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Solidification of an alloy cooled from above 
Part 1. Equilibrium growth 
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The interaction between the solidification and convection that occurs when a melt is 
cooled from above is investigated in a series of three papers. In  these papers we 
consider a two-component melt that partially solidifies to leave a buoyant residual 
fluid. The solid forms a mushy layer of dendritic crystals, the interstices of which 
accommodate the residual fluid. The heat extraction through the upper boundary, 
necessary to promote solidification, drives convection a t  high Rayleigh numbers in 
the melt below the mushy layer. The convection enhances the heat transfer from the 
melt and alters the rate of solidification. In this paper the various phenomena are 
studied in a series of laboratory experiments in which ice is frozen from aqueous 
solutions of isopropanol. The experiments are complemented by the development of 
a general theoretical model in which the mush is treated as a continuum phase with 
thermodynamic properties that are functions of the local solid fraction. The model, 
which is based upon principles of equilibrium thermodynamics and local conservation 
of heat and solute, produces results in good agreement with the experimental data. 
Careful comparisons between this theory and experiments suggest the need to 
explore non-equilibrium effects, which are investigated in Parts 2 and 3. 

1. Introduction 
Fluid convection in a cooled melt significantly influences the resulting solidi- 

fication. The fluid motions affect heat and mass transfer rates that ultimately 
determine compositional variations and crystal habit within the solidified product. 
The interactions between solidification and convection are of particular importance 
in the casting of metal alloys, the production of semiconductor crystals and the 
formation of igneous rocks. 

Fluid motions in the melt can occur naturally when solidification takes place in a 
gravitational field ; the cooling necessary for solidification causes temperature 
gradients that can lead to thermal convection. Additionally, when an alloy is 
solidified, compositional gradients arise as one component is preferentially 
incorporated into the growing solid, and these too can cause convection. Huppert & 
Worster (1985) identified six different regimes in systems cooled from a single 
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horizontal boundary that forms either the upper or lower boundary of the melt. The 
type of convection that can occur depends both on the applied thermal field and on 
whether the residual fluid (depleted of the component forming the solid phase) has 
a greater, a lesser, or the same density as the original melt. Huppert & Worster then 
analysed a system with a dense residual which is cooled from below. In  such a case, 
convective motions are absent because both the thermal and compositional fields are 
gravitationally stable. 

The freezing temperature of an alloy (its liquidus temperature) is a function of its 
composition. The minimum freezing temperature, below which the alloy is completely 
solid, is called the eutectic temperature. In this paper we only consider cases in which 
the cooled boundary has a temperature above the eutectic temperature and so the 
system will always be only partially solidified. 

A feature of special interest in alloy solidification is the formation of partially 
solidified regions called ‘mushy layers’, which were discussed in some detail by 
Worster (1986). A mushy layer is a region of mixed phase comprising a matrix of 
solid, dendritic crystals with fluid-filled interstices. It forms as a result of local 
supersaturation (temperature below the local liquidus temperature) in the melt, 
which commonly occurs during the solidification of alloys owing to the much slower 
diffusion rate of most solutes compared with that of heat. By increasing the surface 
area a t  which solidification can take place, the mushy layer enhances the release of 
both latent heat and rejected fluid. This simultaneously raises the local temperature 
and depresses the local liquidus temperature so that the supersaturation is reduced 
and may be almost eliminated. Since rejected fluid is accommodated within the 
interstices of the mush, the rate of growth of the mushy layer is controlled principally 
by the rate of heat transfer. 

In’this series of papers, summarized in Kerr et al. (1989), we consider the case of 
a two-component alloy cooled from above which rejects a buoyant residual fluid. The 
system is therefore unstable to thermal convection while the compositional field is 
stabilizing. Turner, Huppert & Sparks (1986, herein referred to as THS) described a 
number of laboratory experiments in such a geometry and also presented a 
theoretical analysis of the simpler system in which a pure (or eutectic) melt is cooled 
and solidified from above. Their theory elucidated the changing balances between 
heat conduction through the solid, the latent heat released by the solidification of the 
melt and the heat transfer from the convecting fluid below. In  considering the 
solidification of an alloy, we have additionally to concern ourselves with the 
evolution of a mushy layer. 

In  $2 we describe a set of carefully controlled laboratory experiments designed to 
provide accurate data on the solidification of an alloy cooled from above. In  these 
experiments, ice was frozen from a mixture of water and isopropanol. The 
experimental data are used to test the accuracy of a mathematical model, which we 
formulate in $ 3  and discuss in $4. The model employs partial differential equations 
to describe heat and solute conservation within the mushy layer, which is treated as 
a new continuum phase assumed to be in local thermodynamic equilibrium. The 
convective heat flux from the liquid region is calculated with a semi-empirical 
formula appropriate for convection a t  high Rayleigh numbers. The model is closed 
by the hypothesis of marginal equilibrium at the growing interface between the 
mushy layer and the liquid, which was introduced by Worster (1986). 

Global conservation relationships for heat and solute are derived from the full 
system of differential equations in the Appendix. The resulting set of ordinary 
differential equations, which extends the model of Huppert & Worster (1985), is 
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much easier to compute than the local model. It can produce good approximate 
results for some of the gross features of the system, such as the rate of growth of the 
mushy layer, and may be useful for many practical applications. 

2. Laboratory experiments with isopropanol 
We performed a series of experiments in which aqueous solutions of isopropanol 

were cooled from above. The behaviour of many binary melts will be similar to that 
observed in this particular system, which we chose for a number of reasons. First, the 
solution satisfied the requirement that when it is cooled, the formation of ice rejects 
a buoyant alcohol-enriched solution, Second, this system has the convenient feature 
that the solid (ice) is also less dense than the initial solution, so that, unlike previous 
experiments (such as those of Chen & Turner 1980; and THS), the experiment 
is not complicated by small crystals occasionally falling through the solution. Third, 
reliable thermodynamic data are available for this chemical system. This is essential 
in order to make comparisons between the experimental and theoretical results. 
Fourth, the anomalous density maximum a t  4 "C associated with pure water can be 
eliminated by using a sufficient concentration of isopropanol (greater than about 
12 wt %) without the liquidus temperature of the solution becoming inconveniently 
low. For the experiments described in this paper we used a solution of 16.8 wt YO 
isopropanol, which has a liquidus temperature of -6.2 "C. 

A scaled diagram of the apparatus used is shown in figure 1. A Perspex tank with 
horizontal dimensions 20 x 20 cm and a depth of 18.8 cm was used to contain the 
solution. A brass plate formed the roof of the container and was cooled by pumping 
a mixture of ethylene glycol and water through its interior. The coolant's path 
through the plate was designed to ensure efficient and relatively uniform heat 
extraction. The cooler used was a HAAKE F3-K Cryostatic Circulator with a bath 
volume of 12 1. An overflow reservoir accommodated changes in volume during the 
experiment. These changes arose from either the thermal contraction of the solution 
or the expansion due to the growth of the less dense ice. We note that in the course 
of the experiment there was a net volume expansion of about 2 %. The transfer of 
heat from the laboratory was minimized by surrounding the experimental tank with 
Styrofoam insulation 5 cm thick and by placing the apparatus shown in figure 1 in 
a larger Perspex tank, within which the air temperature was maintained at about 
0 "C. 

The experiment was commenced by opening a valve to allow the coolant to pass 
through the brass plate. I n  the first half-hour of the experiment the rate of heat 
extraction from the plate was greater than the cooling capacity of the cooler. The 
experiment started with the coolant precooled to -32 "C. Thereafter the coolant 
temperature, and hence the temperature of the brass plate, rose to about -28 "C 
after 5 min, -26.5 "C after 10 min, and -25.5 "C after 15 min. After 30 min, the 
cooler was able to maintain the desired plate temperature of -25.0 "C to within 
0.05 "C. The eutectic temperature of the water-isopropanol system is unknown to us. 
However, i t  must be less than or equal to the melting temperature of pure 
isopropanol (-89.5 "C). As a result the imposed plate temperature allows only one 
solid phase (ice) to be formed. 

The thermal evolution of the experiment was continuously monitored by a BBC 
microcomputer using thermisters calibrated to an accuracy of about 0.2 "C, which 
were inserted into the tank either vertically through the brass plate or horizontally 
through a sidewall. At the start of the experiment the solution convected vigorously. 



326 R. C. Kerr, A .  W. Woods, M .  G. Worster and H .  E .  Huppert 

To cooler 

- * I 20 cm l o -  10 cm 
I 1 Scale 

FIGURE 1. A scaled diagram of the experimental apparatus. 

This convection diminished as the solution temperature decreased from an initial 
value of 4.0OC: to a constant value of about half a degree below the liquidus 
temperature (-6.2 "C) after about 400 min. 

Ice was observed to nucleate after about 3 min, producing isolated clumps which 
grew until they merged a t  about 10 min, when the mushy layer was about 5 mm 
thick. After this time, it had a very uniform depth, as can be seen by the side view 
of the interface after about 400 min shown in figure 2(a ) .  I ts  position could be 
determined with an accuracy of about 1 mm early in the experiment, and about 
3 mm towards the end. Figure 2 ( b ,  c )  shows photographs of the mushy layer when 
viewed from directions oblique and normal to the interface. The mushy layer 
consisted of a large number of intersecting plate-like ice crystals growing away from 
the brass plate and lying in approximately vertical planes. The spacing of the ice 
crystals was always much less than the depth of the mushy layer, varying from much 
less than 1 mm early in the experiment to a t  most 2 mm at  the end. This feature of 
the mush enables it to be modelled accurately as a continuum. 

The experiment was performed several times to determine the accuracy and 
repeatability of our measurements of the solution temperature and depth of the 
mushy layer versus time. We delay presentation of these quantitative observations 
until they can be compared with the theoretical models which we develop in the next 
section. We also carried out an experiment in which 0.5 wt % Natrosol was added to 
the solution to increase its viscosity by a factor of about ten. 

3. A theoretical development 
Our aim is to develop a general mathematical model that can predict the evolution 

of a binary melt cooled and solidified from above. Such a system can be characterized 

FIGURE 2. The mush-liquid interface in the isopropanol experiment after 400 min. (a) A side view 
showing tha t  the interface is very flat. ( b )  The underside of the mush when viewed from an oblique 
angle to  the interface. ( c )  A close-up view normal to  the interface, showing the plate-like structure 
of the closely spaced ice crystals. 
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FIGURE 2.  For caption see facing page. 
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FIGURE 3. Schematic sketches comparing the mush structures envisaged in: (a) THS, and ( b )  the 
current paper. In (a), crystallization a t  the end of the dendrites releases light, depleted liquid which 
rises along the dendrites and stratifies the interstital liquid from the top down, in the manner of a 
filling box. In ( b ) ,  crystallization occurs at all levels in the mushy layer, and the depleted fluid 
diffuses and spreads laterally. Vertical convective transfer of either composition or heat is 
negligible. 

as follows. A two-component melt of uniform composition C, and temperature T, 
initially occupies the region 0 < z < H ,  where z represents distance measured 
vertically downwards. Since the experiments showed that the system remains 
spatially uniform in the horizontal, we shall assume that the sidewalls do not 
influence the evolution of the system, and develop a model that  is purely one- 
dimensional. At time t = 0, the upper boundary of the melt ( z  = 0) has its 
temperature suddenly decreased to a value of Tb that  is less than the liquidus 
(freezing) temperature of the solution TL(Co) but greater than the eutectic 
temperature. Solid begins to grow from the boundary in the form of an intricate 
matrix of crystals with fluid-filled interstices that we call a mush. Following Worster 
(1986), we treat the mush as a new continuum phase whose thermal properties are 
functions only of the local volume fraction of solid 4. I n  particular, the specific heat 
per unit volume c, of the mush is precisely 

c ,  = 4c,+ (1 - 4 )  c,  

k, = 4ks+ (1 -4 )  k,, 

(3.1) 

(3.2) 

and we assume that the thermal conductivity of the mush is given by 

where subscripts p and / denote properties of the solid and and liquid phases, k is the 
thermal conductivity and c is the specific heat per unit volume. Equation (3.2) is an 
exact expression for the mean conductivity of a laminated material when the heat 
flux is parallel to  the laminates. It is appropriate here because of the predominantly 
vertical orientation of the crystals in the mushy layer. 

THS (figure 2) suggest a picture of the mushy layer in which an interstitial 
circulation of fluid is driven by releases of light fluid a t  the tips of the dendrites. We 
believe that a rather different picture is appropriate since crystal growth occurs a t  
all heights within the mushy layer, not just as the tips (see figure 3). In  addition, 
lateral diffusion of the released depleted fluid on a scale of the spacing between the 
crystals is rapid compared with the gross evolution of the mushy layer. Lastly, any 
small lateral variations in composition cannot produce significant vertical convective 
transport because the stable stratification of the interstitial fluid ensures that any 
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FIGURE 4. Definition sketches for the analysis of $3.  (a) Schematic diagram of the model system 
showing the temperature (-) and the local liquidus temperature (---), which is linearly related 
to the composition of the liquid. (b )  The phase diagram with the linear liquidus assumed in the 
analysis. 

buoyant fluid released at the surface of a crystal can only rise a small distance before 
reaching a position of neutral buoyancy and spreading laterally. We therefore 
envisage that the depleted fluid is accommodated laterally into the interstices. In  
support of this picture, we note that the final compositional profiles in the complete 
solidification experiments of both THS (figures 6 and A 7)  and ourselves (Part 3, 
Kerr et al. 1990b) indicate a minimal vertical redistribution of solute within the 
mushy layer. Accordingly, we ignore convective transport in the energy and mass 
conservation equations. The conservation equations describing the interior evolution 
of the mush then have the form of forced diffusion equations. Local conservation of 
heat is described by 

(3.3) 

where 2' is the latent heat of fusion per unit volume of solid grown, while 
conservation of solute is expressed as 

ac 
at 

(1-4)- = (3.4) 

where Cp is the uniform composition of the solid phase. Here we have made the 
additional assumption that vertical diffusion of solute is negligible. Equation (3.4) is 
equivalent to the Scheil equation, well known to metallurgists (Flemings 1974), and 
it can be readily integrated to show that (1 -$) (C-Ca) is a function of z only. 
Equations (3.3) and (3.4) are coupled via the linear liquidus relationship 

T = TL(C) TL(Co)+r(C-Co),  (3.5) 

where f is a constant. Note that in writing (3.3) and (3.4) we have implicitly 
employed an extended Boussinesq approximation ; changes in density between 
phases are ignored except insofar as they affect the thermal properties. In  other 
words, any expansion or contraction on solidification is ignored. 

Worster (1986) included a layer of pure solid between the cooled boundary and the 
mushy layer. However, if diffusion of solute is neglected then this solid layer cannot 
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form and the mushy layer extends all the way to the boundary. The typical situation, 
part way through the evolution of the system, is shown schematically in figure 4. 
Mush extends from z = 0 to  x = h,(t), a t  which level the temperature is Ti and the 
composition of the interstitial fluid is Ci. I n  the region hi < z < H ,  liquid is 
convecting vigorously and we assume therefore that it well mixed with temperature 

and composition C,. 
At the interface z = h, between mush and liquid, conservation of heat requires that 

where FT is the convective heat flux transferred from the liquid to the mush regions. 
This equation, together with (3.9) below, formed the basis of a model presented by 
THS for the growth of eutectic solid (rather than mush) from the upper boundary. 
The first term of (3.6) represents the specific heat needed to  accommodate the 
increase in temperature across the thermal boundary layer as the solid grows. This 
term, which has been incorporated in the model to conserve heat, was omitted from 
the analysis presented by THS. Its  influence is small whenever a Stefan number 
based on the temperature drop across the boundary layer, LYpIc,(%-q), is large, 
which is often the case. 

The other boundary conditions that we apply at the interface are a condition of 
conservation of solute and, in this paper, the condition of marginal equilibrium 
introduced by Worster (1986). The condition of marginal equilibrium states that the 
temperature gradient in the liquid ahead of the interface is equal to the gradient 
of the local liquidus temperature. I n  the limit of zero solutal diffusivity the two 
conditions combine to give 

q5 = 0, ci = c, ( z  = hi). (3.7) 

To estimate the heat transfer across the mush-liquid interface, we note that in our 
experiments the Rayleigh number Ra associated with the convecting liquid is large 
(about lo9 a t  the start), and thus we adopt the approximate relationship Nu cc Rat, 
where Nu is the Nusselt number (Turner 1979; Denton & Wood 1979). The 
dimensional heat flux is therefore taken to be 

where g is the acceleration due to  gravity, u the coefficient of thermal expansion, K[ 

and v the thermal diffusivity and kinematic viscosity of the liquid respectively and 
A is a constant. I n  the limit D / K ,  --f 0, where D is the compositional diffusivity, all the 
compositional variation is accommodated within the mushy layer and hence the 
thermal convection in the melt ahead of the mush-liquid interface is unaffected by 
any compositional buoyancy. Finally, the bulk temperature of the liquid region 
evolves according to 

(3.9) 

and we assume that there is no flux of solute across the mush-liquid interface, so that 

The governing equations for the whole system can be made dimensionless by 
c, = c,. 
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scaling lengths with H ,  time with H ' / K ~ ,  temperatures with AT = TL(CO)-q and 

(3.10) 

Equations (3.3)-(3.5) can then be combined to give the single dimensionless equation 

k 
where k @ + ( 1 - $ ) ,  

kC 

C S 

CC 
c = q Q + ( l - $ ) + 3 ( l - $ ) 2  

- e  
and 9=-*  

The 1 imensionless parameters appearing in (3.13) and (3.1, 
the mushy layer 

9 S = -  
cc AT ' 

c -c, and w = B .  
Q, - Cb 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

) are a Stefan number for 

(3.15) 

(3.16) 

The single governing differential equation for the mushy layer (3.11) has the form of 
a diffusion equation with variable conductivity k given by (3.12) and specific heat 
per unit volume given by (3.13). Note that the effect of continued growth of crystals 
within the mushy layer is to release latent heat and thereby to increase the apparent 
specific heat. Equation (3.11) must be solved subject to the boundary conditions 

8 = - 1  ( z = O )  (3.17) 

and e = o (2 = hip)). (3.18) 

The position of the interface is then determined from condition (3.6), which becomes 

(3.19) 

while the temperature of the liquid evolves according to 

p h i ) &  = -Nut$, (3.20) 

where Nu = (&A) (Ra,/8,); and Ra, = ag(T,- TL(Co)) H 3 / q  u. These equations are 
subject to initial conditions 

hi = 0, ec = e, ( t  = o), (3.21) 

where the initial dimensionless superheat is 8, = (T, - T,(C,))/AT. 
Equation (3.11) was solved by mapping [0, hi] linearly onto [0,1] and solving the 

resulting equation numerically using finite differences on a uniform grid. The two- 
step, implicit scheme in time used is described by Ames (1977, p. 85 ff.) and is second- 
order accurate. Simultaneously, (3.19) and (3.20f were solved using a second-order 
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TABLE 1. The parameter values used to  calculate the evolution of the isopropanol experiments. 
The data  were obtained from the following sources: (A) Denton & Wood (1979), (B) Kaye & Laby 
(1973), (C) Vargaftik (1975), (D) Washburn (1926) and (E) Weast (1971). The viscosity v was 
measured using a calibrated viscorneter at 0 O C .  
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wt Yo H,O 

FIGURE 5. Experimental measurements of the freezing temperature versus concentration for 
aqueous solutions of isopropanol. The data  is from Abegg (1894) and is in agreement with our own 
verification of the freezing curve. The line denotes the approximate liquidus (equation (3.22)) used, 
between -6.2 and -25.0 "C. in our model calculations. 

Runge-Kutta method. We actually used ht as a variable in the computations rather 
than hi, which allowed the numerical scheme to cope more easily with the singular 
behaviour near t = 0. We note that hi - (2t/O,$ as t + O .  

Results were calculated using values for the physical constants that are listed in 
table 1. These values are taken from various sources in the literature and are 
appropriate for the isopropanol solution used in our experiments. The physical 
parameters all vary to some extent with temperature and composition, but, 
consistent with the Boussinesq approximation, we have chosen constant average 
values that are representative for our experiment. Three parameters, however, 
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FIGURE 6. Experimental measurements of the thermal expansion coefficient versus temperature 
for an aqueous solution of 16.8 wt Yo isopropanol. The straight line denotes the expression 
(equation (3.23)) used in our model calculations. 

require more careful treatment. First, we approximated the liquidus curve shown in 
figure 5 by the linear relationship 

TL = -6.2+0.65(C-83.2), (3.22) 

which fits the data well over the temperature range experienced by the mushy layer. 
Secondly, the coefficient of thermal expansion varies greatly with temperature, so we 
made careful measurements of its value over a range of temperatures and we present 
the results in figure 6. The data are well represented by a straight line given by 

a = 10-4(2.25+0.15T), (3.23) 

where a has units of O C - l  and T is measured in "C. The buoyancy driving the 
convection is generated in a narrow boundary layer adjacent to the interface in 
which the temperature varies from in the liquid region, so 
that the appropriate value of a must lie in the range a ( q )  < a < a(%). For the 
purposes of our calculations, we have taken a to be equal to the mean of the range. 
We note, however, that using the extreme values does not significantly alter the 
results. Finally, to estimate an appropriate value for the heat-flux coefficient A, we 
assume that heat-flux measurements for convection a t  high Rayleigh numbers from 
stationary, rigid boundaries can be applied to a mush-liquid interface which is both 
moving and composed of the tips of dendrites. This assumption, which is supported 
by the measurements made by Chiesa & Guthrie (1974), seems reasonable provided 
that the interfacial velocity is much less than the typical convective velocity and the 
dendrite spacing is small compared with the thickness of the thermal boundary layer. 
The compilation by Denton & Wood (1979) of the results of many earlier studies 
suggests that during our experiment h should have a value of 0.056+4%. As a 
partial check on this and other parameter values that we used, we conducted an 
independent determination of h by using our apparatus to  cool the solution without 
forming ice crystals and found agreement to within 6%. From this procedure, we 
also found that, owing to sidewall heating, the final temperature reached by the 
solution was about half a degree above the imposed plate temperature. This 

a t  the interface to 
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FIGURE 7. (a)  The depth hi of the mushy layer and (b )  the solution temperature versus time. The 
symbols indicate the experimental data obtained from three repetitions of the experiment 
described in $2, and the curve shows the evolution predicted from the theoretical model developed 
in $3. The horizontal dashed line in (b )  indicates the liquidus temperature of the solution (-6.2 "C), 
which corresponds to a concentration of 18.8 wt YO isopropanol. 

temperature difference is small compared with the total fall in temperature during 
the experiments of some 10°C, so i t  reasonable to ignore the effects of sidewall 
heating with regard to the evolution of the temperature of the liquid region. 
However, we shall see later that  0.5 "C is a significant fraction of the supercooling 
that we observed in the experiments. 

The results of our calculations are shown in figure 7 where they are compared with 
our experimental data. We find that both the depth of the mushy layer and the 
temperature of the solution are quite accurately predicted by our model. We also 
note the interesting structure of the theoretical curve for the depth of the mushy 
layer (figure 7 a ) ,  which has points of inflection at t = 32 min and t = 116 min. The 
changes of curvature reflect changes in the heat balance between conduction, 
convection and the release of latent heat. They were first described by THS and are 
discussed in detail in the next section where graphs are presented, for different 
parameter values, in which the inflection points are more clearly visible. Results 
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similar to those shown in figure 7 were obtained for the experiment with the more 
viscous solution. 

4. Discussion 
The general mathematical model developed in the last section can be used to make 

predictions of the evolution of many solidifying systems that are of interest to at 
least metallurgists and geologists. Before discussing the parameter regimes that are 
relevant to particular applications, we shall examine the physical importance of the 
various parameters by using the model to explore the variations in behaviour that 
can occur as the parameter values are varied. 

For simplicity we consider systems in which the thermodynamic properties of the 
liquid and solid phases are identical. There are then just four dimensionless 
parameters that specify the system, namely the Stefan number S, the concentration 
ratio %?, the initial superheat 8, and the initial Rayleigh number Ra,. 

In the absence of convection (Ra, = 0 ) ,  the depth of the mushy layer grows in 
proportion to ti (Huppert & Worster 1985; Worster 1986). The growth is fairly 
insensitive to the value of 8, except for a mild (logarithmic) singularity a t  6, = 0 
(Worster 1986). The parameter U can play two roles. By changing the solid fraction 
through (3.14) it can alter both the thermal conductivity of the mushy layer via 
(3.12) and the magnitude and distribution of latent-heat release via (3.13). In the 
case of equal conductivities of the liquid and solid phases, only the latter effect is 
relevant and the full range of possibilities can be explored by fixing V and varying 
S ,  which measures the relative importance of latent heat to specific heat. Figure 8 
shows a number of curves for different values of S with % = 0.5. This value of W gives 
a solid fraction ranging from $ at the cooled boundary to 0 at the mush-liquid 
interface, or a mean solid fraction of approximately $, as determined in the 
Appendix. Increasing the value of U has the effect of decreasing the solid fraction 
and compressing the curves in figure 8 towards the curve for S = 0. We see that the 
principal effect of increasing S (or decreasing U )  is to decrease the rate of growth of 
the mushy layer since then more latent heat must be removed in order to effect the 
change of phase. 

Figure 9 shows the general form of the evolution that occurs when the initial value 
of the Rayleigh number is large, here taken to be lo0. At very early times ( t  < 
the principal heat balance is between conduction through the mushy layer and the 
removal of latent and specific heat from the growing solid. This results in growth 
proportional to I$ in a region that is barely visible in the figure but is responsible for 
the curves appearing not to pass through the origin. 

In the second phase of the evolution, conduction through the mushy layer 
balances the rapidly diminishing convective heat transfer of superheat from the 
melt, which results in the curves being concave upwards. This phase lasts until most 
of the superheat in the melt has been removed a t  t = 0.01 (see figure 12). When S is 
small, the mushy layer will have filled the whole tank by the end of this second phase, 
as we see from the curves for S = 0 and S = 1. However, when S is larger, a third 
phase ensues in which the principal balance is between conduction and the release of 
latent heat. This is seen in the curves for S = 3 and S = 10, which are approximately 
proportional to ti in the late stages of the evolution. 

The effect of increasingly vigorous convection can be seen in figures 10 and 11. In 
the first of these figures we have set %? = 0, which corresponds to the case of growing 
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FIQURE 8. Dimensionless plot of the depth of the mushy layer versus time for W = 0.5, no 
convection (Ra, = 0 ) ,  an initial superheat 0, = 1 and various values of the Stefan number S. 
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FIQURE 9. Dimensionless plot of the depth of the mushy layer versus time for W = 0.5, 8, = I ,  
vigorous initial convection (Ra, = 10') and various values of 8. 

a completely solid layer from a pure melt. Here we see that increasing the convective 
vigour, by increasing Ra,, increases the transfer of superheat from the melt. 
Although this retards solidification during the second phase of evolution, it also 
results in a more rapid removal of superheat, a more rapid transition to the third 
phase of evolution, and ultimately in shorter solidification times. The net effect of 
superheat is rather small. This is because, under most conditions, the melt rapidly 
loses its superheat and the system is well approximated by the classical Stefan 
problem of a pure solid growing into a melt a t  its freezing temperature (as indicated 
by the dashed curve in figure 10). It is important to note, however, that although the 
superheat is extremely small and convective heat transfer is negligible in comparison 
with latent-heat release by about & = 0.01 (for Ra, = lo@), convection continues in 
the melt until t = 0.24, by which time the system is about 40% solidified. 

A more dramatic variation with initial Rayleigh number is seen in figure 11. These 
curves were calculated for a mushy layer with %? = 0.5. The rapid growth compared 
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FIGURE 10. Dimensionless plot of the depth of a solid resulting from a pure melt (U = 0) for 
S = 3. The solid curves have an initial superheat (0, = 1) and vary in the vigour of the convection 
(Ra, = 0, 10‘ and lo’), while the dashed curve has no convection because there is no initial 
superheat (0, = 0). The results for Ra, = 10l2 are almost indistinguishable from the dashed curve. 

Time 

FIGURE 11.  Dimensionless plot of the depth of a mushy layer versus time for W = 0.5, S = 3, 
0, = 1 and Ru, = 0, lo6, loB and 10l2. 

with figure 10 is due to two effects. First the smaller solid fraction decreases the 
latent heat that needs to be removed to grow a given depth of mush. Second, crystal 
growth occurs throughout the mushy layer, which allows latent heat to be released 
where it is closer to the cold boundary and hence can be conducted away more easily. 
By contrast, when V = O  (figure 10) all the latent-heat release occurs a t  the 
solid-liquid interface and must be conducted through the entire depth of the solid. 

In  figure 12 we show the temperature evolution corresponding to all the curves for 
Ra, = lo6, lo9 and 10l2 in figures 9-11. We see that the effect of varying either V 
(from 0 to 0.5) or X (from 0 to 10) is not discernible. This result is due to the fact that 
both parameters only affect the temperature evolution indirectly by changing the 
depth of the melt, and little mush has grown before the melt temperature has 
decayed. As a result the points of inflection in figures 10 and 11 depend only weakly 
on V, while they depend strongly on Ra,. 
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FIGURE 12. Dimensionless plot of the temperature evolution for the parameters used in figures 
9, 10 and 11 with Ra, = lod, lo8 or 10". Note that the effect of varying either V or S is not 
discernible. 

To conclude this section we indicate the typical timescales and dimensionless 
parameters relevant to metallurgy and geology. In almost all such cases of practical 
interest, the melt is solidified totally by cooling it below its eutectic temperature. The 
solidification will usually involve the growth of both a mushy layer and a layer of 
composite solid (analysed in Part 3 of this series, Kerr et al. 1990b). However the 
dependence on W is weak for both the time for complete solidification and, as we have 
just indicated, the points of inflection in the growth curves. Therefore, for simplicity, 
we consider the solidification of either an ingot of pure copper or a ponded (subaerial 
or submarine) magma body of eutectic composition, with the physical parameters 
listed in table 2. For both systems W = 0 and the initial superheats 0, are similar 
(about 0.1). For the metallic melt 8 is small (0.047) and Ra, is large (3 x lo8), while 
for the magma S is moderate (0.69) and Ra, is very large (l0ls). Convection in both 
systems is therefore highly vigorous. This conclusion is in agreement with studies of 
lead and lead-tin alloys (Chiesa & Guthrie 1974), and of komatiites (THS). 

Owing to its small depth and high conductivity, the copper solidifies rapidly. The 
points of inflection in the growth curves occur at about 1 min (when hi = 2.5 cm and 

= 1137 "C) and at 2.7 min (when hi = 4.8 cm and T, = 1107 "C). Although the 
effect of convection on the growth of the solid is subsequently minimal, convection 
continues until the Rayleigh number reaches its critical value (about lo3) after about 
25 min. At  this time the majority of the melt (about 80%) is solidified and the 
residual superheat is only about 0.04 "C. 

In contrast to the metal, the magma takes much longer to solidify owing both to 
its larger depth and its lower conductivity. The points of inflection in the growth 
curves again occur quite early in the evolution of the system, at about 16 days 
(hi = 40 cm and T( = 1080 "C) and at about half a year (hi = 200 cm and T /  = 1016 "C). 
Convection does not cease, however, until after 160 years, by which time the magma 
is about three-quarters solidified and the residual superheat is extremely small 
(5 x lo-' "C). If the superheat is identically zero then there is no convection under the 
assumption that the crystallization takes place a t  thermodynamic equilibrium. 
However, it will be shown in Part 2 (Kerr et al. 1 9 9 0 ~ )  that the interfacial 
undercooling necessary for solidification, though small, is enough to cause vigorous 
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Units 

O C  

"C 
"C 
ern 
J OC-' 

J ~ m - ~  O C - l  

W cm-' O C - l  

W cm-' "C-l 
J ~ m - ~  
om2 s-l 
"C-1 
- 

Metal 

1185 
1085 
0 
30 
29 
30 
2.44 
1.66 
1700 
0.004 

0.056 
2 x 10-4 

Magma 

1100 
1000 
0 

2.0 
2.0 
0.01 
0.01 
1350 
100 

0.056 

104 

5 x 10-5 

TABLE 2. Parameter values appropriate for the solidification of a metallic melt and a magmatic 
melt. The metallic melt is pure copper, and data were obtained from Kurz & Fisher (1986), 
Washburn (1926) and Weast (1971). The values chosen for the magma, which is assumed to have 
a eutectic composition, are representative (see for example THS). 

I I I I 

t (min) 

FIGURE 13. The depth of the mushy layer hi versus time. The symbols reproduce the data obtained 
from our isopropanol experiments, which were displayed in figure 7 (a). The dashed curve denotes 
the evolution predicted by the simple global model outlined in the Appendix. The solid curve 
represents the prediction of the full local model of $3.  

convection in almost all natural circumstances. The discussion of this point is 
extended and applied to a particular geological melt in Worster, Huppert & Sparks 
(1990). 

5. Conclusions 
In  this paper we have developed a simple theoretical model which forms a basis for 

understanding the growth ofa  mushy layer when a binary alloy is cooled from above. 
In the model the mushy layer is treated as a continuum phase. Within it, heat and 
solute are conserved and the temperature and liquid composition are coupled by the 
equilibrium (liquidus) relationship. The interstitial fluid is envisaged as being 
stagnant, while the underlying liquid region is in vigorous thermal convection. 
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To test the model we performed a number of experiments with a particular 
solution of water and isopropanol, which offered few complications and for which 
reliablc thermodynamic data were available. Both the thickness of the growing 
mushy layer and the temperature of the underlying convecting solution were 
measured, and their evolution was found to be well fitted by the predictions of our 
theoretical model. This result suggests that  the model incorporates correctly the 
three governing thermodynamic processes : the extraction of heat from the system 
through the mushy layer by thermal conduction; the internal growth of the mushy 
layer with the consequent release of latent heat; and the heat extracted at the 
interface from the underlying melt. I n  the Appendix we show how the same 
fundamental thermodynamic processes can be approximated, using integral 
constraints derived from the basic model, to  achieve results that may well be 
adequate for many practical applications. 

Despite the close agreement between theory and experiment, it is clear from figure 
7 ( b )  that the model systematically overestimates the temperature of the melt. 
Although the discrepancy is small, it  is particularly significant that in the 
experiments the melt became supersaturated, a possibility not allowed for in the 
theory. The disequilibrium of the melt can, in other systems, cause different 
phenomenona to occur. In Part 2 of this series of papers (Kerr et al. 1990a), we shall 
extend our model to  account for disequilibrium effects in the melt and explore the 
consequences for the solidifying system. 
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Appendix 
In this Appendix, we examine the procedure of simplifying the model of the mushy 

layer so that it relies only on global conservation of heat and solute. This approach 
was employed by Huppert & Worster (1985) to develop a model which predicted 
accurately the rate of growth of ice when aqueous solutions of various salts were 
cooled from below, The primary advantage of this approach is that it avoids the 
necessity of solving the partial differential equation for heat conduction in the mushy 
layer. The resulting equations are therefore much easier to compute. 

The method adopts a simple trial function for the solid fraction within the mushy 
layer. Here, as in Huppert & Worster (1985), we choose 

$ = constant (0 < x d hi). (A 1) 

We estimate the conductive heat flux through the mushy layer by assuming a linear 
temperature profile, which is consistent with (A 1) in the limit of large Stefan 
number. An equation expressing the global conservation of solute is obtained from 
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(3.4) by integrating it with respect to  time and then with respect to height across the 
whole depth of the domain. This yields the dimensionless constraint 

( l -$ ) -  edz+$% = 0. 
hi l . r  

With the approximate function 8 = (z/hi) - 1, this yields 

1 $ = $  =- 
- 2%+1'  

A set of ordinary differential equations describing the system is then given by (3.20) 
coupled with 

which is the equivalent of (3.19). 
The differential equations were solved using a fourth-order, Runge-Kutta method 

starting from asymptotic expansions of the solutions. The results for the depth of the 
mushy layer hi are shown in figure 13 where they are compared to both the data 
obtained from our experiments with isopropanol and with the results of the detailed 
model of Q 3. The evolution of the temperature of the liquid region el, as predicted by 
the simple model of this Appendix, is indistinguishable from that shown in figure 
7 (a). The agreement shown in figure 13 illustrates how the use of integral constraints 
applied to trial functions can give good approximate results for some of the gross 
features of the evolution of the system. 

When using the global model it is important to understand the nature of the 
approximations that have been made. For example, the adoption of a linear 
temperature profile assumes that the timescale for cooling by conduction H 2 / ~  is 
small in comparison either with the timescale for removal of latent heat by 
conduction Sfla/, or with the timescale for cooling by convection R a - i H 2 / ~ .  This is 
an excellent approximation at moderate or large Stefan numbers. It is clearly 
inappropriate, howe$er, if both the Stefan number is small, so that the release of 
latent heat is negligible, and the Rayleigh number is simultaneously large, resulting 
in the rapid loss of superheat. 

The assumption of a constant solid fraction implies that the latent heat is all 
released a t  the mush-liquid interface. This is exact for +? = 0, corresponding to a 
solid fraction of unity, but is increasingly inaccurate as %9 increases and the solid 
fraction 4, decreases. In  reality, the release of latent heat is distributed throughout 
the mushy layer, nearer to the cooled boundary through which it must ultimately be 
conducted. This particular approximation therefore underestimates the rate of 
growth. A second effect of the assumption of a constant solid fraction is that it leads 
to an overestimate of the effective conductivity of the mushy layer whenever the 
conductivities of the solid and liquid phases are unequal. These two effects of the 
same assumption can therefore partly counteract each other. 

The result of all these approximations is that the global model has given us 
predictions for the growth of mushy layers from aqueous solutions that have been 
accurate to within about 10 YO. 
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