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Solidification and melting along dykes by the laminar

flow of basaltic magma
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Abstract

We model the important thermal effects that occur when hot basaltic magma flows through a newly
opened dyke during an eruption. Heat is advected along the dyke by the flowing magma and
simultaneously is lost from the dyke by conduction into the colder crustal rock surrounding the dyke.
During the early stages of the eruption, the conductive heat losses are dominant and the dyke becomes
constricted due to the solidification of magma against the walls. Solidification occurs preferentially at the
downstream end of the dyke near the surface and the dyke may become completely blocked at the
surface. The eruption at that site will then cease before the supply of magma has been exhausted.
Alternatively, in dykes with an initial width that is sufficiently large, the continual supply of heat by the
flowing magma may, after a time, exceed the heat losses into the surrounding country rock. In these cases
the initial solidification is reversed, the walls of the dyke are progressively melted, and the dyke is widened
until the supply diminishes. We carry out explicit calculations for a two-dimensional dyke. The results
are that for typical physical parameters for basaltic magmas the initial critical width that demarcates these
two regimes is of the order of 1 m and is a strong function of the initial temperature of the surrounding
country rock. When the physical processes revealed by our two-dimensional model are extrapolated to
three dimensions, we identify an intermediate regime. For dykes with an initial width close to the critical
value, cross flows within the dyke lead to only parts of the surface becoming blocked. This indicates how

an eruption from an initially long surface fissure can become confined to a number of isolated vents after
a while.
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temperature of magma at the
base and in

the interior of the dyke

far-field temperature in the
country rock

dimensionless velocity of dyke
wall

dimensionless local coordinate
axis perpendicular to dyke
wall

dimensionless local coordinate
axis along dyke wall

dimensionless coordinate at
top of dyke

half-width of dyke

initial half-width of dyke

specific heat

length of dyke

conductive length-scale

time

velocity of dyke wall

velocity scale of magmatic
flow

local coordinate axis
perpendicular to dyke wall

dummy variable

local coordinate axis along
dyke wall

ratio of shear to its initial
value

ratio of shear at top of dyke
to its initial value

€XCesS reservoir pressure

ratio of initial width of
thermal boundary layer at
top of dyke to the initial
half-width

magnitude of shear

initial magnitude of shear in
dyke

of uniform width

similarity variable

temperature in both magma
and surrounding

country rock

dimensionless temperature in
magma

thermal diffusivity

Newtonian dynamic viscosity

similarity variable

specific value of similarity
variable

el

C

m
m
Jkg'°C!
m

m

s

ms™!

ms~!

m

m-s
Pas

7  similarity variable

74 demarcation value of 7

¢ dimensionless temperature in
surrounding country rock

Introduction

Basaltic magma chambers can store large amounts
of magma just a few kilometres beneath the
Earth’s surface. An increase in pressure in the
chamber, due either to fluid and thermal processes
within the chamber or to large-scale tectonic
movement, can cause the magma to be extruded
on to the Earth’s surface. The magma is
transported through the crust in a complicated
series of dyke fractures that propagate both
upwards and sideways from the chamber. Wher-
ever a dyke reaches the surface, an eruption
occurs, and for some time magma flows directly
from the magma chamber to the surface. Thermal
controls on the magma as it flows through the
dyke play an essential role in determining the
development and duration of the eruption. An
investigation of the fundamental fluid and
thermal processes that occur in basaltic dykes is
the major aim of this chapter.

Volcanic eruptions of basaltic magma display a
range of fascinating behaviours, which to date are
only superficially understood. Due to their
relatively low viscosity and volatile content,
basaltic magmas tend to be extruded in non-
explosive eruptions. The general behaviour of
Hawaiian volcanism has been described by Mac-
donald and Abbot (1970) and summarized by
Delaney and Pollard (1982). Figures 1 and 2
present colour photographs of the surface
manifestations of a number of such Hawaiian
eruptions. The eruptions typically commence with
a linear system of fissures, often in an en echelon
pattern, as seen in Figures 1 and 2. The fissures
rapidly open at the surface and erupt a continuous
fountain of lava in a ‘curtain of fire’, as is seen so
clearly in the figures. The subsequent development
varies from eruption to eruption. In some cases
the height of the curtain of fire and the flow rate
decrease and the eruption ceases, generally within
a fraction of a day. In other eruptions, after a few
hours a second phase is gradually initiated in
which there is a decrease in the length of active
fissures accompanied by a concentration of the
height of fountaining at certain points along the



SOLIDIFICATION AND MELTING IN DYKES 89

fissure. If the eruption continues, the flow of lava
can become localized to only a few surface vents,
around which volcanic cones are gradually built
up. _

This sequence of events was observed and fully
documented in the 1959 eruption of Kilauea Iki,
Hawaii, by Richter et al. (1970). An initial system
of six fissures rapidly evolved to occupy a surface
length of 750 m. After 2 h the extrusions of lava
had become localized to one or two vents along
each fissure and after 24 h the eruption was con-
fined to a single vent. Over the following 35 days
a substantial pyroclastic cone developed, which
covered the initial fissure system. Further
examples come from the Icelandic eruptions of
Krafla between 1975 and 1984 (e.g., Bjornsson
et al., 1979) and Heimay in 1973 (Thorarinsson
et al., 1973). At Krafla a multitude of short-lived
eruptions occurred and each gradually declined in
strength and eventually ceased after a few days.
At Heimay the initial opening of a fissure 1.5 km
long was rapidly followed by eruptions along its
entire length. Ten hours after the commencement
of the eruption, lava fountaining was increasingly
concentrated at the middle of the fissure and,
while the eruptive activity decreased in strength
over the first few days, the eruption continued for
several months. The eruption of Laki in 1783, the
most voluminous historical eruption, led to
dozens of vents along a fissure 15 km long that
continually discharged lava (Thorarinsson, 1969).

Aside from the initial geometry, two effects
control the rate and duration of discharge of
magma from the chamber to the surface. The first
is the driving pressure in the reservoir and the
second is the thermal evolution of the magma and
the country rock through which it passes. As the
eruption continues, the driving pressure gradually
decreases and may reduce the flow rate. The mag-
nitude of this effect will generally be small, how-
ever, because it reflects the generally small
fraction of the magma contained in the chamber
that is ultimately erupted. An additional conse-
quence of the decreasing pressure in the chamber
is the tendency for the fluid withdrawal to
produce subsidence of the chamber roof and to
close the dykes emanating from the chamber. This
may be the final limiting factor for some sustained
eruptions. The second effect, thermal evolution,
will play an important role throughout the erup-
tion. As the hot basaltic magma rises in a newly
opened dyke surrounded by relatively colder

]

country rock, two important transfers of thermal
energy occur. The first is the advection of heat by
the magma as it flows along the dyke. The second
is the conduction of heat out of the dyke into the
colder surroundings. When magma first fills the
dyke it initially solidifies against the cold channel
walls. Continued solidification may eventually
block the channel, which tends to end the erup-
tion at that site even though the driving pressure
in the magma chamber may remain substantial.
However, the continual supply of heat to the walls
by the magma flowing from the chamber may
eventually exceed the possible conductive transfer
into the country rock. Initial solidification will
then be halted and the walls subsequently melted.
The dyke width thus continues to increase until
the magma supply diminishes. A similar scenario
for initial solidification followed by melting was
quantitatively analysed by Huppert (1989) for the
turbulent flow in Archaean komatiite lavas over
their solid floor rocks.

The calculations in the present study are for a
simple two-dimensional model of a basaltic dyke.
They evaluate the conditions under which melting
can occur or, alternatively, the time for the erup-
tion to cease if the dyke becomes blocked by con-
tinued solidification. In addition, we identify and
explain an intermediate regime that can occur in
a real three-dimensional dyke, whereby parts of
the surface fissure become blocked and the erup-
tion continues at a number of isolated vents due
to cross flows within the dyke.

Description of the Model

An analysis of the evolution of magma in a dyke
based solely on conductive transfers from the
magma to the surrounding country rock implicitly
assumes that static solidification of the magma is
the only process that can occur. The flow will
cease within a few days if the dyke is less than
about a metre or so wide (Carslaw and Jaeger,
1959; Jaeger, 1968). A two-dimensional model of
a dyke that incorporated advective transfers
(Delaney and Pollard, 1982) allowed in principle
for melting of the surrounding crust to occur, but
concluded that in practice only solidification is
geologically relevant. However, the model is
incomplete in that it neglects both the effects of
latent heat release on solidification and the influ-
ence of thermal advection in the magma on the
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temperature profile in the solid. These deficiencies
led the model to consistently overestimate the
tendency for the dyke to become blocked. Our
model builds on that of Delaney and Pollard and
includes the effects they neglected. This permits us
to describe theoretically for the first time how
meltback of the walls of a basaltic dyke can occur
and how this process allows a fissure eruption to
continue.

We shall not consider here the initial formation
of a dyke—a problem in solid mechanics that is
still incompletely understood (Spence and Sharp,
1985; Lister, 1990). Our point of commencement
is a two-dimensional dyke of initially uniform
width that subsequently changes owing to local
solidification or melting, as sketched in Figure 3.
As the magma in the thin thermal boundary layer
adjacent to the wall is cooled, its physical param-
eters can change quite drastically, as outlined, for
example, by McBirney and Murase (1984). How-
ever, the transition between fluid magma and an
effectively immobile crystal mush occurs within a
layer in which the thickness is very much less than
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main part of the magma to travel the length of the
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dyke widths of the order of 1 m and flow rates of
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that this flow is driven by a constant excess
pressure in the reservoir, AP. This assumption of
a constant pressure, rather than the less appro-
priate, though frequently used, constraint of a
constant flow rate, means that the magma velocity
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1977), which are negligible except possibly in
dykes with a width that is very much larger than
those we calculate to be at the critical value.

The temperature at the wall is taken to be fixed
at 7w, which we identify as that temperature at
which there is a transition between relatively fast
flowing supercooled magma and a viscous, immo-
bile crystal slurry. In reality the transition occurs
over a temperature range. This range tends to be
small, however, when compared with the differ-
ence between 7y and 7., the far-field temperature
in the country rocks surrounding the dyke, and
will hence be neglected.

The time taken for magma in the main dyke
flow to traverse a dyke of length 4 is 4/w, where
w is the velocity scale of the flow. In this time
thermal conduction is effective over a length-scale
le = (xh|w)'"?, where x is the thermal diffusivity.
With  »x=10"°m?s™!, h=2x10m and
w=1ms"!, l.~4cm. Thus, / is typically very
much less than both the length and the width of
a dyke. The former inequality indicates that
thermal conduction along the dyke can be
neglected with respect to thermal advection by the
main flow. The latter indicates that conduction
across the dyke is only important in the thin
thermal boundary layers adjacent to the walls.”
Within these boundary layers the main Poiseuille
flow appears as a uniform shear flow with a veloc-
ity that increases linearly from zero at the wall.
The width of the dyke, the thermal boundary
layers at the walls and the magnitude of the veloc-
ity shear across them will vary gradually along the
dyke and slowly with time.

An important input into the model is the far-
field temperature in the crust, 7». The appro-
priate value is set by any pre-heating that may
have been caused by previous eruptions and by
the possible presence of hydrothermal motions
before the eruption (hydrothermal motion during
the eruption plays virtually no role, as shown by

Delaney (1982)). The value of 7. is one of the’

major external parameters used in the model.
The next section explains the details of the
mathematical model and the following section
presents the results of our numerical calculations.
Thus readers who are interested in the results but

* We shall see later that it is the velocity scale at the edge of
the boundary layer, rather than the core flow, which is impor-
tant in determining the width of the thermal boundary layer.
This width is typically of the order of 10 cm at the top of the
dyke.

not the mathematical details of our work could
proceed directly to the section giving the results.

The Quantitative Calculations

Our model assumes that at time =0 a dyke of
uniform width is instantaneously emplaced and a
flow is initiated along the dyke. Within each
thermal boundary layer a shear flow of magnitude
v flows along a wall of height %, which is at temp-
erature 7w. The wall migrates into the flow with
velocity v due either to the solidification of the
flow against the wall (v > 0) or to melting of the
wall by the flow (v < 0). The fluid at the start of
the wall and outside the thermal boundary layer is
at temperature 7y,. Heat is transported in the fluid
either by conduction across the flow or advection
along it. With respect to locally cartesian coor-
dinates, z measured along the wall and x perpen-
dicular to it with x =0 at the wall, as sketched in
Figure 4, the governing partial differential
equation for the temperature in the fluid 6 (x, z, ¢),
is

0r — V0 + yXO; = 50xx (x,t>0) (1)

=T z=0) (2a)

=Ty (x=0) (2b)

0= Ty (x— ) (2¢)
and

=Ty =0 (2d)

where x is the thermal diffusivity and (2d)
indicates that all the fluid is initially at tempera-
ture Thm.

In the solid, heat is transported by conduction
away from the wall. Initially throughout the solid
and at all times far from the wall the temperature
is assumed to be 7.. The partial differential
equation for the temperature in the solid is thus

0: — v0x = xfcxx (x<0,£>0) 3)

0=T. (x=0) (4a)

0= Ts (x— ) (4b)
and

=T (r=0) (4c)

The velocity of migration of the interface between
fluid and solid is proportional to the difference in
the conductive heat flux across the wall and is
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0=T

Thermal boundary layer

w=yZ

6=T

Figure 4. A sketch of the locally cartesian coordinate axes and the uniform shear flow at the wall

determined from
(Licyv=—x[0:(0+,2,1) = 00— ,z,0)] (5

where L is the latent heat of either solidification
or melting, c is the specific heat and fluid and solid
are assumed to have the same values for their
thermal parameters.

The shear flow, which takes place at the edges
of a two-dimensional channel of half-width b(z,?)
is driven by a pressure difference AP and results
in a volume flow rate of Q(¢). These will be
related by Poiseuille’s Law (e.g., Bachelor, 1967),
which implies both that

h

AP:%#Quﬂ b3z, 1) dz 6)

0

where p is the dynamic viscosity, and that

(@) :3 b=2(z,1)0(t) %

Due to either solidification or melting at the walls,
the half-width of the channel gradually changes
according to

t

bmn=m—gvum)m' @)
0

where b; is the initially uniform half-width.
It is now instructive to introduce non-
dimensional variables X, Z, T, V, ¢ and ¢ into
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equations (1)—(5) by writing
x=(x)v)' X, 2= (7)) *Z, t=T]vi,

v=(yi) 2V (9a—d)
0= Tu+ (Tr= Tw)d (x<0) (10a)

and
O0=Tw+ (Tw— Tx)e (x < 0), (10b)

where vi=biAP[ph is the initial value of the
shear. The resulting non-dimensional equations
can then be expressed as

Idr— Vix + ' X9z = dxx (X, T>0) (11)

d=1 (Z =0) (12a)
d=0 (X=0) (12b)
d—1 (X — ) (12¢)
d=1 (T=0) (12d)
or— Veox = oxx (X<0,T>0) (13)
e=0 (X=0) (14a)
e -1 (X— — =) (14b)
o=—1 (T=0) (14¢)
and
V=—[Sa'dx 0+,Z,T)-Sz'ex(0—, Z,T)]
(15)
where
I' =y (16)
is the ratio of the shear to its initial value,
Sm=Llc(Ta— Tw) 17)
is the Stefan number of the fluid and
Sewo=Ljc(Tw— Tx) (18)

is the Stefan number of the solid. These Stefan
numbers are two of the dimensionless parameters
that specify the behaviour of the flow. Physically,
Sm represents the ratio of the latent heat of soli-
dification to the heat released by the fluid on
cooling from its initial or far-field value to the
solidification temperature. Correspondingly, S~
represents the ratio of the latent heat of melting to
the heat required to raise the solid from its initial
or far-field temperature to the melting tempera-
ture.

Determination of the full solution of equations
(11)—-15) would be a formidable task, even

numerically. Simplifications can be made, how-
ever, which ease the computational task and still
permit an evaluation of the conditions under
which the channel becomes blocked. They
proceed by identifying two temporal regimes.
During the first regime both fluid and solid are
adjusting to the temperature at the wall T7..
During the subsequent regime, the continual
supply of hot fluid transfers heat into the wall,
while the solid continues to adjust to the wall
temperature.

In the first regime, advection of heat by the flow
is unimportant and the third term on the left-hand
side of equation (11) can be neglected. (Formally
the non-dimensional shear strength T' is set equal
to 0.) The resulting equations (11)—(15) have sol-
utions in terms of the (non-dimensional) similarity
variable

1

525 xroie (19)

and can be written as

5o e+ &)

erfc & (620 (20a)
_ g erfe{ = (& + &)l
g==1+ erfol — £0) (6<0) (20b)

where erfc(y) is the complementary error function
of argument y, and

V==tT 2 (20¢)
on the condition that & satisfies
1/2 &2 1 1
b = = 21
F o [Smerfc(— %) smerfcgo] @h

Equation (21) can be shown to have a positive sol-
ution, corresponding to solidification, if Sy < Se
and a negative solution otherwise. Eigenvalue
relationships of this form occur frequently in the
solution of initial-value problems for the heat
conduction equation, either with or without
moving boundaries (Carslaw and Jaeger, 1959).
The solution in both dimensional and non-
dimensional form is sketched in Figure 5.

This solution, based on the neglect of advective
processes, can be valid only in the early stages of
the flow. After a time, advection in the fluid, as
represented by the I' X¥z term in equation (11), is
balanced by conduction across the thin boundary
layer at the wall, as represented by the Jxx term.
It seems reasonable to suppose that with further
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0
a
(a) ¢
o
m
Tw—
SOLID MAGMA
T, —
x=0
(b)
A
SOLID 0 MAGMA
L
X=0

Figure 5. A sketch of the temperature profile in the
magma and the solid in (a), dimensional terms, and (b)
non-dimensional terms.

time, changes in the flow occur slowly and that
hence dr can be neglected. The — Vix term in the
boundary layer is now small compared with Jdxx
and can be neglected also. This leaves, as the
governing equation in the fluid,

' X9z = dxx (X>0) (22)

and equations (12a—c) but of course not (12d). A
more rigorous and detailed discussion of the vali-
dity of equation (22) is presented in Bruce (1989)
along with fuller considerations of some of the
subsequent approximations.

The form of equations (22) and (12a—c) suggest
that a solution can be obtained in terms of the
similarity variable

g=XZ V3 (23)

Inserting equation (23) into (12a—c) and (22), we

obtain
By + % T'n29, =0 (24)
d=0 (n=0) (25a)
J=1 (n— ) (25b)

On the assumption that I' is slowly varying, an
assumption that only holds sufficiently far from
the source of the flow, the solution to equations
(24) and (25) is

d=1— P393 (26)

where

©

3
e ¥ds

P(u) = S

u

@ 3
S e 8 ds (27a)
0

-3 r e=® ds|T(1/3) 27b)

and I'(1/3) is the gamma function of argument
1/3.

The solution to equations (13)—(15) can be
expressed in terms of the two independent vari-
ables ¢ and

r=TZ %3 (28)
Substituting equations (19) and (28) into
(13)—(15), we obtain
dror=2[E+ K(; D))o +oxx (E<0) (29)
=0 (=0 (30a)
and i
pr =1 (§— — =), (30b)
where

K(nZ)=vTY?
=% Salee(r,0) - Sa'TY?*9,(0+,Z,T) (3la,b)
Using equations (23), (26) and (27) to evaluate the '
last term in equation (31b), we see that
TY?9x(0+,Z,T)=T"Y*Z""39,(0) (32a)
= —(T/9)'*P'(0)r'* (32b)
where
P'(0)=—-3/T'(1/3)= —1.1198... (33a,b)

Since Z enters equations (29)—(31) only
parametrically and we are primarily interested in
the behaviour of the flow at the top of the wall,
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at Z = (yi/x)""*h = (bi APh|xp)"'* = Zy, it would
be efficient if the system needed only to be solved
at Z=Z,. This can be done if b(z,t), which
appears in the integrand of

~h -1
F(z,l)=hb'2(z,l)“ b3z, 1) dZ] /bi (34)
0

is approximated as b(/,t) on the argument that as
the channel closes the dominant part of the
integral comes from the region near z=h. In
addition, the approximation is exact as = 0 when
the channel width is uniform. With this approxi-
mation

[(h,t)=Tnr~ b(h,t)b; (35a,b)

—1-bi" S[ v(ht) dt (35¢)
0

T
=1—(x/~nb5)”zg V(h,T) dT  (35d)
0

To complete the specification of the problem, it
remains only to determine the time domains of
validity of the solutions in the flow represented by
equations (20a) and (26). Given that equation
(20a) is in terms of & and (26) is in terms of n, the
demarcation between them will be in terms of the
time-like variable 7= (n/ 2£)%. As 7 increases, the
conductive flux at the wall, £=0, decreases—
explicitly like 7~ '-2. Over this time the convective
flux calculated from equation (26) increases. We
set the demarcation time between the domains of
validity of the two solutions as the value of 7 for
which these two fluxes are equal at the top of the
wall. Detailed calculations for the case v=0 in
Bruce (1989) indicate that this is a reasonable
approach. In addition, our subsequent results are
not at all sensitive to this value. Denoting this
value of 7 by r4, we see from equations (19),
(20a), (23), (26) and (27) that 74 is given by

— 7 2(T4[9) 3142 P (0)eSoerfcto =1 (36)

It follows from equations (9), (28) and (35¢) that
at =14

T'n=1- Zafor‘}/z (37a) -

where
o= (uxh?|APb)3 (38)

is the third of the three external parameters that
specify the model. Physically, it represents the
ratio of the initial width of the thermal boundary

layer due to advection at the top of the dyke,
given by the balance §° = xh[vié, to the initial
half-width b;. For the model to be valid @ must be
less than 1. If « is too close to 1, as might happen
for example if the dyke is too long or its initial
width is too small, equation (36) does not have a
solution and the dyke becomes blocked before
advective effects become significant.

In the situation for which this does not occur,
however, it remains only to solve for 7> 74

dre =205+ K(r Zi)leE+ o (£<0,7> 7),

(39)
¢=0 &=0 (40a)
e— -1 (= —x) (40b)
and
e 2 erfzr[f;((f ;—jo)] (r=14) (40c)
with

K(r;Zy) = % Salee(r,0) + Sa'(Ta/9) 2P (0)r'/?

(41a)
and

Tn=1- a[ZEoTJ/Z - \ K(r; Zy)r~V? dT] (41b)

where equation (41b) follows from (35d) on
substitution of equations (20c) for 7 < r4 and
(31a) for 7> 74. The integro-differential system
(39)—(41) represents the non-linear evolution of
the non-dimensional temperature field at the top
of the solid ¢ as a function of 7 and &.

The system was solved by transforming the
semi-infinite domain in £ into [0,1), by setting
£=2y[(y—1). A direct and robust numerical
approach is to use a finite-difference formulation
for the space-like variable y and integrate the
resulting ordinary differential equations over 7.
For the local part of the operator on the right-
hand side of equation (39) we used the finite-
difference scheme recommended by Sincovec and
Madsen (1975) for parabolic equations; this is as
compact as possible, as required for stability (see
Hall and Watt, 1976, p. 210) and also conser-
vative, as appropriate for a heat equation. To cal-
culate the gradient at the boundary, on which the
non-local term K depends, we used a one-sided
four-point scheme, chosen on the basis of trials.
For a parabolic system a stiff integrator is
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required and the Gear variable-order/variable-
step scheme was used in the NAG implementation
DO2EBF. This scheme uses generalized backward
differences for the predictor, and modified
Newton’s method for the corrector. The step size
was chosen to obtain sufficiently small local trun-
cation error within a fixed number of iterations,
and the order was chosen to maximize the step
size within this contraint (see Hall and Watt,
1976, p. 154 et seq.). The number of points in the
space dimension and the tolerance for the time
integration were chosen so that the results were
accurate to three significant figures.

The first, semi-implicit approach we used
applied the Gear scheme only to the local operator
and used a crude two-point predictor with an
ad hoc corrector for K(r; Z,). However, because
the total truncation error was not controlled, fully
implicit solutions, applying Gear’s scheme to the
whole system, were also obtained using a software
package that integrates a user-supplied discretiza-
tion. Good agreement was found when the step
length for the semi-implicit scheme was con-
strained to be small, by requesting a very stringent
error bound on the local operator integration. The
numerical routines were extensively checked by
comparing the values obtained from them with
those obtained by solving the system approxi-
mately using a different approach. Details of all
such checks are presented in Bruce (1989).

The results of our calculations of the solutions
to the full system are presented and discussed in
the next section.

Results

The last section demonstrated how our two-
dimensional model is controlled by the value of
three external parameters: the Stefan number
of the magma Sm=L[c(Tm— Tw); the Stefan
number of the surrounding country rock
Sw=L[c(Tw—Tx); and oa= (uxh?|APbi)Y3.
In our numerical calculations of equations
(36)—(41), we used values of c=730J kg™ '!° C~!,
L=8x10"Jkg ", x=10""m?s™!, T, = 1200°C,
Tw=1150°C and u=100Pas, which are rep-
resentative of values for typical basaltic magmas
(Huppert and Sparks, 1980, and references
therein). The driving pressure was evaluated from
the lithospheric overburden as A P/A = 2000 nm ~3
(Wilson and Head, 1981), with 4 taken as either

2 or 5 km. The depth interval 2—5 km corresponds
to the top and bottom of active magma reservoirs
in Hawaii, Iceland and the East Pacific Rise. It
also corresponds approximately to the upper
surface and the keel of dykes in the respective rift
zones of these localities.

In a given volcanic system the remaining two
variables 7. and b; determine the course of suc-
cessive eruptions. The value of 7. might vary
between 0°C and 1150°C (= Tw) depending on
the previous thermal history of the dyking zone.
Using all these values, we find that Sn =22, S<
ranges upwards from 1.05, which corresponds to
cold country rock at 0°C, and that « can take on
any positive value, though only if « is less than 1
are the details of the mathematical modelling
valid.

On initiation of the flow of magma within the
two-dimensional dyke at the commencement of
the eruption, solidification in the boundary layers
at the walls of the dyke results, unless the temp-
erature in the surrounding country rock exceeds
1100°C, which will be a rare occurrence. For
dykes less than a critical width the solidification
continues until the dyke becomes blocked, which
first occurs at the surface, and the eruption ceases.
This form of evolution is sketched in Figure 6(a).
For dykes initially broader than the critical width,
before the solidification can close the channel the
advected heat flux begins to melt back the soli-
dified magma at the downstream end of the dyke.
Melting continues along the whole length of the
dyke, as sketched in Figure 6(b), and the width
gradually increases, as long as the driving pressure
is maintained.

The critical width is plotted as a function of the
initial temperature of the crust of dykes 2 km and
5 km long in Figure 7(a) and the time taken for
those dykes below the critical width to block is
plotted in Figure 7(b) for a crustal temperature 7w
of 100°C. The minimum width for an unblocked
dyke as a function of the initial dyke width is
plotted in Figure 7(c).

From the figure we see that large eruptions
(initial widths greater than about 2 m) can always
be sustained and that the length of the feeding
dyke does not have a very large quantitative influ-
ence. For a small dyke, typified by those with an
initial width less than a fraction of a metre,
blocking generally occurs and does so within a
matter of days. The behaviour of dykes of inter-
mediate size depends quite critically on the initial
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Figure 6. Sketches of the evolution in a two-dimensional dyke, showing either (a) the development to blocking, or
(b) the development through turnaround and meltback

temperature of the crust. Eruptions from dykes
emplaced in an initially warm environment have a
greater tendency to persist. The variation in the
value of 7. could be due to pre-heating of the
country rock either by previous eruptive events or
by hydrothermal circulation. Local warming by
previous dyking events would take tens or more
probably hundreds of years to decay by conduc-
tion, while the hydrothermal circulation may
persist for variable periods up to maybe many

tens of thousands of years depending on the
volume and geometry of the magmatic heat
source, country rock permeability and the kinetics
of hydrothermal mineralization.

Three-dimensional effects

In addition to the influence of the crustal tempera-
ture in determining the evolution of a dyke with
an initial width close to the critical value, there are
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important three-dimensional effects. These occur
because the magma that solidifies against the walls
of the dyke constricts the flow, particularly at the
downstream end of the dyke near the Earth’s sur-
face. This reduces the advected heat supply, which
leads to further solidification and reduces the
width of the dyke yet further. Correspondingly,
melting the walls of the dyke increases the flow,
provided the supply is maintained, and the
increased advected heat flux results in additional

melting. This positive feedback mechanism tends
to maintain and even accelerate either solidifica-
tion or melting. In a more realistic three-
dimensional model of a dyke this feedback
mechanism can result in solidification and melting
occurring simultaneously in different parts of the
surface fissure. The surface fissure and the dyke
below it may have initially only small variations in
width, as shown in Figure 8(a). These variations,
however, may become significantly larger with
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Figure 7. Numerical results of model, for parameter values given in text. (a) Regions of parameter space in which
blocking or meltback are predicted. (b) Time for dyke to become blocked as a function of initial dyke width, for
T = 100°C. The time to block becomes infinite for initial widths approaching the critical value for meltback to occur.
(c) Minimum width of dyke at turnaround as a function of initial dyke width, for 7= 100°C. The minimum dvke
width at turnaround approaches zero as the initial width approaches the critical value for meltback to occur. For very
large values of the initial dyke width, turnaround occurs before solidification has substantially changed the dyke width
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Figure 8. Sketches, not necessarily to scale, illustrating flow localization and subsequent development of a surface
fissure over time
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time, as was previously suggested qualitatively by
McBirney (1984). This can occur because cross
flows between sections of different initial widths
will form as the flow up narrow sections encoun-
ters greater constrictions due to preferential soli-
dification. The cross flows will further reduce the
advected heat flux in the downstream portions of
the narrow sections and increase it at the wider
portions, thereby exaggerating small differences in
the initial width of the dyke (Figure 8(b)).

In this way a fissure eruption can become con-
fined within a matter of days to a number of
isolated vents, from which magma continues to
erupt, as depicted in Figure 8(c). The vents would
continue to compete with each other for the
supply of magma, though the interaction between
vents becomes negligibly small if the vent separ-
ation exceeds the length of the dyke. This is
because the drop in pressure associated with the
sideways flow would then be comparable with the
driving pressure. Since the localization process
depends heavily on the operation of the feedback
mechanism, isolated vents should only result from
a fissure with an initial width sufficiently close to
the critical value.

Conclusions

We have constructed a model that quantifies the
thermal control processes generated by solidifica-
tion or melting in a newly emplaced basaltic dyke
feeding a fissure eruption. Heat supplied by the
magma is both advected along the dyke and lost
by conduction into the surrounding crust. For a
small dyke, with an initial width less than a few
tens of centimetres, conductive effects dominate
and the magma continues to solidify against the
walls until the dyke becomes blocked and the
eruption ceases. Our calculations indicate that this
typically occurs in a matter of days. For a large
dyke, greater than a few metres in width, advec-
tive effects dominate and after an initial period of
solidification the walls of the dyke are melted
back. For dykes of intermediate width, three-
dimensional effects are important and cross flows
within the dyke can result in isolated vents
forming while the length of fissure between the
vents becomes blocked. The demarcation lines
between the three forms of behaviour are fairly
strong functions of the temperature of the sur-
rounding country rock. An increase from 0°C to

500°C, for example, results in a decrease in the
critical width by a factor of approximately two.

These predictions are broadly consistent with
field observations of basaltic fissure eruptions.
Macdonald and Abbot (1970), summarizing
numerous eruptions on Hawaii, report that within
a few days a long fissure either closes completely
or evolves in such a way that the eruption con-
tinues from localized vents. Richter ef a/. (1970)
describe a particular eruption that localized to a
single vent within a day but then persisted for over
a month. In all these eruptions the initial width of
the dyke was typically less than 2 m. Anderson
(1987) reports a succession of short-lived erup-
tions occurring in the same area that culminated
in an eruption of much greater duration. We
interpret this as the natural culmination of a series
of eruptions through small dykes which became
blocked as they lost heat and thereby warmed the
surrounding crust. The temperature of the crust
was finally raised sufficiently to allow the advected
heat supply to suffice for the eruption to persist.
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Figure 1. (a) A series of eruptive fissures, arranged in
an en echelon fashion, feeding an immense lava flow-
field in the northeast rift zone of Mauna Loa volcano,
Hawaii. Laminar flow in the dyke erupts as a turbulent
curtain of fire with a maximum height that approaches
75 m. (Official US Geological Survey photo by J.P.
Lockwood, 6 July, 1975.) (b) At least seven en echelon
fissure segments are seen erupting simultaneously in the
northeast rift zone of Mauna Loa volcano, Hawaii and
producing lava that is flowing into the saddle that lies
between Mauna Loa and Mauna Kea. (Official US Geo-
logical Survey photo by J.P. Lockwood, 6 July, 1975)

Figure 1. (a) A series of eruptive fissures, arranged in an en echelon fashion, feeding an immense lava flow-field in

the northeast rift zone of Mauna Loa volcano, Hawaii. Laminar flow in the dyke erupts as a turbulent curtain of
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Figure 2. (a) A turbulent curtain of fire above eruptive fissures near the current Pu’u O’0o vent site. (Photograph by

J. Griggs, US Geological Survey in February, 1983. Reproduced with permission.) (b) A series of eruptive fissures

in the east rift zone of Kilauea volcano, Hawaii. Subsequent to the activity pictured here the eruption localized to

a single vent at Pu’u O’o. (Photograph by J. Griggs, US Geological Survey in February, 1983. Reproduced with
permission)

Figure 2. (a) A turbulent curtain of fire above eruptive
fissures near the current Pu’u O’o vent site. (Photo-
graph by J. Griggs, US Geological Survey in February,
1983. Reproduced with permission.) (b) A series of
eruptive fissures in the east rift zone of Kilauea volcano,
Hawaii. Subsequent to the activity pictured here the
eruption localized to a single vent at Pu’u O’o. (Photo-
graph by J. Griggs, US Geological Survey in February,
1983. Reproduced with permission)
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