
J .  F l ~ i d  M d .  (1990), V O ~ .  217, p p .  331-348 

Printed in Great Britain 
331 

Solidification of an alloy cooled from above 
Part 2. Non-equilibrium interfacial kinetics 

By ROSS C. KERR'T, ANDREW W. WOODS'.2, 
M. GRAE WORSTER'f AND HERBERT E. HUPPERT',' 

Department of Applied Mathematics and Theoretical Physics. 

Institute of Theoretical Geophysics, 

University of Cambridge, Silver Street, Cambridge CB3 9EW, UK 

(Received 22 June 1989) 

The model developed in Part 1 for the solidification and convection that occurs when 
an alloy is cooled from above is extended to investigate the role of disequilibrium at 
t.he mush-liquid interface. Small departures from equilibrium are important because 
in a convecting system an interfacial temperature below its equilibrium value can 
drive the bulk temperature of the melt below its liquidus. This behaviour is observed 
in experiments and can result in crystallization within and a t  the base of the 
convecting melt. The additional crystals formed in the interior can settle to the base 
of the fluid and continue to grow, causing the composition of the melt to  change. This 
ultimately affects the solidification a t  the roof. The effects of disequilibrium are 
explored in this paper by replacing the condition of marginal equilibrium at the 
interface used in the model of Part 1 with a kinetic growth law of the form hi = QST, 
where hi is the rate of advance of the mush-liquid interface, ST is the amount by 
which the interfacial temperature is below the liquidus temperature of the melt and 
$3 is an empirical constant. This modification enables the model to  predict very 
accurately both the growth of the mushy layer and the development of 
supersaturation in the isopropanol experiments described in Part 1.  An additional 
series of experiments] using aqueous solutions of sodium sulphate, is presented in 
which the development of supersaturation leads to the internal nucleation and 
growth of crystals. A further extension of the model is introduced which successfully 
accounts for this internal crystal growth and the changing composition of the melt. 
We discuss the implications of this work for geologists studying the formation of 
igneous rocks. Important conclusions include the facts that cooling the roof of a 
magma chamber can lead to crystallization a t  its floor and that vigorous convection 
can occur in a magma chamber even when there is no initial superheat. 

1. Introduction 
When a melt is cooled a t  a surface forming part of its boundary] it can crystallize 

at positions that are remote from the cooled surface. We and others (e.g. Chen & 
Turner 1980; Turner, Huppert & Sparks 1986) have observed such behaviour in 
laboratory experiments in which aqueous solutions of various salts were cooled from 
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horizontal surfaces forming the upper boundaries of their containers. I n  addition to 
the expected solidification of crystals attached to  the cooling plate, crystallization 
took place at  the floor of the container, probably seeded by small crystals that had 
fallen from the roof. In  order for this additional solidification to take place, the melts 
must have become supersaturated during the course of the experiments. Such 
behaviour has important consequences for the solidification of alloys and is 
inexplicable by any theory constrained by the assumption of equilibrium 
thermodynamics. 

As a liquid solidifies, the temperature a t  the interface between the liquid and the 
growing solid must necessarily be less than the equilibrium, freezing temperature of 
the liquid. Often, the departure from equilibrium is small and the solidification 
process can be accurately modelled by assuming that all the phase boundaries are a t  
precisely their equilibrium temperatures. This is the approach taken in classical 
studies of the solidification of pure melts (see Carslaw & Jaeger 1959, for example), 
and is used to good effect in recent theories of the solidification of alloys (Huppert 
& Worster 1985; Worster 1986; Woods & Huppert 1989). In  Part 1 of this series of 
papers (Kerr et al. 1990a), we used equilibrium theory to analyse many of the 
phenomena that can occur when a two-component melt is cooled from above, and we 
applied our results to  the particular case of ice freezing from aqueous solutions of 
isopropanol. Since the ice crystals that  formed were less dense than the solution, no 
seed crystals fell from the roof and the only solidification that took place was the 
directional growth of a mushy layer adjacent to the upper, cooled boundary. The 
theoretical model developed in Part 1 ,  which was based on equilibrium thermo- 
dynamics, was able to predict the growth of the mushy layer to a high degree of 
accuracy. It was noticed, however, that the liquid region below the mushy layer in 
the experiments became supersaturated, though no new ice crystals were observed to  
nucleate either in the interior or on the floor. 

Guided by the experiments reported in Part 1 and by the results of more detailed 
experiments described in $2 of this paper, in which we focus on conditions a t  the 
interface between mush and liquid, we modify our theoretical model to take account 
of disequilibrium at the interface. The condition of marginal equilibrium is replaced 
by a simple kinetic growth law that relates the rate of growth of a crystal to  the local 
supersaturation in the melt. We show that this modification has little effect on the 
classical theories of solidification, in which heat transfer is solely by conduction. I ts  
effect is merely to change the temperature of the interface by an amount which is 
negligible in most circumstances. 

The modification makes a fundamental difference, however, when the melt is 
convecting, since supersaturated fluid can be advected from the interface into the 
whole body of the melt. Thereby the whole of the liquid region can become 
supersaturated. This is in accordance with the experimental observations reported in 
Part 1.  I n  $3, we incorporate the new interfacial condition into the theoretical model 
for the whole convecting system and obtain significantly better agreement with the 
experimental results of Part 1 than was achieved there. 

In  $4 we describe a new set of quantitative experiments in which aqueous solutions 
of sodium sulphate were cooled from above. Crystals of sodium sulphate decahydrate 
(Na,SO, .10H,O) formed to  release buoyant residual fluid as before. However, in this 
case, the crystals are denser than the solution and some did grow from the floor into 
the supersaturated, convecting liquid region in addition to those formed at the roof. 
An extension of our theoretical model, which takes account of this additional crystal 
growth, is formulated and solved. Good agreement between the results of the 
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extended model and the experimental observations is shown to be possible by a 
suitable choice of the kinetic growth parameter. 

Some discussion of the importance of our results in the fields of metallurgy and 
geology is made in $ 5 ,  though a more comprehensive development of the results 
applied to systems that solidify completely is presented in Part 3 of this series (Kerr 
et al. 1990b). 

2. An interfacial growth law 
I n  Part 1, a model of the growth of a mushy layer was developed in which the 

temperature at the mush-liquid interface was equal to the liquidus temperature of 
the underlying, convecting liquid. However, this condition, which derives from a 
condition of marginal equilibrium, can only be approximately correct since crystal 
growth is necessarily a non-equilibrium process. Crystals can only grow in a liquid 
that is locally supersaturated, and will grow a t  a rate that depends upon the magnitude 
of the supersaturation. 

Measurements have been made for many crystals of the relationship between their 
growth rate and the local supersaturation (Kurz & Fisher 1986), and many different 
results have been obtained. A simple case to envisage is a linear growth law of the 
form 

where TL = TL(C,) is the liquidus temperature of the liquid region, q is the 
temperature of the interface, and the 'kinetic growth parameter' 9 is a constant 
associated with activation energy required for atomic attachment to the growing 
crystal face. We repeated the isopropanol experiment of Part 1 several times, and 
carefully measured h,(t) and T,  as the interface passed a number of fixed thermistors 
inserted into the tank. We fitted the data of hi versus time using a regression 
technique involving cubic splines, and determined hi from the best-fit curve. Values 
of hi versus TL- T,, obtained in this way, are shown in figure 1. We see that the data 
are reasonably consistent with the linear form (2.1), and we estimate 9 from the solid 
line to be 2.2 x cm O C - l  s-l. The dashed lines correspond to an overestimate (%+) 
and an underestimate (9-) of % by 40%. They will be used later to show that the 
value of 9 does not have to be known very accurately in order to  predict the 
evolution of our experiments. The measurements are all in the range 0 < TL-q < 
3 "C but we shall later assume that the same linear relationship holds for larger 
supersaturations. We shall see, however, that levels of supersaturation in excess of 
3 "C exist only a t  very early times (less than about 10 min) in the experiments. 

Before incorporating (2.1) into the full analytical model of Part 1, we consider the 
general properties of (2.1) and its effect on equilibrium models of solidification. If we 
make (2.1) dimensionless with respect to scales appropriate to thermal diffusion, the 
dimensionless growth parameter 

hi = S(T,-T,), (2.1) 

ATHy 
Y=- (2.2) 

Kf 

emerges, where K~ is the thermal diffusivity of the melt, AT is the difference between 
the temperature of the cooled boundary Tb and the initial liquidus temperature of the 
melt TL, and H is a typical dimension of the system. I n  our experiments, y has a value 
of about 80. If y is treated as a large parameter then (2.1) indicates that the growth 
rates are rapid compared with thermal diffusion rates if the supersaturation is O(AT).  
Conversely, if, as in the current situation, heat transfer is the rate controlling procem 
then the large value of y indicates that the degree of supersaturation is small. This 
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FIGTJRE 1 .  Experimental measurements of interfacial undercooling (T'- q) versus interfacial 
growth velocity h, for a 16.8 wt % aqueous solution of isopropanol. The solid line denotes the 
interfacial growth law corresponding t o  a n  estimate of the kinetic growth parameter Y of 
2.2 x cm "C:-' s-'. The dashed lines denote interfacial growth laws corresponding to  an 
overestimate (9+) and an underestimate (3-) of' Y by 40%. 

gives support to the usual approximation of equilibrium thermodynamics. Indeed it 
is perhaps more instructive to think of (2.1) not as a growth law but as an equation 
for the kinetic undercooling 

T,-T, = $-'hi, (2.3) 
which is small compared with AT when y is small. Asymptotically, in the limit y % 1,  
the incorporation of (2.1) into diffusion-controlled equilibrium models will only 
change the results significantly a t  very early times ( t  = O ( y - 2 H 2 / ~ I ) ) ,  where the 
singular growth rate, of O ( ( ~ { / t ) i ) ,  becomes bounded above by 3(TL - Tb). 

3. The full theoretical model 
A model for the growth of a mushy layer formed by cooling an alloy from above 

is illustrated in figure 2. A mushy layer extends from the roof, a t  x = 0, to z = h,(t) 
where the temperature is equal to q. In  Part  1,  the condition of marginal equilibrium 
(Worster 1986), applied at the interface between the mushy layer and the convecting 
liquid below it,  required that q was equal to T,(C,), the liquidus temperature in the 
liquid region. Here, in contrast, < TL in order that hi is positive according to (2.1). 
One consequence of this disequilibrium a t  the interface is that the solid fraction is no 
longer zero at the edge of the mushy layer. This feature was noted by Flood & Hunt 
(1987), who used a kinetic growth law in a model of the columnar-quiaxed 
transition in metallic alloys. As in Part 1, we assume that the interior of the mushy 
layer is in local thermodynamic equilibrium and that the same equations govern its 
evolution. Therefore, the dimensionless temperature 
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FIGURE 2.  Definition sketches for the model outlined in $ 3 :  a model (a ) ,  and corresponding 
equilibrium phase diagram ( b ) ,  for the growth of a mushy layer below a cold, horizontal boundary 
maintained at a fixed temperature T,. Throughout the mushy layer, the temperature (solid line) is 
constrained to equal the liquidus temperature (dashed line) of the interstial melt. The interfacial 
temperature is less than the equilibrium freezing temperature of the melt T,(C,). Vigorous 
convection in the melt keeps its temperature uniform. 

where Al l  = TL(Co) - Tb, satisfies the nonlinear diffusion equation 

c - = -  k -  (0 3 2 3  hi), 
at aZ a ( 7 aZ (3.2) 

in which lengths have been scaled with the height of the container H ,  time has been 
scaled with H 2 / ~ [  and the variable coefficients are given by 

k 
k = Q + ( l - $ )  (3.3) 

k, 

and 

where 

and 

-0 
$ = - 3  (3.5) 

(3.7) 

(see Part 1). Equation (3.2) is subject to  the boundary conditions 

e = - 1  ( z = o )  (3.8) 

and B = ei (2 = hi(t)). (3.9) 

The unknown temperature Oi is incorporated within the interfacial growth law 
introduced in $2, which can be written in the dimensionless form 

hi = - yei. (3.10) 
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FIGURE 3. The schematic behaviour of the dimensionless temperatures at the interface Bi, and 
in the liquid 06, for the model given in $3. 

The equations expressing conservation of heat a t  the interface 

(3.11) 

and the evolution of the melt temperature 

(i-hi)dt = -ivU(8,-e$ (3.12) 

are similar to those derived in Part 1 (equations (3.19) and (3.20)), though they now 
involve the variable 8, and, as mentioned earlier, q5i is no longer equal to  zero. The 
Nusselt number appearing in (3.11) and (3.12) is defined by 

NU = 2tA (as A T H 3 / ~ ,  v);, (3.13) 

where a is the thermal expansion coefficient, v the kinematic viscosity, g the 
acceleration due to gravity and h is a constant. 

We solved (3.2) numerically using the implicit method outlined in Part 1, subject 
to the boundary conditions (3.8) and (3.9) while Oi was varied in a combined 
secantlbinary search, root-finding algorithm until the equation 

(3.14) 

obtained by combining (3.10) and (3.11), was satisfied to sufficient accuracy. The 
position of the interface and the temperature of the environment were then updated 
according to (3.10) and (3.12), starting from initial values hi = 0 and 8, = O0 = 
(q-TL(Co)) /AT' .  As we shall see from the results, it  is possible for the temperature 
of the interface Bi to become greater than the temperature of the liquid 8, once the 
latter has dropped below the liquidus value 8 = 0. When this occurred, the 
convective heat flux Nu(BI-8,): was set to zero on the grounds that the temperature 
field is then gravitationally stable. Note that the conductive flux from the melt to the 
mushy layer is always included in the analysis. It is represented by the term Be - Bi 
within the curly brackets in (3.14). The conductive flux from the melt serves only to 
cool the advancing thermal boundary layer and cannot affect the bulk temperature 
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FIGURE 4. (a) The mush depth hi, (6) the relative depth, and (c) the temperature of the solution 
versus time. The symbols indicate the data obtained from the isopropanol experiments described 
in Part 1 .  The lower solid curve and the two dashed curves show the evolution predicted from the 
full theoretical model presented in $3, for the respective interfacial growth laws shown in figure 1. 
The upper solid curve in the figures shows for comparison the growth predicted by the simpler 
equilibrium model of Part 1. In ( b )  the depths shown in (a) have been rescaled by dividing by the 
depth predicted using our estimate of 3. The horizontal dashed line in ( c )  indicates the liquidus 
temperature of the solution (-6.2 "C). 
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of the melt. Thus (3.12) shows that 8, is constant once convection ceases. The typical 
behaviour of the temperatures Bi and 8, is illustrated in figure 3. The interface 
temperature is seen to rise rapidly from the imposed plate temperature 8 = - 1 
towards the liquidus temperature 6 = O .  It then evolves through both a local 
maximum and a local minimum. These two points mark the transitions in thc 
thermal balances between conduction, the release of latent heat and convection that 
have been discussed in Turner et al. (1986) and in $4 of Part  1. At the same time, 
convection decreases the liquid temperature towards the interface temperature. 
Eventually, 6, = Oi, the convection ceases, and 8, remains fixed. 

Our theoretical predictions for the isopropanol experiments of Part 1 are 
summarized in figure 4. We see that the theoretical prediction of the depth of the 
mushy layer is in very good agreement with the experimental data. For the 
temperature of the solution, the agreement is less satisfactory. However, most of the 
apparent discrepancy can be attributed to the effect of sidewall heating, which in 
Part 1 was observed to result in a steady-state temperature excess of about half a 
degree centigrade under our experimental conditions. We also note that our model 
can be simplified greatly, as is indicated in the Appendix, to yield an approximate 
global model of the mushy layer. 

The major effect of introducing an interfacial growth law into our model is that it 
enables the model to predict correctly that the liquid will eventually become 
supersaturated. I n  the case of the isopropanol experiments, the occurrence of this 
supersaturation had a small influence on the growth of the mushy layer (as can be 
seen in figure 4a).  The reason for this is that the magnitude of the supersaturation 
was always much less than the 5-7 "C that we found (in separate experiments) was 
necessary to nucleate new ice crystals. In  some circumstances, however, the 
development of supersaturation can significantly affect the growth of the mushy 
layer by promoting the growth of additional crystals which release latent heat into 
the convecting melt. This effect can arise in a number of different situations. For 
example, i t  will occur if there are seed crystals present initially, if the crystals in the 
overlying mushy layer are heavy and fall, or if supersaturation develops that is 
sufficient to cause new crystals to nucleate. Such secondary crystallization is 
examined in detail in the next section. 

4. Internal crystal growth 
In the model presented in the previous section we noted the possibility that 

crystals can nucleate and grow in the convecting supersaturated fluid underlying the 
mushy layer. In  this section, we describe an experiment in which such crystal growth 
occurred, and then proceed to extend our model to account for this situation. 

The experiment used an aqueous solution of 33.0 wt YO Na,SO, (which corresponds 
to 74.8 wt % Na,SO,. 10H,O), with an initial temperature of 40.0 "C. The solution was 
contained in a Perspex tank with horizontal dimensions 42 x 7.5 cm, which had a 
depth of 29 cm when the overlying brass plate was in place. The solution was cooled 
in the same manner as previously described for our isopropanol experiments (Part 1). 
We used a coolant precooled to - 10 "C to achieve the desired plate temperature of 
- 1 .O "C within 5 min. To minimize heat gains or losses from the laboratory, the tank 
was insulated using 5 ern thick Styrofoam and the experiment was performed in a 
room whose temperature was adjusted to  lie within about 2 "C of the temperature of 
the convecting solution. Crystals of Na,SO, . 10H,O nucleated after about 2 min, and 
by about 6 min a uniform mushy layer about 4 mm thick had formed. At these early 
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FIGURE 5. Photographs taken after 13 hours of an experiment in which an aqueous solution of 
Na,SO, was cooled from above. The initial temperature, liquidus temperature and imposed plate 
temperature in this experiment were similar to the values used in the experiment described in $4. 
The experiment was performed in the apparatus displayed in figure 1 of Part  1. (a) A side view 
showing both the mushy layer and the layer of faceted Na,SO,. 10H,O crystals at the base of the 
tank. (b )  A shadowgraph showing a sharp horizontal line which indicates the base of the strong 
compositional gradient through the mushy layer. Vigorous compositional convection from the 
growth of the basal crystals can also be seen. 
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times, the individual crystals were very small and densely spaced, and the mush 
appeared similar to the ice mush previously observed in our isopropanol experiments. 
After 100 min, the mushy layer had reached a depth of 2.3 cm and vigorous thermal 
convection had cooled the underlying solution down to its liquidus temperature of 
32.0 "C. Small spiky crystals were observed growing on the base of the tank about 
30 min later. It was not clear whether thcse crystals nucleated in situ or whether they 
had grown from very small crystals which may have fallen from the mush-liquid 
interface. The subsequent rapid growth of these basal crystals shown in figure 5 ( a )  
had two main effects. First, the resulting release of latent heat dramatically decreased 
the rate of fall of the solution temperature. Indeed, the rapid proliferation of basal 
crystals halted the fall in the solution temperature between 180 min and 280 min, 
and resulted in a slight rise in the solution temperature by 460 min. Secondly, the 
release of light, compositionally depleted fluid led to compositional convection 
(shown in figure 5 6 )  which decreased the concentration of the melt and hence also its 
liquidus temperature. 

An interesting feature of the experiment was that the fine, densely packed crystals 
observed in the mushy layer a t  early times grew to become large, faceted crystals 
later on (see figure 5a) .  This phenomenon, in which larger crystals grow a t  the 
expense of smaller ones, is known as 'Ostwald Ripening' (Glicksman & Voorhees 
1984) and is an effect of surface energy. It becomes increasingly important as the rate 
of growth of the mush decreases (i.e. as the system approaches equilibrium), and arises 
in our experiments because the mushy layer generally grows more slowly as it 
becomes thicker. As a result, the crystals in the mushy layer become bounded by 
planes normal to the crystallographic directions in which the crystal growth is 
slowest (Kurz & Fisher 1986). The increasing thickness of the crystals, from less than 
1 mm initially up to several cm near the end of the experiment, suggests that there 
is a significant surface energy associated with the contact between the crystals and 
the solution in the mushy layer. After about two days, only 9 large crystals 
protruded down to the mush-liquid interface. As a result, the position of this 
interface was most easily determined by using a shadowgraph to reveal the base of 
the compositional gradient through the mushy layer (see figure 5 b) .  At the end of the 
experiment, we measured the temperature and composition of the solution at seven 
equally spaced heights in the mushy layer. We found that all these values plotted on 
the liquidus (to within experimental error). This apparent equilibrium over the large 
distance8 between the crystals could not have occurred by chemical diffusion alone, 
and must have been due to convection driven by small lateral variations of buoyancy 
in the interstices of the mushy layer. 

Despite the increasing size of the crystals in the mush, we continue to treat it as 
a continuum, and focus our attention on how to extend the model developed in $ 2  
to account for the growth of basal crystals. We begin by noting first that basal 
crystals grow in response to supersaturation in the convecting solution underlying 
the mushy layer and secondly that their growth decreases this supersaturation by 
releasing both latent heat and depleted fluid. We therefore propose to incorporate the 
growth of basal crystals in our model by assuming that they grow sufficiently rapidly 
to remove the supersaturation in the convecting solution. Hence the temperature of 
the liquid is given by its liquidus temperature 

Part of the phase diagram for the sodium sulphate-water system is shown in figure 
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FIGURE 6. The phase diagram for the chemical system H,O-Na,SO,, produced using data from 
Washburn (1926). The line plotted is the liquidus, which gives the temperature at which a 
given solution concentration is in thermodynamic equilibrium with either ice or crystals of 
NaL,SO,. 10H,O. 
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FIGURE 7 .  Definition sketches which, in the model developed in $4, replace those of figure 2 once 
the melt temperature reaches T,(C,). Thereafter a solid layer of crystals grows on the base a t  a rate 
sufficient to keep the melt on the liquidus. 

6. We no longer assume that the liquidus is linear but represent it numerically by a 
four-point cubic spline. 

A schematic diagram of our theoretical model including the growth of crystals at  
the base of the container is shown in figure 7. A simplification in the model is that 
the crystals a t  the floor are envisaged to form a flat, solid layer of depth h,(t) .  By 
conservation of solute, 

dh, - (H - hi - hf ) dC, - _ -  
dt (Ca-C,) dt ' 
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If we assume that the basal solid has a uniform temperature equal to that of tho 
solution, conservation of energy implies that 

(4.3) 

where the four terms above are, respectively, the latent heat released by the growth 
of the basal crystals, the specific heats released by cooling both the solution and the 
basal crystals, and the heat flux into the mushy layer. 

Equations (4 .1)-(4.3)  can be rewritten in the dimensionless forms 

c, = CL(80, (4.4) 

and 

where C ,  is the liquidus concentration defined by inverting (4.1). These equations 
replace the equations C, = C,, hf = 0 and (3 .12)  once the solution becomes 
supersaturated (i .e.  once T( = TL(Co)). In  (4.6) the expression for the convective heat 
transfer FT is unchanged from $ 3  since it is assumed to be unaffected by the 
compositional convection driven by the growing basal crystals. 

Finally, to complctc our extended model we recognize that, owing to the basal 
crystal growth, the composition of the solution incorporated into the mushy layer 
decreases with time. As a result the mean composition of the mushy layer C, 
(including both liquid and solid phases) is now a function of height. This function is 
easily found since we have neglected vertical transport of solute within the mushy 
layer. Consequently, a t  each height z, it is given by the composition of the solution 
a t  time ti when the position of the mush-liquid interface hi was equal to z. This is 
expressed mathematically by 

(4.7) 

We note that, in writing (4.7), we also assume that the convection in the underlying 
solution does not mix or entrain the stratified solution in the mushy layer. The solid 
fraction $ ( x ,  t) a t  this height then depends on the local temperature 8(z, t )  according 

C,(Z) = C,(ti(hi = 2)) (0 < z d h,( t ) ) .  

to 

This expression for q5 replaces (3.5) in the evaluation of (3.3), and (3.4) becomes 

(4.9) 

The typical behaviour of Oi and 0, resulting from this system of equations is 
illustrated in figure 8. We see that the behaviour of both temperatures is identical to 
that shown in figure 3 until 8, reaches the liquidus. At this point, basal crystals begin 
to  grow. The resulting release of latent heat produces discontinuities in the slopes of 
both temperature curves. Subsequently, the evolution of 8, indicates the slow 
decrease in the liquidus temperature due to  the growth of basal crystals, while the 
evolution of Oi towards 8, reflects the diminishing rate of growth of the mushy layer. 



SolidiJication of an alloy cooled from above. Part 2 343 

-1  I t 

Time 

FIGURE 8. The schematic behaviour of the dimensionless temperatures at the interface and in 
the liquid, for the model presented in $4. 

Value 

2.66 J cm-a O C - '  

4.14 J cm-s "C-' 
0.0059 W em-' "C-' 
337 J cmV3 
0.03 cm2 s-l 
0.000ci O C - 1  

0.056 

Source 

B, D 
C 
C 
c, 
C 
C 
A 

TABLE 1.  The parameter values used t.0 calculate the evolution of the experiments with sodium 
sulphate. The data were obtained from the following sources: (A) Denton & Wood (1979). (B) Kaye 
& Laby (1973), (C) Washburn (1926) and (D) Weast (1971). 

Further results were calculated using values for the physical constants appropriate 
for our experiment with Na,SO, (table 1). Since the thermal conductivity of 
ISa,SO,. 10H,O crystals could not be obtained from the literature, we determined its 
value by measuring the temperature difference across a known thickness of the 
crystals when a known heat flux was applied. The value obtained was 
(0.8+0.1) x lo-* W cm-l O C - l .  

The results are compared in figure 9 with our experimental data, which are 
indicated by the open circles. The solid and dotted curves shown on the graphs are 
calculated using linear interfacial growth laws for two different values of the kinetic 
growth parameter 9'. For the dashed curves, we used the value of 9' 
(2.2 x lo-, cm O C - l  s-l) that we have measured for isopropanol (represented by the 
solid line in figure l ) ,  while for the solid curves we used the smaller value 
1.5 x lo-, cm O C - l  s-l. From figure 9(a),  we find that the former value of 29 
overpredicts the rate of growth of the mushy layer and underpredicts the growth of 
the basal solid. In comparison, the solid curves indicate that a value of $9 can be 
chosen to  give good agreement with the experimental results. The fact that the 
appropriate value of 9' is smaller for NaZS04 than it is for ice is not surprising since 
larger undercoolings are typically required for the growth of faceted crystals with 
significant surface energies (Kurz & Fisher 1986). We also note that although only 
about 15 % of the melt remains by 4000 min, the Rayleigh number at this time is still 
large (3.8 x lo5) and hence the convection is still fairly vigorous. 
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FIGURE 9. (a)  The depths of mush (h,) and basal solid (hJ ,  and (b)  the temperature of the solution 
versus time. The open circles indicate the results of our experiment with Pu'a,SO,, and the curves 

show the evolution predicted from the theoretical model developed in $3. The dashed curves were 
calculated using a linear interfacial growth law with the proportionality constant Y appropriate for 
isopropanol (corresponding to  the solid line in figure 1). The solid curves indicate that a smaller 
value for 9 can be chosen to fit the experiments more accurately. The size of the error bars in (a )  
shows the considerable uncertainty in estimating the mean depth of basal solid. The broken 
horizontal line in ( b )  indicates the liquidus temperature of the solution (32.0 "C). 

Figure 9(b)  shows that the evolution of the temperature in the solution is also in 
reasonable agreement with our model. I n  particular, the time taken for the solution 
to reach saturation is accurately predicted. The subsequent agreement is poorer, 
though it  improves as the supersaturation in the solution (assumed to be zero in our 
model) decreases, owing both to  the declining heat flux FT into the mushy layer, and 
to the rapid increase in the surface area of crystals growing on the base of the tank. 

5. Discussion and conclusions 
A simple kinetic growth law relating the rate of advance of a mush-liquid interface 

to the local supercooling was introduced in $2 and employed in subsequent sections 
to develop models of a binary alloy being cooled from above. Very good agreement 
between the results of the models and data from laboratory experiments has been 
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achieved. This suggests that  we have correctly identified and quantified the physical 
processes involved in such solidifying systems. 

Our models have certain features, such as the structure of the mushy layer and the 
use of a kinetic growth law, in common with a model developed by Flood & Hunt 
(1987) for the casting of metallic alloys. The main differences lie in our expressions 
for the convective heat flux FT from the liquid region to the mushy layer and in our 
treatment of the secondary solidification. Flood & Hunt (1987) do not consider the 
nature of the convective flow in the liquid. The associated heat flux FT is simply 
taken to be proportional to the temperature difference between the interior of the 
melt and the mush-liquid interface, with a constant heat-transfer coefficient chosen 
to give freezing times comparable with those observed in their experiments. This 
representation of FT is sufficient to investigate some qualitative features of the 
solidifying system. However, for quantitative predictions, the nature of the 
convection and the resulting heat flux must be known explicitly. 

I n  this series of papers, we have confined our attention to high-Rayleigh-number 
convection in one particular geometry, that of cooling from above. We have been 
able to  employ a specific expression for FT in terms of known fluid properties and 
have achieved good agreement with experimental observations. Our models predict 
that the melt becomes supersaturated, which causes further solidification away from 
the cooled boundary. Flood & Hunt (1987) consider that this secondary solidification 
takes the form of equiaxed crystals (mushy spheres) suspended in the melt. These 
spheres accommodate the residual fluid, that they produce as they grow, within their 
own interstices, and so there is no global redistribution of solute in the system. At the 
opposite extreme, we have considered a case in which the secondary crystals are 
compacted in a solid layer a t  the base of the container and release all their residual 
fluid into the overlying, convecting liquid. Either extreme, or something between the 
two, may occur in different situations. Our picture seems appropriate for the 
particular experiments with sodium sulphate that we performed. I n  order to obtain 
a better understanding of what is appropriate in general, detailed studies of the 
compositional convection that can transport residual fluid away from the growing 
crystals, perhaps along the lines of Woods & Huppert (1989), are needed. 

There are important geological implications of the present study, for example in 
the understanding of how lava flows cool and solidify. Basaltic lava lakes, cooled by 
the air (Turcotte & Schubert 1982), and komatiitic lavas ponded on the sea floor 
(Turner et al. 1986), are two examples in which the strongest cooling is from above 
and where the viscosity of the magma is sufficiently low for them to convect 
vigorously. Equilibrium models of solidification, such as that in Part 1, will 
accurately predict the removal of any superheat from the lava and the initial 
formation of a dendritic crust. However, in these models, the crust buffers the 
interior of the lava from convectively cooling below its initial liquidus temperature. 
In  contrast, the present models show that disequilibrium effects can cause additional 
crystallization of the lava, either a t  the base of the flow or in its interior. This 
secondary solidification can effect a change in the composition of the lava, which 
lowers the liquidus temperature and allows cooling and convection to continue. 

I n  fact, vigorous convection can occur in a magma chamber even where there is no 
initial superheat. In  such a case, there can be a competition between the growth of 
the thermal boundary layer by diffusion before convective instability, and the 
decrease of the kinetic undercooling which provides the driving buoyancy for 
convection. A dimensional analysis of this competition was outlined by Kerr et al. 
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(1989), who showed that vigorous convection would take place during a substantial 
fraction of the evolution of the chamber provided that 

agH2 
- 9 Ra,, BV (5.1) 

where Rae( = lo3) is the critical Rayleigh number for the onset of convection. 
Another consequence of this study is that it shows how disequilibrium, coupled 

with convective mixing, can cause the composition of the melt to evolvc with time. 
This results in a stratification of the mean composition of the mushy layer as given 
by equation (4.7). This bchaviour also provides a mcchanism for the redistribution 
of solute during the complete solidification of an alloy cooled from above. Such 
compositional stratification, which is observed in completely solidified ingots and in 
igneous rocks. is analysed in Part 3 of this series. 
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Appendix 
Furthcr to thc Appendix of Part 1 ,  we examine the c+fect of using an interfacial 

growth law in a bulk model of the mushy layer. We begin by adopting the trial 
function 

so that the solid fraction is independent of spatial position. Instead of the linear 
temperature profile assumed in Part 1, we approximate the tcmperature field by a 
function that is consistent with (A 1) in the limit of large Stefan number. In this 
limit, there is a balance between conduction and production of latent heat, and the 
equation for heat convection in the mushy layer (3.2) can be integrated to give, in 

( A  1 )  $ = $ ( t )  (0 < < h J ,  

dimensionless terms, 
x s .  
hi 2k 

6' = - 1 + ( 1  + 0,) ---$z(z - hi). 

We see that the linear profile is modified by a quadratic term due to the internal 
release of latent heat. Global conservation of solute yields the dimensionless 
constraint 

( l - $ ) ~ ~ ~ ' O d t + $ W  hi = 0, 3) 

which when evaluated using (A 2 )  gives 

where 
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FIGVRE 10. (a) The mush depth hi and (b)  the temperature of the solution T, versus time. The 
symbols indicate the data obtained from our isopropanol experiments. In comparison, the curves 
denote the evolution predicted by the simple bulk model outlined in the Appendix, assuming either 
that the interfacial temperature lies on the liquidus (upper curve) or is given by the intermediate 
growth law shown in figure 1 (lower curve). The horizontal dashed line in (b )  indicates the liquidus 
temperature of the solution ( - 6.2 "C). 

is the solid fraction for a mush in equilibrium with the liquid region such that 
Si = 0 and = 0. A full set of ordinary differential equations describing the system 
are ( A 4 ) ,  (3.10), (3.12) and 

. (l+Si) 
S,)} hi = k ~ - 

hi 
$!Jhi 4 -Nu( Bc - B,):, 

which is the equivalent of (3.11), having used the trial function (A 2) to  estimate the 
temperature gradient a t  the edge of the mushy layer. These are subject to the initial 
conditions hi = 0, 8, = O,, Oi = - 1 a t  t = 0. Note that these initial conditions imply 
that 4 = 1/(1 +U) a t  t = 0, which allows 4 to be finite according to  (A 4). 

The differential equations were solved using a fourth-order, Runge-Kutta method 
starting from asymptotic expansions of the solutions. The results are shown in figure 
10 in comparison with both our experimental data and our calculations based on an 
equilibrium interfacial condition from Part 1. We find that both bulk models yield 
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reasonable results. We also observe that, as was the case in our local models of the 
mushy layer, the incorporation of the interfacial growth law slightly retards the 
growth of the mushy layer. 
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