates that  the theoretical description accurately 
accounts for the effect of polydispersion on the interfacial velocity. In  particular, we 
note that, as predicted, the observed interfacial velocities for the mixed distribution 
are dominated by the slowly settling type-1 component for small values ofR and by 
the rapidly settling type-2 component for large values of R. 

Though many of the experimental observations are well explained by the 
theorctical description, i t  remains to explain why a few of the observed interfacial 
velocities lie outside the range Vmin < V < V,,, and why there is substantial variation 
within that range. A number of sources of error can be envisaged, which include 
measurement errors of the sedigraph and uncertainties in the chosen form of the 
hindered-settling function 9 in (3.5). We note also that the settling velocity of 
particles of aspect ratio 2 varies by up to 15% with orientation (Happel & Brenner 
1986) and so i t  is necessary to assume that the average orientation of the particles 
in the scdigraph is similar to that in the experiments. I n  total, these errors might 
amount to about 15% in our determination of V.  

In  summary, the errors in the prediction of the settling distribution of the particles 
and some intrinsic variability between experiments (see, for example, the scatter in 
figures 9c  and 9 d )  can account for the anomalous observations. Future experiments, 
which are planned, will attempt to reduce these sources of error. 

5. Conclusions 
In this paper we have analysed the novel situation in which the settling of dense 

sediment controls the fluid motion and evolution of a simple two-layered system. 
Clear fluid of density prr will initially overlie a suspension in which the interstitial 
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fluid is less dense provided that the sediment load is sufficiently largc for the bulk 
density of the suspension to be greater than prr. As the particles sediment from the 
suspension. buoyant interstitial fluid is released at the base of the upper layer and 
drives convection in the overlying fluid. Meanwhile, differential sedimentation 
establishes a stable density gradient in the lower layer and inhibits fluid motion 
therein. The rate of release of buoyant fluid into the upper layer and the stability of 
the lower layer are thus both controlled by the differential sedimentation in the lower 
layer. 

The principal parameters that determine the rate of descent of the interface 
between thc sedimenting and the overlying regions are R = ( pu - p 1 ) / ( p B - - p I )  and thc 
distribution of the settling velocities of the particles. In many natural applications, 
such as sediment transport in river systems and pyroclastic flows from volcanic 
eruptions, the distribution of particle sizes spans several orders of magnitude. It 
follows that the rate of descent of the top of the scdimenting region will also vary 
greatly (depending on the value of R )  and will typically be very much greater than 
the settling velocity of the smallest particles in the suspension. In  thesc natural 
examples, therefore, the polydispersivity of the suspended particles plays a dominant 
role in determining the rate of convective mixing of buoyant fluid into the upper 
layer and the volume fraction and size distribution of the lifted particles. 

A theoretical description has been developed of the evolution of the lower layer, 
the rate of interfacial descent and the fraction of particles which are lifted. The theory 
provides upper and lower bounds for the interfacial velocity and for the lifted 
fraction. Qualitative and quantitative observations from laboratory experiments are 
in good agreement with the essential features of the theory, though the scatter in the 
current experimental data does not allow some questions to  be resolved. In 
particular, while we can bound V and X, we cannot predict their exact values. 
Further experimcntal work is planned to address these and other issues in the many 
fascinating problems in which sedimentation has a controlling, dynamical influence 
on the bulk fluid motion. 
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Appendix : A continuous distribution of particle sizes 
For ease of undcrstanding, we presented the discussion in the body of the paper in 

a form appropriate to a discrete distribution of particle sizes. We now briefly describe 
the case of a continuous distribution of sizes. Further details may be found in Davis, 
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Herbolzheimer & Acrivos (1982), Greenspan &, Ungarish (1982) and Davis & Hassen 
(1988). 

A.1. Upper region of lesser density 
Suppose that the particles in the lower region are polydisperse, with a proportion 
fo(u)du by volume of particles with Stokes settling velocity between u and u+du.  
Thus the volume fraction of particles of differing sizes in the well-mixed lower region 
initially has the distribution q0(u)  = @fo(u). When the particles are allowed to  
sediment, the local distribution of the particle volume fraction q ( z ,  t ; U) evolves 
according to 

for each U ,  where u = u(Q); u) is the settling velocity of the particles of size 
represented by u in the presence of the local concentration Q)(z, t )  of all other particles 
and z is the (downwards) distance from the initial position of the top of the 
sedimcnting region. (It is assumed that u is a slowly varying function of z and so can 
be expressed as a function only of q and u.) Since (A 1 )  is a form of the kinematic- 
wave equation, we seek solutions in which Q) = Q)(v; U )  and u = u ( v ;  u) ,  where 
o = z / t .  For such solutions, (A 1 )  reduces to 

which represents the change of particle concentration Q) dv between the planes z = vt 
and z = (v+dv)t due to the difference in flux d[q(u-v)] across them. The initial 
conditions are expressed by the boundary condition 

Q)(v;  u)  +Q)o(u) (v + a). (A 3) 

Equation (A 2) has a singular point a t  v = v*(u) ,  where v* is given by the root of 
v - u ( v ;  U )  = 0. The singular point corresponds to the trajectory of the particles of 
size represented by u that were initially a t  z = 0 and hence divides the region in 
which particles of this size are present from the region out of which all particles of 
this size have sedimented. Therefore, Q) = 0 for v < v*. It remains to specify the 
settling velocity u of a particle as a function of the local volume fraction occupied by 
all other particles. As in 33, the representation of hindered settling suggested by 
Grcenspan & Ungarish (1982) and Davis & Birdsell (1988) may be used to  obtain 

u ( v ;  u)  = ( l - f i ~ ) ( v ;  d ) d d ~ ( u - ~ * ~ ( v ;  u’)u’du’ 1 . (A 4) 

Equations (A2)-(A4) are analogous to (3.2) and (3.6) and may be solved 
numerically. Indeed, (3.2) and (3.6) can be thought of as a particular scheme for the 
numerical discretization of (A 2)-(A 4) (Davis & Hassen 1988). This observation 
justifies our earlier decision to use a discrete formalism provided that the number of 
sizes of particle used to represent the distribution is sufficiently large. An alternative 
numerical scheme may be derived by rewriting (A 2) and (A 3) as 

and solving (A4)  and (A5)  iteratively for u and cp, as was done by Greenspan & 
Ungarish (1982). 
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A.2. Upper region of greater density 

It may be observed that the cases of a discrete distribution of particle sizes and a 
continuous distribution of particle sizes give very similar effects during the 
differential sedimentation of an initially well-mixed suspension. In each case, for any 
given size of particle, there is a region at  the top of the suspension out of which all 
particles of greater size have sedimented and which grows linearly with time. As a 
result, the bulk density near the top of the suspension decreases from pB towards pI 
and the horizontal planes of constant density each propagate downwards at a 
constant velocity. The only difference between thc two cases is whether the density 
profile is continuous or stepped. 

We expect, therefore, that when pI < pu convection will be driven in the upper 
region for the case of a continuous distribution in a manner analogous to that 
described in $ 3  for the case of a discrete distribution : a layer of buoyant fluid at  the 
top of the sedimenting region grows linearly with time until the local Rayleigh 
number exceeds a critical value and the laycr detaches, together with some entrained 
material, and mixes with the overlying fluid. Thus the interface between the 
convecting and sedimenting regions will fall a t  a constant velocity V, which is 
determined by the rate of production of buoyant fluid by sedimentation and the 
efficiency of entrainment. As before, consideration of the buoyancy of the detaching 
convective boundary layer allows upper and lower bounds to be placed on V and 
the lifted fraction X .  The lower bounds are defined by 

where r (v)  = #(w)/@, and the upper bounds are given by (3.10) and (3.14). 
The critical Rayleigh number and the amount of entrainment will in detail depend 

on the local density profile r ( v )  in the buoyant layer and the immediately underlying 
region. Therefore, a discretized representation of a continuous distribution will be a 
good approximation if the number of buoyant layers with rk < R is sufficiently large 
that {rk}  provides a good approximation to r (v)  for r < R. Thus the approximation is 
least good when R is small, which may explain some of the discrepancy between 
theory and experiment for small R. 
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