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The input of a hot, turbulently convecting fluid to fill a chamber can result in the 
roof of the chamber melting. The rate of melting of the roof is here analysed 
experimentally and theoretically. Three separate cases are considered. The melt may 
be heavier than the fluid and initially sink through it. The intense motion in the fluid 
then mixes the falling melt in with it. Alternatively, the melt may be less dense than 
the fluid and form a separate layer between the roof and the fluid. This melt layer 
can itself be in quite vigorous convective motion. An intermediate case is shown to 
be possible, wherein the melt is initially denser than the fluid, and sinks. As its 
temperature increases and its density decreases, it  becomes less dense than the 
surrounding fluid and rises. Experimental simulations of each of these three cases arc 
described. The experiments employ a roof of either wax or ice which is melted by the 
aqueous salt solution beneath it. The second case, that of a light melt, has important 
geological applications. It describes the melting of the continental crust by the 
emplacement of a hot, relatively dense input of fluid basaltic rock. Both the basaltic 
layer and the resultant granitic melt layer crystallize and increase their viscosities as 
they cool. These effects are incorporated into the analysis and the rate of melting and 
the temperatures of the two layers are calculated as functions of time. The process 
is exemplified by the formation of the Cerro Galan volcanic system in Northwestern 
Argentina over the last 5 million years. An Appendix analyses the thermal history 
of the fluid in a chamber that does not melt and compares the results obtained with 
those derived previously. 

1. Introduction 
When hot fluid is introduced into a solid container, the heat may melt all, or part, 

of the container and permit the fluid to escape, with potentially disastrous 
consequences. The introduction of hot magma into a magma chamber surrounded by 
rock with relatively low melting temperatures is not as severe, in that the magma is 
not able to escape, but nevertheless the process is geologically important. The molten 
material originating from the initially solid surrounding rock can become mixed with 
the magma and contaminate it. Upon eruption, the composition of the magma will 
then be different from that when it first entered the chamber. This complicates the 
geologist’s interpretation of the products of volcanic eruptions. Besides the geological 
applications, there are many other situations in which melting of retaining 
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boundaries, due to vigorous turbulent motion in the fluid, is important. This has 
motivated a combined experimental and theoretical study of the melting of a solid 
roof by the introduction of hot fluid beneath it. The molten material originating at  
the roof is referred to simply as the melt, in line with standard geological and 
metallurgical practice. 

The experiments consisted of placing a wax roof at the top of a Perspex container 
of rectangular cross-section. A hot aqueous solution of salt was rapidly introduced 
near the base of the container until it  was completely filled. The density of this hot 
solution could be varied by altering its composition. Thus three separate cases could 
be considered. First, the fluid density could be less than the melt density (for all 
temperatures in the relevant range). I n  this case the melt initially sank, but the 
turbulent motion resulting from the heat transfer to the cold roof quickly mixed the 
molten wax into the fluid (with which it was miscible). A photograph of a typical 
fluid/melt interface makes up figure 1 (a ) .  Second, the fluid density could exceed the 
melt density. The melt then formed a separate layer between the roof and the hot 
fluid. The layer was initially quiescent and transferred heat by conduction, though 
subsequently convection generally occurred. Figure 1 (b)  depicts a light melt layer 
which is in the latter state. Finally, an intermediate case was possible, in which the 
melt density a t  the melting point only slightly exceeded that of the hot fluid. The 
melt began to sink. A5 i t  did so its temperature rose and its density could decrease 
to be less than that of the fluid; streamers of melt would then rise. A photograph 
showing this bi-directional motion is reproduced in figure 1 ( c ) .  

This simple experimental account was briefly outlined in Huppert (1986), which 
includes colour photographs of the experiments. The current paper presents, in $92 
and 3, theoretical analyses of the first two cases, guided by the experimental 
observations. Comparisons between the theoretical and experimental results for the 
first case will also be discussed. Both for the wax/aqueous-solution system described 
in the previous paragraph and for the melting of an ice roof into warm water, the 
agreement is quite good. 

The situation of intermediate density will be very briefly surveyed in $4. 
I n  the geological situation the contained magma crystallizes as i t  cools. This 

crystallization increases the amount of heat available to  melt the surrounding rock 
owing to the latent-heat release. The crystals are typically so small that they tend 
to remain suspended in the turbulently convecting magma. The presence of the 
crystals increases the effective viscosity of the magma. A description of these effects 
and a discussion of the results for typical magmatic systems is presented in $5. A 
more detailed account, written for geologists rather than fluid dynamicists, appears 
in Huppert & Sparks (1988a), and an updated version is presented in Huppert & 
Sparks (1988 b ) .  

The material of the paper is complementary to earlier work analysing the melting 
of the substrate by a hot, turbulently flowing stream (Huppert et al. 1984; Huppert 
& Sparks 1985; Huppert 1986). They used the results to explain how the stream 
melts the floor and forms thermal erosion channels. I n  the geological context, after 
the stream ceases to flow, part of the fluid collects in ponds and will then cool and 
solidify. These processes were analysed quantitatively by Turner, Huppert & Sparks 
(1986) and successfully compared with laboratory experiments. The formulation 
developed in that paper acted as a foundation to the analysis employed here. 

For comparison, a brief analysis of the situation in which the container does not 
melt is presented in the Appendix. The roof is assumed to be very thick and one of 
the questions addressed, which arose as an outcome of stimulating conversations 
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FIGURE 1. Photographs of the three different cases of a solid roof melting owing to the introduction 
of a hot, turbulently convecting fluid beneath the roof: ( a )  melt density exceeds fluid density, with 
melt and fluid being intimately mixed ; ( b )  melt density is less than fluid density and the melt forms 
a separate layer between roof and fluid; and ( c )  melt density initially exceeds fluid density but as 
the melt falls through the fluid and warms, its density decreases to be less than the fluid 
density. 
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with Bruce Marsh, is the extent of the influence of thermal conduction in the roof on 
the intensity of convection in the fluid. An evaluation of this influence settles a 
geological controversy which is currently impeding progress. The presence of a thick 
solid roof causes the temperature at the boundary between the roof and the fluid to 
approach that of the fluid and thus decrease the intensity of the convection. 
However, if the initial Rayleigh number is sufficiently large, turbulent convection 
will still persist. We calculate the effective Rayleigh number (A 17) ,  which must 
exceed a value of about lo6 for turbulent motion to be maintained and also evaluate 
the various timescales of the thermal adjustment (A 10) and (A 12). 

2. Heavy melt 
Consider the layer of hot fluid to have initial temperature To and vertical thickness 

D and assume that the solid roof above it is of very large thickness. For the case in 
which the melt mixes intimately with the fluid, we seek the subsequent mean 
temperature T( t )  of the fluid/melt mixture and its thickness D+a(t) as functions of 
time. Figure 2 presents a sketch of the geometrical set-up. We assume that the 
problem can be considered as one-dimensional and that the thermal Rayleigh 
number of the fluid is sufficiently large that it convects turbulently. Then the heat 
flux F from the layer to the solid can be evaluated from the four-thirds relationship 
(Turner 1973) 

F = pcJ(T-T,)Q, ( 1 )  

where p is the fluid density, c the specific heat, T, the melting temperature of the 
roof, and thus the temperature a t  the solid/melt interface, and 

where a is the coefficient of thermal expansion of the fluid, g the acceleration due to 
gravity, K the thermal diffusivity, v the kinematic viscosity, and y a dimensionless 
constant. Denton & Wood (1979) survey recent experimental data a t  relatively 
high Rayleigh numbers and various Prandtl numbers which indicate that y z 0.10 
(in contrast to Turner’s (1973) earlier suggestion based on experiments a t  lower 
Rayleigh numbers that y x 0.21). Pure-heat-flux experiments that  we have conducted 
with aqueous solutions support the former, lower value, which is hence used here. 
The influence of the mass flux from the roof is neglected in (1) on the assumption that 
the motion is dominated by the thermal transfers. The effect of the (neglected) 
compositional flux is to increase the intensity of the motion and augment the heat 
flux represented by (1).  For simplicity, we shall here also neglect the variation in all 
physical properties as melt is incorporated into the fluid. However, variations in 
these properties with melt fraction, and hence time, could be incorporated in a 
straightforward manner and the effects evaluated by a numerical simulation. 

The flux F melts the solid at a rate that  can be calculated by solving the thermal 
diffusion equation in the solid and applying conservation of heat a t  the melting 
interface. With the assumption that the melt rate is quasi-steady, the diffusion 
equation can be solved analytically (Holman 1976 ; Huppert 1986) to yield 

where 



Melting the roof of a chamber 111 

Tm I )  

I 

z =  D + a  
I 
I 

I I !  
Z 

t 
I I !  

FIGURE 2.  A sketch of the initial and subsequent geometry and mean temperature profile when 
the melt density exceeds the fluid density. 

ps is the density of the solid, c, its specific heat, L its latent heat on melting and T, 
the temperature in the solid far from the solid/melt interface. Equation (3a )  states 
that the rate of melting is given by the ratio of the heat input F to the heat needed 
to bring the solid up to its melting temperature T, from T, and then to melt it. While 
(3) is only strictly valid if ci is constant, results obtained using it in this work were 
negligibly different from those obtained by solving the full diffusion equation. The 
use of (3), however, has the large advantage that analytical representations of the 
results can be obtained. 

With the assumption that there is no heat loss from the base of the fluid, 
conservation of heat indicates that 

d(T-T,)+(D+a)!P+J(T-T,)% = 0. ( 5 )  

The first term of ( 5 )  represents the rate a t  which heat is used to raise the melt from 
the melt temperature T, to that of the melt/fluid mixture T .  The second term 
represents the rate a t  which the heat content of the melt/fluid mixture changes. The 
third term represents the heat flux from the mixture to the overlying roof. 

Equations ( 3 b )  and (5 ) ,  together with the initial conditions 

specify the problem. The introduction of the non-dimensional variables 

C 
r= 0" 

and 
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into (3)-(6) leads to 
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dB 
d r  

(C+v)-+&+C& = 0, (9) 

B = 1 ,  q = o  ( t = O ) .  ( 1 1 )  

The one non-dimensional parameter, C involved in the solution represents the ratio 
of two quantities. The first is the heat required to bring solid of thickness D to its 
melting temperature and then melt it. The second is the initial heat content of the 
hot fluid with respect to the melting temperature of the roof. 

Substituting (10) into (9), we obtain 

d dv -[(C+q)B]+C- dr  d r  = 0, 

the first integral of which, upon using ( l l ) ,  becomes 

(C+q)O+Cy = c. 
Substituting (13) into (lo), we obtain 

From (13) and (14) it can be seen that 

O + O ,  q + l  (r--too) (15) 

for all (positive) C. The interpretation of (15) is that eventually the temperature in 
the melt/fluid mixture approaches Tm, at which time all the initial excess heat 
content of the fluid has been used in producing the melt. In dimensional terms, a 
layer of thickness C-lD has been melted from the roof and incorporated into the 
fluid - a result that can be obtained directly by consideration of conservation of heat. 
Numerical solutions of (ll),  (13) and (14) are presented in figure 3. 

An analytic solution can be found for large values of C. In  that limit q can be 
neglected with respect to C in the first term of (13) and in the right-hand side of (14). 
The resulting equations have solutions 

B = [I  + 9 1 - 3  (16) 

and v = 1-[1+$]-3. (17) 

The graphs in figure 3 indicate that (16) and (17) represent reasonable approxi- 
mations for C 2 1. 

The experiments 
We carried out a total of eight experiments with a wax roof and two with a roof made 
of ice. In all cases, the roof was made in a wooden mould of dimensions 20 x 20 x 
15 cm. When ready, the roof was lowered 10 cm into a thermally insulated Perspex 
container, to leave a 2 0 ~ 2 0 ~ 4 0 c m  high space beneath it. The wax used was 
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FIGURE 3. (a)  The non-dimensional temperature 8 = (5"-Tm)/(To-Tm) an: (b )  melt thickness 
7 = ( C / D ) a  as a function of the non-dimensional time T = ( A C / D )  (T,-T,,,)~t for C = 0.01, 0.1, 
1.0. 10 and 100. 

polyethylene glycol, PEG 1000, which is miscible with water and has a melting 
temperature range of 3 7 4 0  "C. Calibrations that we conducted indicate that the 
density of the solid wax is 1.21 g at room temperature and decreases in the 
molten state fairly linearly between 1.109 g a t  40 "C to  1.097 g omp3 a t  55 "C as 
shown in figure 4. Also shown in the figure are the densities of the various aqueous 
solutions used in the experiments. All the solutions were introduced a t  approximately 
70 "C, with small amounts of solution added periodically a t  the base of the container 
so as to compensate for the decrease in volume as the fluid cooled. The fluid level was 
in this way maintained in contact with the base of the wax. The experiments were 
monitored until most of the wax had melted, by which time the temperature in the 
solution had fallen by some 10-15 "C. Movie sequences were shot during three of the 
experiments. 

In  most of the experiments we measured temperatures from a thermistor array. 
Typically five thermistors were initially frozen into the solid wax and another three 
were positioned a t  different heights in the solution. At any instant the readings of 
these latter three thermistors were essentially identical, as were the readings in the 
other thermistors after they were surrounded by solution owing to the melting of 
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FIGURE 4. The density of molten polyethylene glycol 1000 and the densities of the aqueous 
solutions in the eight experiments that we performed as a function of temperature over the 
temperature range of the experiments. 
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FIGURE 5 .  Experimental ( . ) and theoretical (+-) temperatures and melt thickness as functions 
of time : (a) depicts the results of experiment 7 ; ( b )  experiment 8 ; ( c )  and (d )  the experiments with 
an ice roof. 

adjacent wax. This confirms the idea, incorporated into the theoretical analysis, that 
the temperature in the body of the solution was uniform. As the wax melted, the 
retreating base of the solid block became slightly uneven, as indicated in figure 1 (a) .  
Nevertheless, a measurement of the ‘mean’ height of the base could be taken 
fairly reliably by eye. The results from two experiments, 7 and 8, are depicted in 
figure 5(a ,  b) ,  which also graphs the corresponding theoretical result obtained from 
the numerical integration of (l l) ,  (13) and (14). The agreement is seen to be quite good. 
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FIQURE 6. Experimental ( x ) and theoretical (---) temperature against height for experiment 7 
after 60 min. The solid line a t  45.2 em represents the observed base of the wax. The stippled region 
represents the melting range of the wax. 

Figure 6 displays a typical series of temperature readings, taken after experiment 7 
had progressed for 60 min, and includes the corresponding theoretical curve. The 
visual observation of the base of the wax is also shown and agrees to within a few 
millimetres with the position that would be predicted from the temperature profile 
only. 

We thought that i t  might also be interesting to  carry out some experiments on an 
ice roof melting into warm water. It might be suggested that because of the density 
relationship of water as a function of temperature, with a maximum density around 
4 "C, the theoretical analysis would not be relevant. On the other hand, it could be 
argued that as long as the density in the body of water beneath the ice was well below 
the density at 0 OC, the detailed density relationship would not have an effect in the 
turbulent flow. This proved to be the case. Figure 5 ( c ,  d )  presents data on the water 
temperature and thickness of melt as functions of time for the two experiments. Also 
plotted are the appropriate numerical solutions of (1 l), (13) and (14). The agreement 
between the observed and theoretical results is quite satisfactory. 

3. Light melt 
If the melt density is less than the fluid density, it will form a separate layer between 

the roof and the hot fluid. Initially the Rayleigh number in this intermediate layer 
will be less than the critical value necessary for convection and the melt will transfer 
heat only by conduction, even though the fluid beneath i t  is in vigorous turbulent 
motion. There may be a weak transfer of material across the interface, by the 
entrainment mechanisms reviewed by Turner (1973, Ch. 9), but we neglect this 
influence here. It was not detected in any of our experiments. 

Let T(t )  denote the mean temperature of the hot fluid, and T,(t) that  a t  the base 
of the melt layer, whose thickness will be denoted by a( t ) ,  a5 sketched in figure 7 (a). 
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FIGURE 7. A sketch of the initial and subsequent geometry and mean temperature profiles when the 
melt, whose density is less than the fluid density, is transferring heat (a )  by conduction, and (b )  by 
turbulent convection. 

These functions represent the three unknowns that describe the state of the system. 
In terms of them the heat flux from the fluid layer is given by 

F = pcJ(T-!Pl):, (18) 

where p , c  and J have the same meaning as in $ 2 .  We assume that the melt layer 
thickness a grows sufficiently slowly that it is always significantly less than the 
lengthscale of thermal diffusion (~, t ) i ,  where K, is the thermal diffusivity of 
the melt. We can then use a linear conductive profile to describe the temperature in 
the melt. The conductive flux through the melt is then given by 

where k, is the thermal conductivity of the melt. The equations for conservation of 
heat in the fluid layer of thickness D ,  across the meltlfluid interface and a t  the solid/ 
melt interface then become 

pcDT= - F ,  (20) 

F= F, (21) 

and 

The initial conditions 
T = T o ,  T l=T , ,  a = O  ( t = 0 )  (23a, b,  c )  

complete the specification of the problem. 

of the result, we obtain 

Substituting (18), (19) and (24) into (21), we obtain the following implicit relationship 
between T and Tl : 

(25)  

Substituting (20) and (21) into (22),  and using (23a, c )  in taking the first integral 

a = pcDH;' (To--T). (24) 

Tl = Tm+p2c2k~' DJHil  (To-T) (T-T,):. 
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(26) 

To obtain solutions of (23)-(26), it is convenient to introduce the non-dimensional 
variables 8, #, '1 and o defined by 

and = J D-' (T, - T, 1; t . ( 2 7 4  

'1= 1-8 (30) 

and B= 1 ( o = 0 ) ,  (31) 

where p= p2c2k;'DJH,'(T,-T,)~. (32a) 

PC k To-Tm 
= yp,C,Ic,T,-~, + Ratnit 9 

in which k is the thermal conductivity of the fluid and Rainit the initial Rayleigh 
number of the hot fluid bounded above by the base of the infinitesimally thin melt 
layer at temperature Tm, viz. 

Ra. . = .dTo -Tin) D3 
KV 

init (33) 

Figure 8 graphs the relationship (29) between 0 and # for various values of p .  
For general /3 these equations need to be solved numerically. However, 

incorporated into the analysis is the requirement that Rainit B 1 ; from (32 b )  it is thus 
reasonably to assume that >> 1 also. For example, values of /3 in the laboratory 
experiments or in magma chambers are typically in excess of lo2. Making the 
approximation p >> 1 in (28)-(31) allows an analytic solution to be obtained. With 
p > 1, (29) shows that the difference between 8 and q5 is small and can be represented 
as 

except near 8 = 1,  where 
8 = 1-/3-'q5(1-#)"+o(p-'). 
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FIGURE 8. The form of q5 as a function of 0 for /? = 1 ,  10, 50 and 200. 

The physical interpretation of 8 x $ for large /3 is as follows. For the same 
temperature differences, convective fluxes are much larger than conductive fluxes. 
But the convective flux out of the fluid must equal the conductive flux in the melt 
layer. This can only be so if the temperature difference driving the convection, 
T-T, ,  is very much less than that driving the conduction, Tl-T,. In other words 
T, x T ,  so that 8 x 9. 

This approximation can be used to derive an analytical relationship between w and 
8. Substituting (35)  into ( 2 8 )  and integrating the result using ( 3 1 ) ,  we obtain 

P- 'w  = 8-InO-1, (37 )  

which shows that the correct timescale for large p is not DJ-'(T, - Tm)-i as suggested 
by ( 2 7 d ) ,  but /3 times this, as indicated by (37 ) .  Figure 9 presents a graph of (37 ) .  Also 
graphed is the relationship between 6 and w obtained by numerical integration of 
(28)-(31)  for smaller values of /3. 

The above analysis and physical explanation suggests that one could proceed, 
albeit heuristically, by rearranging (25 )  and using TI x T to obtain 

4 H ,  k ,  T -T, (T-T1)r = ______ 
p2c2DJ To-T'  

Substitution of ( 3 8 )  into (26) and integration using ( 2 3 a )  leads directly to (37 )  
expressed in dimensional terms. 

Conduction in the melt layer continues until the Rayleigh number for the melt 
layer, 
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FIGURE 9. The graph of 0 as a function of w for the same values of /3 as in figure 8 and the 
asymptotic limit for p % 1 as defined by equation (37). 

exceeds a critical value, whose magnitude is probably of order lo3. Convection in the 
melt layer is then initiated and (18) needs to be altered. It is possible that Ram, which 
is small both initially and after a long time, never exceeds the critical value. A melt 
layer of temperature T, and thickness pcDH;'(T,-T,) above a fluid layer a t  
temperature T, would then be the final state. This would then cool and solidify 
entirely by conduction. 

Generally, however, convection in the melt layer will set in. Initially the 
convection will be weak. As the layer thickness increases, however, the convection 
may become sufficiently strong to produce a turbulent layer of uniform temperature, 
for which the transfer of heat can be described by the four-thirds expression. For 
illustration we now analyse this strongly turbulent case. A similar analysis of 
convection a t  intermediate Rayleigh numbers would require an exact evaluation of 
the critical Rayleigh number and use of a modified heat-flux relationship until the 
four-thirds expression became valid. 

Consider the situation sketched in figure 7 ( b ) .  The temperature of the lower, hot 
fluid layer is denote by T(t)  and that of the melt layer of thickness a( t )  by T2(t). The 
heat flux from the hot fluid layer is given by 

F = pcJ(T-T,)$, (40) 

where TI is the interfacial temperature between the melt and the fluid. The flux from 
the base of the melt layer, FB, is given by 

where a subscript 2 indicates that properties of the melt layer are involved. Since by 
conservation of heat F = FB, 

(42) 
T+PT, TI = ~ 

1+P ' 

where 

Conservation of heat in the two layers requires further that 

pcDT = - F ,  

(43) 

(44) 

(45) 
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and conservation of heat in the solid requires 

where F, = p2 C ,  J ,  (T, -Tm)g. (47)  

The nonlinear system represented by (40)-(47) requires numerical computation for 
its solution. Results obtained in this way are presented in the next section. A useful 
analytic solution can be obtained, however, by supposing, subject to a posteriori 
verification, that both FB and F2 greatly exceed p, c, (dldt) [a(T,-Tm)]. This states 
that most of the heat flux into the base of the lower layer departs through the top, 
and a negligible amount is used to change the temperature of the melt layer. 

Substitution of (41) ,  (42) and (47)  into the relationship FB = F, leads to 

T + (1 + P )  T, 
2+P 

T, = 

Substituting (40) ,  (42)  and (48)  into (44) ,  we obtain 

which has the solution 
T = Tm+[Q+R(t- t l )]-3,  

(48) 

where Q = [Tft,) -Tm]-k, 

R= $D-lJ(&Y 

and T(t,) is the temperature of the hot fluid layer a t  time t,. Substituting (47), (48) 
and (50) into (46) ,  we obtain a differential equation for a ,  the solution to which is 

a = a,+$p,c,J, R-l ( 2 + P ) - ~ H ; 1 { Q - 3 - [ Q + R ( t - t , ) ] - 3 } ,  (53) 

where a(t l )  = al. As t + 00, T and T, -+ T, while 

a + a1 +$p,cz J,QP3 R-l (2+P)-$Hl1.  

The conditions under which 

d 
GF, 9 ~ 2 ~ 2 ; i - i [ 4 T 2 - - T m ) I  

FB = -pcD(2 + P )  T,. 

are now easily obtained. From (44)  and (48) 

(54) 

Comparing (54) with (45) ,  we see that the approximation is valid if 

a < --(2+P)D. P C  

P 2  c2 

Considering that, typically, pc x pzc2 and P x 1, we can write (55a)  as 

a 4 D. 
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From (42), the second condition is that 

H ,  9 P*C2(T2-TmL (56) 

which requires that the heat needed to bring the solid to its melting temperature and 
then to melt it should greatly exceed the heat necessary to subsequently bring it to 
the mean temperature of the melt layer. When these inequalities are not satisfied, 
numerical integration of the equations is necessary. 

The experiments 
We conducted three experiments, as seen in figure 4, in which the melt was always 
less dense than the fluid. Since then, broadly similar experiments have been reported 
by Campbell & Turner (1987). The effects observed in both sets of experiments were 
consistent with the processes already outlined. Figure 10 presents data on the 
position of the base of the wax and on the position of the fluid/melt interface for 
experiment' 2. There appears to be a slight change of 3 mm over 3 hr in the height of 
the interface, but this is due mainly to the contraction of the lower layer on cooling. 
Figure 11 presents the temperature data from the same experiment a t  different 
times. The gradual build-up of a uniform temperature in the melt layer as the 
Rayleigh number increases to a value of approximately lo5 after 8 hr (due mainly to 
the increase in thickness of the layer) is clearly evident. This evolution is in 
qualitative agreement with the behaviour predicted by the theoretical model. 
Unfortunately, for a significant part of the time the melt layer was not in vigorous 
turbulent motion and the relationships (50)-( 54) would not describe the evolution 
accurately. Thus, a detailed comparison between theory and experiment was not 
carried out. The turbulent model would only be applicable to experiments on a much 
larger scale. Alternatively, a theoretical model to describe the experiments performed 
would have to incorporate the (unknown) critical Rayleigh number, the initial 
convective effects a t  lowish Rayleigh numbers and the influence of the variation of 
physical properties, such as viscosity. 

- . . . . . . . . . . 
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A, 8 h ;  *, 20 h. 
FIGURE 1 1 .  Temperat’ure data against height for experiment 2 :  x , 30 min; 0, 2 h ;  0, 4 h;  

FIGURE 12. Artist’s sketches of the formation of light blobs of melt observed during experiments 
5 and 6. The first three sketches show a typical development with time and the last sketch is 
another representation. 

4. Melt of intermediate density 
In  two of the experiments, numbers 5 and 6, the wax a t  its melting temperature 

was slightly more dense than the hot fluid and sank. As it  did so its temperature 
increased and its density correspondingly decreased. This decrease could be sufficient 
to make parts of the molten wax less dense than the surrounding fluid, causing it to 
rise. Figure 1 (c) is a photograph taken during experiment 5 and figure 12 represents 
artist’s sketches of the different flow patterns. The form of motion was similar to the 
upward-moving blobs observed during various investigations in which light fluid was 
released beneath heavier fluid (see, for example, Whitehead & Luther 1975 ; Marsh 
1979; Kerr & Lister 1988). 
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5. Some geological extensions 
Volcanism in the Earth can be understood in terms of plate tectonics and 

convection within the mantle. The upper mantle is close to its solidus temperature 
and melts to  form basalt a t  three major locations : at mid-ocean ridges, where plates 
are formed ; at those zones where rising hot jets in the mantle impinge upon the plates ; 
and at subduction zones, where plates are destroyed. At the first two sites the 
decrease of pressure as material rises in the mantle causes substantial melting 
(Mclienzie 1984). At the third, convective motions in the mantle are combined with 
shear heating and release of water from the subducted plate to reduce the solidus 
temperature of the mantle. This also causes melting and production of basaltic 
magma, which contains roughly 50% silica and has a density of about 2.7 g cmP3. 
The temperature of molten basalts within the Earth covers the range of roughly 
1100-1200 "C, with the specific figures depending on the exact composition of the 
basalt. Below approximately 1100 "C basalts are essentially solid. 

In  continental regions the uppermost 20-30 km of the plate is largely composed of 
low-density rocks (2.3-2.5 g ~ m - ~ ) ,  which are rich in silica (typically 65 to 70%) and 
which melt to form granite magmas. When plate boundaries or hot-spots occur 
within continents or at continental margins, basalt generated in the mantle invades 
the continental crust and provides a potent heat source for melting and granite 
generation. Rocks of the continental crust typically melt to form granite a t  
temperatures between 750 and 900°C. Because of its higher silica content, the 
viscosity of a granite melt exceeds that of a molten basalt a t  the same temperature 
by several orders of magnitude. In  addition, because the viscosity of a magma 
increases sharply with decreasing temperature, the viscosity of a molten granite can 
be several orders of magnitude larger than that of a molten basalt. 

Various geological observations are consistent with the idea that the basalt is 
generated in the Earth's mantle and then rises towards the Earth's surface because 
it is less dense than the surrounding rocks. The melt can then be emplaced into the 
continental crust at a magma chamber or sill (a horizontal sheet). The hot basalt may 
then melt the surrounding granite. Subsequently molten granite or molten basalt 
may be erupted onto the Earth's surface. Alternatively, the molten rocks can slowly 
cool and solidify within the Earth to form bodies known as plutons. 

The present study was motivated by a desire to understand quantitatively the 
generation of granitic rocks by this process. The work already presented discusses 
some of the fundamental aspects that occur when the solid roof of a chamber or sill 
is melted by underlying hot fluid. This section briefly explains how some of the ideas 
need to be extended in order to be applicable to the geological situation. The main 
ideas will be presented, though the description is devoid of most of the details, which 
are explained further in Huppert & Sparks (1988a, b) .  

We simplify the geological geometry somewhat to assume that the molten basalt 
enters a chamber with horizontal floor and roof of such large extent that  processes 
a t  the walls may be neglected. The initial temperature of the basalt is assumed to  be 
1200 "C and the melting point of the granite 850 "C. In  fact, the granite has a melting 
range, with some of the minerals melting a t  lower temperatures than others. At first 
partial melting will cause the rock to weaken until finally it becomes sufficiently 
molten to  behave as a fluid and to detach from the remaining partially molten solid. 
The proportion of melt, and hence the temperature, a t  which this occurs may depend 
quite strongly on the exact composition of that  part of the continental crust under 
consideration. Empirical evidence indicates that  the transition from partially molten 
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solid to a flowing magma occurs when the proportion of partial melt exceeds about 
35% (Marsh 1981). We neglect any effects associated with this melting range by 
assuming that the melt effectively forms a t  one specific temperature, where the 
proportion of partial melt is at the critical value. 

The hot basalt will melt both the roof and floor of the chamber. It is suggested that 
there may be less melting at the floor because of the strongly stabilizing thermal 
gradient in the magma just above the floor. The current work thus concentrates on 
the melting of the roof. Because the granite is lighter than the basalt (2.3 g cm-3 in 
contrast to 2.7 g ~ m - ~ ) ,  the second of the cases discussed above is relevant: the 
molten granite forms a separate layer above the turbulently convecting basalt. 

I n  the simplest case, we assume that both the basalt and the granite, once molten, 
cool without any crystallization or solidification and remain a t  a constant viscosity. 
We shall call this the 'perfect-fluid' case. For a chamber height of 500 m, a 
temperature at infinity of 500OC and viscosity of 103cm2s-1 for the basalt and 
1.5 x lo6 om2 s-l for the granite, the mean temperature of the two layers and the 
thickness of the granite layer are graphed as dashed curves in figure 13. The growing 
layer of granitic melt reaches a Rayleigh number of 2000 a t  7 days, after which i t  is 
assumed to convect turbulently according to the four- thirds relationship. The 
temperatures of the two layers fall with time, which tends to decrease the Rayleigh 
number, while a t  the same time the thickness of the melt layer increases, which tends 
to  increase its Rayleigh number. Initially, it increases and exceeds lo6 after just over 
one year. A maximum value of 4.9 x lo9 is reached in 105 yr, after which the value 
decreases. Eventually, the two layers arrive a t  a common temperature of 850 O C ,  

with a melt layer 310 m thick. 
However, magmas are not perfect fluids and both basaltic and granitic melts 

crystallize and increase their viscosity as they cool. From various laboratory 
experiments (summarized for example by Wyllie 197 l) ,  we developed the following 
empirical relationships for the fraction of crystals x present in a melt as a function 
of its temperature T : 

and 

7200 
xb= 7- (1091 < T < 1200) 

0'65(1000-T) (850 c T < 1000), Xg = 
150 

(574  

(57 b )  

where the subscripts b and g denote values pertinent to basalt and granite 
respectively. Above 1000 "C granite melts are free of crystals. The very small crystals 
formed in both basaltic and granitic melts are typically less than 1 mm in size and 
remain in suspension in the turbulently convecting fluid (Huppert & Sparks 1980; 
Sparks Huppert & Turner 1984). Thus, in addition to contributing to the heat 
content of the melt via the latent-heat release, they also increase the viscosity of 
the melt. Empirical relationships are also available to describe these effects 
quantitatively (Shaw 1972; Marsh 1981). They are 

vb = 103(l-1.67x,)-2.5cm2 s-l (1091 < T < 1200) (584 

and 

vg = 0.62 exp [ y2t4] (1 - 1.53 xg)-2.5 cm2 s-' (850 c T < 1000). (58b)  

These expressions indicate that the increase in viscosity of a cooled basaltic melt 
depends primarily on the corresponding increase in crystallinity. The effect due to 
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FIGUEE 13. The mean temperatures in the basaltic (T’) and granitic (T,) layers and the thickness 
of the granitic layer a as functions of time; ---, perfect-fluid case; -, allowing for 
crystallization in both layers. The basalt cannot be considered a fluid below 1091 “C. 

temperature alone is much smaller, and is neglected in (58a). At a fractional 
crystallinity of 0.60, which corresponds to a temperature of 1091 O C ,  the melt is so 
clogged with crystals that it is effectively a solid. This idea is consistent with the 
observations that lavas with a fractional crystallinity in excess of 0.60 are rarely 
sufficiently fluid to be erupted (Marsh 1981). The viscosity of a granitic melt also 
increases as the temperature decreases, with one factor due directly to temperature 
alone and another due to crystallinity (which is itself a function of temperature). 
Beyond a fractional crystallinity of 0.65, attained a t  a temperature of 850 O C ,  the 
granite may be considered solid. 

Assuming that the four-thirds heat-flux relationship is unaffected by the presence 
of the crystals, we can augment the equations for the conservation of heat presented 
in $3  to incorporate the effects of latent-heat release and include the variation of 
viscosities in the evaluation of J and J,. Typical results are graphed in figure 13. Both 
the basaltic and the granitic layers cool much more slowly than in the perfect-fluid 
case, mainly owing to the effects of latent-heat release. Some 15 days after 
emplacement of the basalt, the granite layer 1.2 m thick, which is above the basalt, 
begins to convect. A maximum Rayleigh number of 4.0 x lo9 is attained in 64 years. 
After some 90 years the increasing viscosity due to the increasing crystal content 
becomes paramount in the basaltic layer and it ceases to act as a fluid. Further 
cooling in the basalt takes place over a timescale of lo4 years by conduction. The 
thickness of the granitic melt builds up to a final value of 390 m as its temperature 
also slowly decreases. When the critical crystallinity is reached (65 %) the granite 
ceases to convect and further cooling takes place by conduction over a timescale of 
lo4 years. 

A companion paper (Huppert & Sparks 1 9 8 8 ~ )  considers the effects of variations 
in the temperature of the country rock, the thickness of the basalt layer and the 
viscosities of the magmas. While these variations cause changes in the numerical 
results, the general features are unaffected. Calculations for basalt layers with 
thicknesses from 50 to 1500 m, for example, yield cooling times for the basalt from 

5-2 
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25 to 250 years. However, the temperature of the granite melt layer a t  the time the 
basalt solidifies hardly changes. As the country-rock temperature is increased above 
500°C more granite is produced, but otherwise there is negligible change in the 
thermal evolution of both layers. 

These calculations give insights into the timescales involved in the generation of 
granite in the continental crust. Basaltic magma emplaced into the crust as sills cools 
and crystallizes over periods of only tens of years. The crust melts to  form granite 
magma which cools and crystallizes over periods of only hundreds of years. However, 
the layer of granite and solidified basalt formed will take of order lo4 years to cool 
by conduction back to the original background temperature. The crust as a whole is 
of order 30 km thick and may take of order lo6 years to dissipate all the heat input 
by the emplacement of the basalt sill. Thus melting and crystallization of the magma 
takes a much shorter time than the time taken to either heat up or cool down the 
crust. 

The calculations thus suggest a conceptual model for the generation of granite 
magmas during active tectonic periods when basalt is emplaced into the crust. 
Repeated injections of basalt warm up the crust and eventually the crust is 
sufficiently hot that each intrusion triggers a short-lived melting event. Such an 
event may sometimes be associated with intrusions of buoyant granite a t  higher 
levels in the crust or eruptions a t  the surface. Magma bodies would only be transient 
features over rather short time periods (tens or hundreds of years) after a melting 
event, in comparison with the thermal relaxation time of the crust after a single or 
a series of intrusive events. At times between intrusions, the crust in the source 
region will be either partially molten or close to  the melting temperature. 

Specific application of these ideas has been made to the volcanic system of the 
Cerro Galan in Northwestern Argentina. A detailed discussion of the pertinent 
observations and their interpretation appears in Francies et al. (1988). 

In  conclusion, we remind the reader that we have developed simple theoretical 
models for the melting of a solid roof by an adjacent turbulent flow. We have also 
carried out laboratory experiments which have illustrated the main fluid-dynamical 
processes. One of the aims of our research is to extend these fundamental ideas to  
analyse the more complicated situations found in geological systems and to aid in the 
interpretation of geological rock suites. 

We are very grateful to Mark Hallworth who helped us with all the experiments 
and Joyce Wheeler who carried out most of the numerical programming. Professor 
B. D. Marsh shared some of his recent ideas with us during stimulating conversations 
which led to the material in the Appendix. Earlier drafts of the manuscript were read 
and commented upon by P. Bruce, J. Lister and M. G. Worster, to whom we are 
indebted. Our research is supported by grants from the BP Venture Research Unit 
and the NERC. 

Appendix. The case with no melting 
For comparison, this Appendix analyses the situation when the roof does not melt. 

The physical motivation behind the analysis is to determine quantitatively the 
restraining effect on the turbulent convection of the overlying solid which transfers 
heat by conduction. The geological motivation is to evaluate the influence of the 
overlying solid rock both on the heat transfer from the liquid in a magma chamber 
and on the state of convection in the liquid. 
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FIGURE 14. A sketch of the geometry and mean temperature profile when the roof 
does not melt. 

Consider fluid of initial temperature To to be introduced a t  t = 0 into a horizontal 
layer of depth D. The layer is assumed to be thermally insulated a t  its base and to 
transfer heat by turbulent convection to the semi-infinite solid above, whose initial 
temperature is T, and whose temperature always tends to T, in the far field, as 
sketched in figure 14. Denote the temperature a t  the roof by TR(t) with TR(0) = T,. 
The (time-dependent) Rayleigh number of the system Ra is given by 

ag(T-TR) D3 
Ra = 

KV 

where T is the mean temperature of the fluid layer; its initial value is 

- T,) D3 Ra, = 
KV 

On the assumption that the Rayleigh number remains sufficiently large that the fluid 
continues to convect turbulently, we seek to determine T ,  TR and hence Ra as 
functions of time. 

We assume that the heat transfer from the fluid to the solid is given by 

Then a standard result in Carslaw & Jaeger (1959, p. 76 (9)), which relates the 
temperature in a semi-infinite solid to the heat flux incident at the boundary, can be 
used to determine the following integral equation for TR: 
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where p,, c, and K, are the density, specific heat and thermal diffusivity of the solid. 
The heat flux from the fluid causes it to cool according to 

(A 5) 
J 
D 

T = --(T-TR)%. 

We seek the solution of the integro-differential system (A 4) and (A 5) together with 
the boundary conditions 

T = To, TR = T, (t  = 0). (A 6% b)  

It is convenient to introduce non-dimensional temperatures 0 and 8, and time 7 

T( t )  = T, + (To--T,) '(7L (A 7 a )  

TR(t)  = -T,+(To-T,)W) (A 7 6 )  

by 

and 

In terms of these variables, the integro-differential system becomes 

where 

(A 9 b )  

We procced under the assumption that r + 1. The system (A 8) then has a short-time 
solution which can be expressed in terms of the short-time variable 7, given by 

The leading-order solution is 
7 s  = r z 7 .  (A 10) 

' ( 7 s )  = 1 (A l l a )  

(A l i b )  

-+ 1 (7,+ a), (A l i e )  

where 8R(7s) needs to be evaluated numerically and is graphed in figure 16. 
Physically, (A 11)  states that  on the short timescale oft, = Z-2D/(J(T,,-T,)~], the 

temperature in the body of thc fluid does not change, while the temperature a t  the 
roof builds up to be (at leading order) equal to that of the fluid. Were it to become 
exactly equal, convection would cease; but it always remains just a little less, by an 
amount that can be evaluated by investigating the long-time solution. 

This is most convenicntly analysed in terms of the long-term variable 7L given 

7 L  = r - 2 7  (A 12) by 

and by substituting 
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FIGURE 15. The non-dimensional temperature of the roof 8, = (TR-Ta)/(T,-Ta) as a function 
of the non-dimensional short-time variable 7, = J(T, -T,)sD-~ P t .  
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FIGURE 16. The non-dimensional temperature of the roof 0,  and temperature difference between 
roof and corftained fluid j, as functions of the non-dimensional, long-time variable 
7L = J ( T , - T , ) ~ D - ~ P ~ .  

into (A 8a,  b). The result, after combining the two equations, is 

(A 14a) 

O,(O) = 1, (A 1 4 b )  

the boundary condition (A 1 4 b )  being required to match the short-time limit a t  00 
expressed by (A l l c ) .  Equations (A 14) can be solved by a standard application of 
the techniques of Laplace transforms to yield 

and 

Figure 16 graphs both these functions. 
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Typical Typical 
value in the value in a 
laboratory magma chamber 

Rai 1011 1015 

RU; 1 O8 10" 
r 4 200 
t S  200 s 100 s 
t m  40 min 50 days 
t ,  10 h 4000 years 

TABLE 1. Typical values in the laboratory and in nature of the initial Rayleigh number 
and the three relevant timescales 
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FIGURE 1 7 .  The temperature of a contained basalt as a function of time: ---, the basalt is 
considered as a perfect fluid and no melting is allowed ; --, the basalt is allowed to crystallize but 
the roof does not melt; -, the basalt crystalIizes and the roof melts just as in figure 13. 

Physically, this solution states that after the short timescale t ,  the temperature of 
the fluid exceeds that a t  the roof by an amount of order I-;. This decreases the 
effective Rayleigh number to 

(A 17a) 
a g r :  (To-Tm) D 3 f ( T , )  

Ra = 
KV 

(A 17 b )  

The fluid will continue to convect turbulently and the four-thirds expression (A 3) 
remain valid provided Ra exceeds a value of about lo6. It is interesting to note that 
the initial Rayleigh number appears to  the % power in (A 17 b ) .  Thus, assuming that 
the first two multiplicative terms in (A 17 b )  are around 1 and since f is of order unity, 
the effect of the thermally conducting roof is to reduce the effective Rayleigh number 
in order of magnitude by the % power of its initial value. On the assumption that this 
is sufficiently large, the fluid continues to transfer heat to the roof by convection over 
the long timescale t ,  = r2 D/[J(To - T,):]. 

Were the roof to be maintained a t  its initial temperature, the convection would 
persist over the medium-time scale t ,  = D/[J(To -Tm)5]. The initial Rayleigh number 
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and the three timescales t,, t, and t, are tabulated for typical laboratory and natural 
systems in table 1 .  

Figure 17 presents the temperature as a function of time for a fluid with the same 
values of physical parameters as discussed in 94. Both the perfect-fluid case and the 
situation in which crystallization occurs are presented. As before, the effect of 
crystallization is to reduce the thermal decay rate considerably. Also plotted is the 
geologically realistic case allowing for melting, which has already been plotted in 
figure 13. It is seen that the melting of the roof enormously increases the thermal 
decay rate. 
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