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The upper surface of a large gas bubble rising steadily through liquid under gravity 
is a statically unstable interface, and if the liquid were stationary small sinusoidal 
disturbances to the interface with wavelength exceeding the critical value A, 
determined by surface tension would grow exponentially. The existence of the 
deforming motion of the liquid adjoining the interface of a steadily rising bubble 
changes the nature of the problem of stability. It is shown that a small sinusoidal 
disturbance of the part of the interface that is approximately plane and horizontal 
remains sinusoidal, although with exponentially increasing wavelength. The 
amplitude of such a disturbance increases, from the instant a t  which h = A, until h 
becomes comparable with the radius of curvature of the interface (R), and the largest 
amplification occurs for a disturbance whose initial wavelength is approximately 
equal to A,. With a plausible guess at the disturbance amplitude and wavelength a t  
which bubble break-up due to nonlinear effects is inevitable, it is possible to obtain 
an approximate numerical relation between the initial magnitude of the disturbance 
and the maximum value of R for which a bubble remains intact. This relation applies 
both to a spherical-cap bubble in a large tank and a bubble rising in a vertical tube 
in which the liquid far ahead of the bubble is stationary. The few published 
observations of the maximum size of spherical-cap bubbles are not incompatible with 
the theory, but lack of information about the magnitude of the ambient disturbances 
in the liquid precludes any close comparison. 

1. Introduction 
The fact that gas bubbles with volumes exceeding about one centilitre take a 

spherical-cap shape when they rise steadily through liquid of small viscosity appears 
to have been noticed first by Taylor & Davies (1944) during World War I1 in 
laboratory studies of the rate of rise of large gas bubbles simulating those produced 
by submarine explosions. Later Davies & Taylor (1950) published their photographs 
of spherical-cap bubbles and their observations that show the steady speed of rise (U) 
to be approximately proportional to the square root of the radius of curvature of the 
top of the bubble (R), as would be expected if the bubble shape is independent of size 
and the drag on the bubble is independent of the viscosity of the liquid. This work 
and many later investigations have established that the top surface of a large gas 
bubble is normally quite steady and smooth and closely spherical, although ripples 
may be seen under some conditions. Figures l ( a  and b)  show two spherical-cap 
bubbles, and figure 1 ( c )  a corresponding ‘two-dimensional ’ circular-cap bubble, all 

t With an appendix by Herbert E. Huppert. 
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FIQURE 1 .  For caption see opposite. 
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large enough for the Reynolds number of the liquid flow and the Bond, or Eiitvbs, 
number (defined as gpd2/y, where d is the diameter of a sphere of the same volume 
as the bubble and y is the surface tension of the interface) both to be large compared 
with unity, indicating that effects of viscosity and surface tension on the steady 
bubble shape are negligible except possibly a t  singular places such as the sharp edge 
of the cap. For smaller bubble volumes there is a variety of bubble shapes, described 
in the book by Clift, Grace & Weber (1978). 

Since the upper surface of a spherical-cap bubble separates liquid above from gas 
below it is at first sight remarkable that it is not gravitationally unstable. It is known 
that a horizontal plane interface between two stationary fluids with density 
difference Ap is unstable to any small sinusoidal disturbance with wavelength greater 
than A, (which denotes 2x(y/Apg)t, and has the value 1.71 ern for an air-water 
interface). The existence of the streaming of the liquid around the upper surface of 
the bubble evidently is responsible for maintenance of the steady spherical shape. 
Intuitively one might argue that a growing small disturbance to the interface is 
swept round to the edge of the bubble by the liquid flow and that this limits the time 
available for growth of the disturbance by the familiar gravitational overturning. 
But since the speed of rise U is proportional to (gR);, the time spent by a material 
element of liquid in passing round the cap varies as & and so is greater for larger 
bubbles. This is the theoretical basis for the opinion, reported by Clift et al. (1978), 
that the upper surfaces of spherical-cap bubbles above a certain size are indeed 
gravitationally unstable and that such bubbles break up into smaller bubbles with 
stable interfaces. It is of some practical value to know the maximum size of a 
spherical-cap bubble which remains intact, since that determines the speed with 
which a very large volume of gas would rise through liquid after breaking up into 
smaller stable units. 

Similar considerations apply to  large gas bubbles rising through stationary liquid 
in a vertical tube, one example of which is shown in figure l (d) .  The shape of the 
upper part of the interface of such bubbles in a tube of circular cross-section is 
observed to  be smooth and steady, and independent of bubble size provided the 
vertical extent of the bubble is large compared with the tube radius. Here too one 
would expect intuitively that the bubble is gravitationally unstable for sufficiently 
large radii of curvature of the top of the interface. 

2. Previous work on the existence of a maximum bubble sue 
Experimental evidence concerning the existence of a maximum attainable size of 

spherical-cap gas bubbles rising steadily in unbounded liquid is surprisingly sparse. 
No mention of experimental data (nor of the possible existence of a maximum size) 
is made in the comprehensive review of research on bubble dynamics by Harper 
(1972) or in the article on spherical-cap bubbles by Wegener & Parlange (1973). 

Grace, Wairegi & Brophy (1978) compiled a list of 66 different fluid-fluid disperse 

FIGURE 1.  Gas bubbles rising steadily through liquid. The Bond number and the Reynolds number 
of the liquid flow are large in each case. (a) Air bubble in water, from Davenport, Bradshaw t 
Richardson (1967); radius of curvature at top of bubble surface R x 4.8 cm. (6) Schlieren 
photograph of air bubble in water, from Wegener & Parlange (1973), showing the turbulent wake; 
R zz 4.5 cm. (c) ‘Two-dimensional ’ air bubble in water confined between two parallel plates 
0.64 cm apart, from Collins 1965; R x 7 cm. The camera was moving with the bubble. ( d )  A long 
air bubble in a vertical circular tube containing water which is stationary far ahead of the bubble, 
from Davies & Taylor (1950) ; R x 2.6 cm. 
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systems for which observations of a maximum volume of a drop or bubble of the 
disperse phase had been made, either by themselves or by previous authors. For only 
five of these systems was the disperse phase gaseous and, as will be seen in $6, for only 
one of these five was the liquid-flow Reynolds number large enough for the bubbles 
to be likely to have the steady spherical-cap shape. I n  their discussion of the question 
Clift et al. (1978) report no observations of a maximum stable size of gas bubbles in 
water. However, there is some relevant war-time work by Temperley & Chambers 
(1945). These authors extended to  larger bubble sizes the observations of rates of rise 
made by Taylor & Davies (1944) and found that they could not generate a single 
spherical-cap bubble of gas in water that  remained intact with a radius of curvature 
of the cap exceeding about 15 cm. This corresponds to a maximum volume of about 
1200cm3 if we assume a flat base of the bubble and a semi-angle of the cone 
subtended a t  the centre of curvature by the upper surface equal to the observed 
value of about 50’. 

The very few published investigations of the existence of a maximum size of 
spherical-cap bubbles thus support the intuitive notion that increase of size 
ultimately leads to  instability and break-up of the upper surface. The fact that the 
instability is delayed until the cap radius is as large as 15 cm in the case of gas 
bubbles in water calls for some explanation. 

For prediction purposes Grace et al. (1978) have put forward a semi-empirical 
model of the growth of small disturbances to  the upper surface of a rising bubble or 
drop in a general fluid-fluid disperse system. They make use of the algebraic equation 
for the proportional growth rate a of a small sinusoidal deformation of a plane 
horizontal interface between two stationary fluids given by Bellman & Pennington 
(1954). This equation includes allowance for the effects of (1) gravity, which causes 
growth for all values of the disturbance wavelength h when the upper fluid is the 
denser, (2) surface tension, which restricts positive growth to  values of h exceeding 
the critical value A, and determines a value of h for which a has a maximum, and 
(3) the viscosity of the two fluids, which reduces a for all values of A ,  especially the 
smaller values, and so increases the value of h for which a has a maximum (a, say) 
but does not change the range of wavelengths for which a is positive. Grace et al. 
argue that a drop or bubble will break up if the time available for growth of a 
disturbance a t  the interface, 7, say, is sufficiently large by comparison with the 
minimum e-folding time of a disturbance given by the Bellman & Pennington 
expression (i.e. a;l). 7, is estimated as the time for a fluid element to  pass nearly 
round the bubble surface in the external flow (‘nearly’, because a small region near 
the forward stagnation point has to be excluded to avoid logarithmic divergence of 
T,), and the value of T,/cT;~ above which break-up of gas bubbles occurs was then 
found empirically from their observations of the maximum bubble size in five air- 
liquid systems to be 3.8. For air bubbles in water this ‘correlation’ gives a maximum 
bubble volume of 62 cm3, which is much smaller than the maximum volume 1200 cm3 
observed by Temperley & Chambers. 

The model proposed by Grace et aE. is based on the idea that a limited time only 
is available for growth of a disturbance to  the upper surface of a bubble, and seems 
to incorporate the essential means by which an upper limit to  the size of a stable 
bubble is determined. However, aside from the roughness with which the time 
available for amplification of a disturbance is estimated, from a theoretical viewpoint 
the model needs improvement (for high-Reynolds-number bubbles) in the following 
respects : 

(a)  I n  reality the velocity of a material element of liquid a t  the bubble surface 
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increases with distance from the forward stagnation point, and so the liquid is 
subjected to a pure straining motion with contraction in the direction normal to the 
interface and extension in orthogonal directions. One consequence of this 
contractional motion is that it tends to decrease the amplitude of a disturbance. 

( b )  The growth rate of a disturbance is not constant throughout its lifetime, 
because the wavelength of the disturbance is being increased continually by the 
extensional motion; and so the most ‘dangerous’ disturbance does not grow at the 
maximum rate crn calculated by Bellman & Pennington. This use of the maximum 
growth rate obscures the way in which surface tension exerts a controlling influence, 
as we shall see. 

(c) There is no quantitative dependence of the maximum bubble size on the initial 
magnitude of the disturbance to the interface. 

In the case of gas bubbles rising in a vertical tube, there appear not to be any 
published observations that show the existence of a maximum value of the radius of 
curvature of the top of the bubble. The model of instability proposed by Grace et al. 
(1978) is applicable in principle, although the empirical relations needed for 
quantitative predictions from their model are lacking in this case. 

3. Equations governing a small disturbance to the top of a large gas 
bubble 

We now investigate mathematically the behaviour of a small disturbance to  the 
upper surface of a gas bubble rising steadily through liquid, with allowance for the 
deforming motion of the liquid streaming around the bubble.? The pressure in the 
gas is assumed to be uniform. The bubble is taken to be sufficiently large for the 
Reynolds number of the liquid flow to be large, implying that the liquid viscosity has 
negligible effect on the undisturbed bubble shape. Note that the specificity of this 
fluid-fluid disperse system is in contrast to the wide range of systems to which Grace 
et al.’s instability model is intended to apply, and that the prospects for definite 
results are thereby improved. On the other hand, the analysis to be given here is more 
general in that it applies to bubbles rising in vertical tubes as well as to spherical-cap 
bubbles in unbounded liquid. 

The effect of viscosity on the disturbed motion of the liquid will also be neglected, 
with the consequential simplification that the motion is irrotational. The justification 
for this is that only the fairly large lengthscales of the disturbance at which growth 
occurs are relevant. Bellman & Pennington’s equation for the rate of growth of a 
sinusoidal disturbance to a stationary horizontal interface between a gas (below) and 
a viscous liquid shows that the effect of viscosity is quite negligible in the case of 
water for all the growing disturbances with wavelengths above A,; and the same 
qualitative conclusion seems likely to hold for disturbances on an extending 
interface. 

It is evident from figure 1 (a) and other similar photographs that the whole of the 
upper surface of a large gas bubble rising steadily through unbounded liquid of small 
viscosity is spherical to a good approximation. That is not equally true of a gas 
bubble spanning a vertical tube of circular cross-section, but there is here a central 
part of the bubble surface which is approximately spherical (see figure Id) .  We shall 
assume the relevant central part of the upper surface in the undisturbed state of the 

t An interesting attempt to do just this for a liquid-gas interface in general and for the top of 
a spherical-cap bubble in particular was made by Dagan (1975), but was flawed by his assumption 
that the wavelength of a disturbance remains constant. 
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FIGURE 2. Sketch showing the coordinate system, which moves with the bubble. 

bubble to be exactly spherical, with radius of curvature R. The origin of a spherical 
coordinate system which moves with a steadily rising bubble is located at the centre 
of curvature (see figure 2). The upper surface of the bubble in the disturbed state is 
given by 

where 171 + R. The motion in the liquid above the interface will be supposed to be 
irrotational, with velocity potential @ and velocity u = V@. I n  the undisturbed 
axisymmetric state @ = Go, and in the disturbed state @ = Go + 

The disturbed flow must satisfy two matching conditions at the bubble surface. 
The first is the kinematical condition 

r =  R + r ( e , $ , t ) ,  

say. 

r=R+g 

-+ a7 R(:) - 
at r-R+g 

To the first order in the small disturbance quantities this becomes 

where q0 is the magnitude of the (poloidal) liquid velocity a t  the bubble surface in the 
undistured flow. Now since satisfies Laplace’s equation, we have 

to first order, whence (3.2) becomes 

The other condition is that the pressure be continuous across the bubble surface, 
and hence constant. For the disturbed state this is expressed as 

YK 
r-R+g P 

+ g(R + 9 )  cos 0 + - = const. , (3.4) 

where y is the surface tension at the interface (assumed t o  be uniform) and K is the 
sum of the two local principal curvatures of the interface. In  the absence of the 
disturbance this reduces to  

&~+gR(cosO-l) = O ,  (3.5) 
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and on subtracting (3.5) from (3.4) and retaining only first-order small quantities we 
find 

The relations (3.3) and (3.6) together with the equation 

V W ,  = 0 

and the expression (3.5) for qo as a function of 8 presumably determine the behaviour 
of the disturbance. I have been able to make progress with these equations only by 
confining attention to the central region of the upper surface of the bubble, where 
8 < 1, which we expect to be the most unstable part of the interface. In this region 
qo is necessarily given approximately by the linear expression 

qo = k R 8 ,  (3.7) 

and the constant of proportionality k must take the value 

k = (g/R)t  (3.8) 

for consistency with the condition of uniform pressure at  the boundary expressed by 
(3.5). (The constant k in (3.7) is also a parameter of the global irrotational flow field, 
and is related to the speed of rise of the bubble in a way that depends on the bubble 
shape and on the presence of boundaries, but this relation plays no part in the 
stability analysis.) Note that the only aspect of the undisturbed flow field that 
appears in (3.3) and (3.6) is the poloidal velocity qo a t  the interface, and that when 
qo has the linear form (3.7) the interface motion in the neighbourhood of 8 = 0 is a 
uniform isotropic pure straining such that all material line elements in the interface 
are being extended a t  the rate k .  

When 8 Q 1 and terms of the second degree in 8 can be neglected, (3.3) and (3.6) 
become, with the aid of (3.7), 

(3.10) 

where s = Re and z = T - R. z, s and the azimuthal angle 4 are effectively cylindrical 
coordinates and the plane z = 0 is horizontal and tangential to the interface. In this 
approximation these two equations describe a disturbance to a horizontal plane 
interface which is being stretched isotropically with rate of extension k .  

The ‘convective’ terms in (3.9) and (3.10) indicate that the lengthscale of the 
disturbance in the horizontal plane is being extended, like the interface itself. 
Consequently eigenmodes of disturbance that preserve their dependence on the 
streamwise distance s and whose amplitudes vary exponentially with respect to time 
do not exist. It follows that it will not be possible to find a clear-cut criterion for 
instability in the form of a critical value of some parameter of the problem above or 
below which some eigenmodes grow exponentially. However, since the liquid flow in 
the neighbourhood of the upper-most point on the bubble surface is irrotational with 
uniform rate of strain, the change of form of a disturbance is a simple stretch (or 
linear transformation) and this allows us to analyse the evolution of a disturbance of 
arbitrary initial form. We shall see that certain modes of disturbance are amplified 
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although for a limited time only, and that the total amplification can be calculated. 
Thus a criterion for the occurrence of a specified total amplification of a small 
disturbance can be given, but not (from the linear analysis alone) for the occurrence 
of bubble break-up. This is effectively also the position with the model proposed by 
Grace et al. (1978). 

We now represent an arbitrary small disturbance to the plane interface at the 
initial instant t = 0 in terms of a complete set of orthogonal functions of the position 
vector s (with polar coordinates s, 4) in the horizontal plane. One possibility is a 
Fourier expansion (in two dimensions), of which a typical term is 

~ ( s )  = A  exp(inj-s), @ , ( s , z )  = -B exp{n(ij-s-z)), (3.11) 

where n j  is the vector wavenumber, j being a unit vector in the horizontal plane. 
Another possibility is a Fourier-Bessel expansion, of which a typical term is 

(3.12) 

where p may take any one of the values 0, 1, 2, ... . The form of the dependence of 
Qs, on z in (3.11) and (3.12) is a consequence of i t  being a harmonic function. If now 
we allow n, as well as A and B, to be a function o f t  alone and substitute either of 
these representations of 7 and in (3.9) and (3.10) we obtain two equations, the real 
and imaginary parts of which add up to  zero if 

~ ( s )  = AJJns) cospq5, Q1(s, z )  = -BJ,(ns) cosp4 e-nz, 

dn 
-- - - kn, i.e. n = no e-kt, 
dt 

where no is the value of n at  t = 0, and 

- _  - -2kA+nB, dA 
dt 

dt 

(3.13) 

(3.14) 

(3.15) 

Thus a disturbance that initially has a sinusoidal or a Fourier-Bessel form 
continues to have that form, but the lengthscale of the dependence on s remains 
constant only with respect to  material coordinates, as anticipated. The equations 
(3.14) and (3.15) determining the time dependence of the two amplitudes A and B are 
independent of the form of representation of the disturbance, so there is no need to 
choose between the Fourier and the Fourier-Bessel representations until the nature 
of the real initial disturbance in an actual flow system is under consideration. For 
convenience we shall refer to n and A( = 2x/n) as the ‘ wavenumber ’ and ‘wavelength ’ 
of the disturbance, regardless of whether (3.11) or (3.12) is the form of the 
disturbance. 

The interpretation of the terms in (3.14) and (3.15) is straightforward. The term 
-2kA in (3.14) represents the continual reduction in amplitude of the disturbance to  
the interface resulting from the contractional motion of the liquid in the vertical 
direction. The other terms have the same form as those that would be present when 
k = 0, and when n is constant they describe the growth of a disturbance to  a plane 
horizontal interface between two stationary immiscible fluids the lower of which has 
negligible density. Equations (3.14) and (3.15) thus represent a generalization of the 
familiar Taylor-instability analysis to a case in which the interface is being extended 
isotropically. The effect of this imposed extensional motion is to  introduce the 
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stabilizing effect of the associated contraction of the fluid in the vertical direction 
and to vary the disturbance wavenumber according to (3.13); and the latter effect 
renders impossible an exponential dependence of the disturbance amplitude on time. 
These features of the behaviour of a small disturbance were also found by Tomotika 
(1936) in a study of the capillary instability of a thread of one viscous liquid 
immersed in a second liquid in axisymmetric pure straining motion, by Moore & 
Griffith-Jones (1974) in their analysis of the stability of a vortex sheet which is being 
extended in the direction normal to the vorticity, and by Frankel 6 Weihs (1985) in 
their analysis of the stability of a shaped-charge liquid jet in which the velocity 
increases with axial distance parallel to the jet. 

On eliminating B from (3.14) and (3.15) we obtain finally 

where n, = 2n/A, 
stationary fluids. 

-+3k-+A 
d2A dA 
dt2 dt 

(3.16) 

= (pg/y) i  is the critical wavenumber for an interface between two 

4. Solution of the disturbance equation 

dimensionless quantities 
For the purposes of numerical integration of (3.16) it is desirable to introduce the 

where L is any conveniently chosen length, whence (3.16) becomes 

d 2 d  d d  
-p+3-++{2-a/T1 dT e-'(1-/T2 e+)} = 0 .  

The evolution of the disturbance is seen to be controlled by the two parameters a and 
p. For a given gas-liquid system a is proportional to the bubble size and p is 
proportional to the initial wavelength of the disturbance. 

The initial conditions satisfied by A have now to be specified. In  stability problems 
for which unstable eigenmodes exist it is enough to know that a disturbance of 
arbitrary form and non-zero magnitude is generated initially by some external 
means, because an eigenmode grows indefinitely regardless of its initial amplitude. 
However, in the present problem the initial form and magnitude of the disturbance 
affect the final magnitude and must be considered explicitly. The choice of the initial 
conditions, which is not straightforward, should presumably reflect the assumed 
origin of the disturbance to the bubble surface. 

It seems likely that the disturbance originates in slowly decaying motions in 
patches of the liquid through which the bubble is passing. Turbulent motions in a 
large body of liquid, perhaps arising from the previous passage of bubbles through 
it,  may persist for some time. For instance a turbulent motion with a root-mean- 
square velocity fluctuation of 1 mm/s and lengthscale of 50 mm has a half-life of the 
order of a minute, and decays by generating 'eddies' on smaller scales. Such ambient 
motions in the liquid are inevitably rotational and persist (although not without 
change) as they are convected through the irrotational velocity field surrounding the 
bubble. A velocity fluctuation of certain magnitude and with a lengthscale 27r/n0 may 
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be generated at  the bubble surface in this way, and the corresponding initial 
conditions for the disturbance of the interface appear to  be 

dA 
dt 

A = O  and -=n ,B , ,  =u,say,  a t  t = O .  

In terms of the non-dimensional variables 

these initial conditions are 
d d  
dT 

d = O ,  - = 1  a t ~ = O .  (4.4) 

Note that u, is the amplitude of the sinusoidal variation, with wavenumber no, of the 
normal component of the velocity of the liquid a t  the interface a t  t = 0. 

Another possible origin of the disturbance to the upper surface of a spherical-cap 
bubble is the shaking or wobbling of the whole bubble that accompanies the 
oscillation of the sharp edge. The back-and-forth motion of the sharp edge, with 
occasional detachment of a small gas bubble from the parent bubble, is evident in 
some photographs, although it appears not to have any visible influence on the 
smooth spherical upper surface of the bubble. It is difficult to see any direct 
connection between the oscillatory motion of the sharp edge and the existence of 
disturbances to the upper surface of the bubble with relatively small lengthscales 
comparable with A,. And in the case of a gas bubble of large vertical extent in a tube, 
like that in figure l (d) ,  the rear edge of the bubble is probably too far away to 
produce any disturbance to the nose of the bubble. For these reasons we shall adopt 
the initial conditions (4.4) (with (4.3)) with the understanding that the initial 
interface velocity u, can be determined, in principle, from a consideration of the 
random velocity distribution that exists in the liquid ahead of the rising bubble. 

Equation (4.2) has been integrated numerically over a range of values of 7 ,  

beginning at  7 = 0 where the initial conditions (4.4) are imposed, for a number of 
different combinations of values of u and p. Figure 3 shows the solution for the case 
01 = n, R = 50 and a number of different values of /3( = & / A , ) ,  some smaller than 
unity and some larger, indicating the effect of varying A, alone. The abscissa variable 
for all these curves has been chosen as 

A nc - T’ = T+lnp = In - - In - 
n A, 

(4.5) 

in order to show the relation between the growth of the disturbance and the 
instantaneous value of A/&. A disturbance to  a stationary plane interface is purely 
oscillatory (in the absence of viscosity) if A < A,, and grows exponentially if A > A,. 
Here the behaviour is more complicated because the disturbance wavelength is 
changing continually and there is the additional decrease of the disturbance 
amplitude due to the vertical contraction in the liquid. Nevertheless one can see from 
the enlargement of the region near the origin in figure 4 that in cases where A, < A, 
the amplitude initially tends to oscillate and that as A increases through A, the 
amplitude begins to grow, at an increasing rate as A increases through the value 
43A, (i.e. T’ = 0.55) where the growth rate of an inviscid disturbance to a stationary 
horizontal interface has its maximum value. As A becomes still larger (figure 3) the 
growth rate due to the effect of gravity alone tends to zero, and since the squashing 
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a = n,R = 50 

FIQURE 3. Calculated values of the non-dimensional amplitude of the disturbance (d)  aa a function 
of T’( = T + In /? = In A / & )  for various values of /?( = & / A c ) ,  with a( = gn,/ka = n, R)  = 50. 

a =  50 

FIQURE 4. Enlarged view of the curves of figure 3 near the origin. 

effect of the vertical contraction in the liquid is independent of A the amplitude 
ultimately decreases to  zero. Figures 5 and 6 show the solutions for the same family 
of values of p in the case a = 80. 

As would be expected, the value of p( = A,/&) for which the amplitude is largest 
when h > A, is approximately 1.0. Adisturbance whose initial wavelength is less than 
A, experiences an initial period of damped oscillation (the ‘damping ’ being due to the 
ambient vertical contraction) and any disturbance for which A, > A, is amplified for 
a period that is smaller than the period of amplification when A, = A,. It will be seen 
from figures 3 and 5 that  the maximum of J$ (for given T‘ > 0) actually occurs at a 
value of /3 that  is a little less than unity and that varies slightly with a. The reason 
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FIGURE 5. Calculated values of d as a function of 7’ for various values of p, with a = 80. 

a = 80 

-0.2 . 

-0.4 . 

FIGURE 6. Enlarged view of the curves of figure 5 near the origin. 

appears from figures 4 and 6 to be that some combinations of values of d and 
d d / d t  a t  the instant at which A reaches the value A, (i.e. 7’ = 0) give the disturbance a 
better start to the growth phase than others. Bearing in mind the uncertainty about 
the initial conditions in an actual flow system, the difference between the curve in 
figure 3 (or 5 )  for which /3 = 1 and that for which d is greatest is probably not 
significant. For the later purpose of estimation of the largest possible size of a stable 
bubble, we shall suppose that the initial wavelength of the disturbance whose (non- 
dimensional) amplitude reaches the largest value at a given 7’ (> 0) is A,, 
corresponding to ,8 = 1,  regardless of the value of a. (It is of course the magnitude of 
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the dimensional amplitude A that is relevant to break-up of a bubble, and if there are 
large variations in the initial velocity disturbance uo as a function of the wavelength 
ho that must also be taken into account in an identification of the most ‘dangerous’ 
disturbance.) 

We observe in passing that the curves in each of figures 3 and 5 have a similar 
shape, suggesting that the amplitude can be represented approximately in the 
form 

whereas there is no such similarity among the curves in figures 4 and 6. This 
similarity at large values of h/h,  presumably is connected with the fact that when 7 
is replaced by 7’ (defined in (4.5)) as independent variable the differential equation 
(4.2) becomes 

d 2 d  d d  
-+3-+.d{2-a e-f(l-e-2T’)} = 0 
d7’2 d7 (4-7) 

and does not contain p, although /3 now appears explicitly in the initial conditions 

.d = 0, -- - 1  
d d  
d7’ 

at  7’ = lnp.  (4.8) 

It seems that the influence of the initial conditions is confined to control of a 
multiplying constant C when 7’ is larger than about l .0 . t  

Now that the effect of varying the initial wavelength has been examined, we may 
consider the influence of the important parameter a that measures the size of the 
bubble (see (4.1)). Figure 7 shows computed solutions of (4.2) with the initial 
conditions (4.4) for several different values of a and with B chosen as 1.0 in 
accordance with the previous discussion. The range of values of the amplitude d 
is very wide, so the ordinate has a logarithmic scale, the quantity plotted being 
In (d + 1) since this remains finite at 7 = 0 and differs imperceptibly from l n d  
when d % 1. The abscissa variable in figure 7 has been chosen as 

a h 
~ “ = ~ - l n - = ~ - l n n o R = l n -  B 27cR’ (4.9) 

because the curves for different values of a are then found to differ approximately by 
an additive constant only (again possibly because (4.2) with 7’‘ as the independent 
variable and neglect of the surface-tension term p2 ec2’, which is small at  the larger 
values of 7 ,  does not contain a or p, although these parameters now appear in the 
initial conditions). The solutions are shown only to values of 7“ near their maxima; 
at larger values of 7” all the curves tend to zero like those in figures 3 and 5. 

The plot in figure 7 also has the merit of revealing the limitations on the validity 
of the analysis at the larger values of 7 or 7”. The disturbance equations (3.9) and 
(3.10) are valid in the neighbourhood of the top of the bubble where the interface 
resembles a horizontal plane, and the disturbance forms (3.11) and (3.12) are 
applicable when the wavelength h is small compared with the distance over which 
these forms hold; in particular, the z-dependence of the forms (3.11) and (3.12) can 
be justified only if the assumed dependence on s applies over several wavelengths. 

t My colleague Dr Herbert Huppert has been able to show mathematically that this similarity 
property of solutions of (4.7) and (4.8), and likewise that represented by (5.2), hold provided 
a % 1, and he has kindly agreed to his proof being reproduced in the Appendix. 
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p =  1 100 

-4  -3  -2  - 1  0 

f, = In (A/2rrR) 

FIGURE 7. Calculated values of In (d + 1) as a function of T”( = 7 -In a,!?’ = In A/2xR)  for 
various values of a( = gn,/k2 = n, R), with p( = h,/h,) = 1. 

The numerical solutions are consequently beginning to  be of uncertain accuracy 
when A = R,  that  is, when 

7” = -1n27t = -1.84, 

which is indicated by a broken line in the figure. The disturbance comes to  the end 
of its lifetime, not because it is swept over the edge of the bubble, but because the 
wavelength becomes too large for a periodic structure to  be contained on the 
interface. We note that the maxima of the curves lie outside the range of validity. 
Caution is thus needed in any attempt to base a criterion for break-up of a bubble 
on the calculated maximum amplification of a given initial disturbance. 

Even though the curves in figure 7 are unreliable at 7” > - 1.84, it seems clear that 
the value of In (d + 1) for a small disturbance satisfying linearized equations valid 
over the whole of the bubble surface does reach a maximum and subsequently falls 
to zero. The rate of extension of the interface in the flow direction decreases with 
distance from the top point of the bubble, so that the wavelength becomes non- 
uniform, but this rate of extension and the associated rate of contraction in the 
normal direction remain positive over the whole of the interface thereby ensuring 
that the disturbance amplitude ultimately diminishes to  zero everywhere. 

5. The criterion for break-up of a bubble 
If a steadily rising bubble with a steady smooth surface experiences an infinitesimal 

disturbance a t  an initial instant, the disturbance amplitude grows in the manner 
calculated above and may become large enough to  cause finite-amplitude effects 
leading to break-up of the bubble. I n  a problem like this in which exponentially 
growing eigenmodes of disturbance do not exist, finite-amplitude effects do not 
necessarily occur ; whether they do depends on both the initial disturbance amplitude 
and the degree of amplification. The objective of the present study is an estimate of 
the minimum level of the initial disturbance required to  activate finite-amplitude 
effects of the type that will lead inevitably to  break-up of a bubble of given size. A 
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simple and precise criterion is unlikely to exist, because a bubble can doubtless break 
up in many different ways. Analysis of thc process of disruptJion of a bubble using the 
full equations of motion is desirable but would be a massive computational problem 
beyond my scope. Instead I shall make an expedient hypothesis about the absolute 
amplitude and wavelength of a disturbancc which by nonlinear processes will lead 
inevitably to break-up of a bubble. 

It is natural to  think in terms of the disturbance amplitude alone when searching 
for a criterion for subsequent break-up, but I think the disturbance wavelength is 
also relevant. If  we think, for instance, of the extreme case in which the wavelength 
of a disturbance to the surface of a spherical-cap bubble is appreciably larger than 
R, the disturbed interface is obtained approximately by displacing the undisturbed 
interface as a whole and is unlikely to generate finite-amplitude effects however large 
the amplitude. The break-up of the bubble is likely to result from gravitational 
instability of the upper surface proceeding a t  a rate made faster by nonlinear effects 
and fast enough to overcome the smoothing action of the extensional motion of the 
interface. The strength of these nonlinear effects is measured, not by the disturbance 
amplitude alone, but by the change in the general shape of the bubble since this 
determines the change in the global irrotational flow about the bubble. Putting it 
concretely, my picture of the break-up process is that, if a shallow depression forms 
on the upper surface, the subsequent deepening of the depression by gravitational 
instability leads to less liquid flowing round the bubble and so to a smaller rate of 
extension of the interface, which in turn diminishes the smoothing action of the 
extensional motion and hastens the deepening of the depression. 

The change in the global irrotational flow resulting from an amplified disturbance 
will be greatest when the disturbance wavelength is comparable with R ,  say when 
A = A,. And the importance of nonlinear effects associated with a disturbance of this 
wavelength will be determined by the amplitude of the disturbance relative to R. 
This leads us then to the working hypothesis that  bubble break-up is inevitable, as 
a consequence of nonlinear effects, if the amplitude A of a disturbance, as given by 
the preceding linear equations, is equal to or greater than a critical value ER a t  the 
instant a t  which A + A,, where 6 is an absolute constant. In terms of non-dimensional 
quantities this criterion for break-up is 

in which use has been made of (3.8) and (4.3). 
It will be recalled that the numerical integration of (4.2) (with /3 = 1) revealed an 

approximate similarity of shape of the solutions for different values of a (see figure 7 
and the relation (4.9)). This similarity implies that  d is approximately of the 

(5.2) 
form 

d(7, a) = K ( a )  F(7”) 

except a t  the smaller values of 7 ,  and hence that the ratio of the values of d a t  two 
different values of 7” (neither being small) is independent of a. Choosing different 
values of the wavelength A,, about which we know only that it should be comparable 
with R, is thus equivalent to  choosing different values of E in the criterion (5.1). We 
are free to make a special choice of A, on grounds of convenience, say A, = R, thereby 
transferring all the arbitrariness in the criterion (5.1) into the constant 6. 

The above hypothesis thus says that the maximum or break-up value of the top 
radius of curvature ( R  = R,, say) of a gas bubble in a given liquid which remains 
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FIQURE 8. The calculated relation between the initial disturbance velocity uo and the radius of 
curvature of the largest bubble which does not break up (Q, according to the criterion (5.3). 

intact when subjected to a disturbance with initial normal velocity magnitude u, and 
wavelength A,  (this being the value of A, that  maximizes d )  is given by 

equivalently, (5.3) gives the minimum value of uo that  will cause disruption of a 
bubble of radius of curvature R, in a given liquid. The value of d at  7'' = -1n25c 
= - 1.838 is a known function of a( = 25cR/hc), as indicated in figure 7,  from which 
we find thc relation between R,/Ac and u , / ~ ( g A , ) ~  shown in figure 8. 

The disturbance amplitude A = 6R indicates the threshold of significant nonlinear 
effects. The constant 6 clearly is small compared with unity, but there is little that 
can be said about it on theoretical grounds. The change in the curvature of the 
interface due to the disturbance may have some relevance to the incidence of 
nonlinear effects associated with the change in the bubble shape. The disturbance 
curvature V2q is equal to -n2q for either of the two disturbance forms (3.11) and 
(3.12), and it can be shown from the numerical solutions that the amplitude of this 
variable curvature reaches a maximum at  h = 0.60R (i.e. 7'' = -2.35), which is 
possibly just small enough to lie within the range of validity of the calculations. If 
we supposed that bubble break-up is inevitable when this maximum amplitude of the 
disturbance curvature is equal to or exceeds 2 / R ,  meaning that there is then a t  least 
one point on the interface where the total curvature is zero, that may be shown to 
correspond to the choice 6 = 0.041. And if we took as our criterion for break-up the 
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Axisymmetric 
Fourier-Bessel Sinus o i da 1 Fourier-Bessel 

FIQURE 9. Sketch showing the intercept of the disturbed bubble surface by a vertical plane through 
the origin at the instant at which A = 0.60R. The disturbance amplitude is A = 0.036R. The broken 
curve on the right-hand side shows the sinusoidal disturbance (3.11) with the wavenumber vector 
nj in the plane of the figure, and that on the left shows the Fourier-Bessel disturbance (3.12) with 
p = O .  For both forms of disturbance the total curvature of the interface at  6 = 0 is 2/R.  
Observations show that 8 x 50' a t  the edge of a spherical-cap bubble. 

occurrence of a positive (concave upwards) total curvature equal to 2 / R ,  as would 
seem to be more reasonable, that would correspond to 6 = 0.082. 

The threshold disturbance in this latter case (6 = 0.082) is sketched in figure 9, 
which shows two alternative forms of disturbed interface, both with h = 0.60R (the 
instant at  which the disturbance curvature reaches its maximum) and 

4 
n2A = - 

R' 
i.e. A = 0.036R. 

On the right-hand side of the central axis is a sinusoidal disturbance with 
wavenumber vector in the plane of the figure and phase chosen for convenience so 
that the maximum total curvature occurs at  the top point of the interface (8 = 0 ) ,  
and on the left is an axisymmetric ( p  = 0) Fourier-Bessel disturbance with the centre 
of symmetry chosen for convenience of drawing to be at  8 = 0. For both these 
disturbed interfaces the total curvature is 2 / R  at 8 = 0. Choosing f = 0.082 in the 
break-up criterion (5.3) is equivalent to supposing that the disturbances shown in 
figure 9 are critical in the sense that nonlinear processes are just strong enough to 
cause disruption of the bubble at a later time by deepening the central depression at 
a rate greater than that given by the linear theory. The appearance of the interface 
in figure 9 seems to me to make plausible a value of 6 not greatly different from 0.082, 
but in the absence of nonlinear analysis of the bubble shape this can only be a very 
rough estimate. 

The mode of break-up of a bubble on which our hypothesis is based would 
presumably lead to a spherical-cap bubble breaking up into a small number of 
bubbles of comparable size. 

6. Concluding remarks on the maximum size of bubbles 
The strong influence of surface tension, as represented by the parameter A,, on the 

amplitude of a small disturbance at  the instant at which h / R  reaches any given value 
of order unity is evident from figure 7. Surface tension has some influence on the 
growth rate at all wavelengths, but the influence on the smallest wavelength for 
which there is positive growth is more important. The disturbance amplitude grows 
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only during the ‘window’ of time in which A increases from A, to a value of order R, 
and it is this duration of growth that primarily determines the magnification of the 
amplitude. This control of the period of growth by surface tension is the key to 
understanding why gas bubbles in liquid do not break up unless R is a good deal 
larger than A,. 

As anticipated, there is no unique value of the break-up radius R, for a given 
gas-liquid system ; it depends on the initial magnitude of the disturbance generated 
by external causes. It will be recalled that u, is the magnitude of the variation of the 
normal velocity of the interface a t  the initial instant, when A = 0 and A = A,. (And 
A, was later chosen to be equal to  A,, corresponding to /3 = 1, on the grounds that 
this would yield approximately the largest amplification of the disturbance at a 
given later time.) The origin of the disturbance was supposed to be a patch of motion 
with non-zero vorticity in the liquid ahead of the rising bubble. The value of u, is 
likely to vary considerably according to the circumstances of the observations of real 
bubbles, and there does not appear to be a particular value with special significance. 
Even when the velocity fluctuations in the liquid ahead of the bubble can be 
observed, there is the question of the relation between these fluctuations and the 
disturbance velocity a t  the bubble surface, which is a sizeable problem in itself and 
will not be considered here. 

For practical purposes the numerical relationship between the dimensional 
quantities u, and h?, for particular gas-liquid systems is more informative than figure 
8. Figure 10 shows the relationship for three values of A,( =27t(y/pg)i), one of which, 
viz. A, = 1.71 cm, is appropriate for air bubbles in water. The numbers on the 
abscissa scale give the value of uo in cm/s when 6 is chosen as 0.082. 

The values of A, for some other common liquids given in table 1 are less than that 
for water, and lie within the range 0.80 em < A, < 1.71 em covered by the three 
curves in figure 10. The difference between the values of R, for air bubbles in water 
and for air bubbles in, say, carbon tetrachloride (A ,  = 0.82 em) is greater a t  the 
smaller levels of the initial disturbance. 

As remarked earlier, these estimates of the upper bound to  values of the radius of 
curvature of the top of the bubble surface for which the bubble remains intact apply 
both to spherical-cap bubbles in unbounded liquid and to bubbles confined in a 
vertical tube of circular cross-section. The part of the interface near its highest point 
is the seat of the instability, according to the views put forward here, and the extent 
and shape of the remainder of the interface do not have a major influence on the 
instability. 

For spherical-cap bubbles, we have the observation by Temperley & Chambers 
(1945) that gas bubbles in a large tank of water (depth 33 ft.), some generated by a 
small explosion and some by turning over a bucket of air, remained intact for values 
of R up to about 15 em. (Temperley & Chambers photographed the bubbles and 
measured the cap radius on the photographs.) The surface tension at the interfaces 
of these bubbles is likely to be about the same as for air and water, in which case 
according to figure 10 this break-up size corresponds to an initial disturbance of 
magnitude uo = 0.22 cm/s if we take 6 as 0.082. This is not an unreasonable figure 
for a tank of water through which many large gas bubbles have passed during the 
same day. Temperley & Chambers reported that it was rather difficult to generate 
single bubbles for which R was close to the maximum. 

Observations of the rate of rise of spherical-cap bubbles larger than those observed 
by Taylor & Davies were also made by Allred & Blount (1953). They generated 
bubbles of different sizes by rotating rapidly a hemisphere partially filled with air 



Stability of a large gas bubble rising through liquid 417 

24 

20 

16 

8 

J 

0.2 0.4 0.6 0.8 

0.082 uo/[ (cm/s) 

FIQURE 10. The calculated relation between Rb and uo, for three different values of the 
wavelength A, (= 2n(y/pg)T) that is critical for a disturbance to a stationary interface. 

Y 
dyn/cm 

Water 72.8 
Glycerine 63 

Mercury 487 
Ethylene glycol 42 

Ethyl alcohol 22 
Aq. soap solution 25 
Carbon tetrachloride 27 

P A, 
gm/cm3 cm 

1 .oo 1.712 
1.26 1.42 
1.10 1.24 

13.61 1.200 
0.79 1.06 
1 .o 1 .00 
1.60 0.82 

TABLE 1.  Values of the wavelength A, that is critical for a sinusoidal -disturbance tola stationary 
horizontal interface, for some common liquids above air ; Ae = 2x(y/pg)f . 

near the bottom of a tank 3 ft. deep and 18 in. square in horizontal dimensions, and 
the bubble radii were measured from photographs of the bubble silhouette. The cap 
radius of the bubble corresponding to the last point in their figure showing their 
observations of speed as a function of size is 15.9 cm. The authors do not say whether 
they attempted to generate even larger bubbles (whereas Temperley & Chambers do 
report that they tried and were unsuccessful). Allred & Blount’s report also contains 
an interesting sequence of photographs of a large bubble (with volume equivalent to 
R = 8-10 cm) as it leaves the upturned hemisphere. They found that a spray of drops 
usually broke off as the bubble interface left the lip of the hemisphere and flew 
upwards inside the bubble striking the upper surface and generating a disturbance 
there. It is unfortunately not easy in the photographs to distinguish between growth 
of the interface disturbance due to gravitational instability and that due to the 
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P P Y A, 'ma, u P'dmax p g d k a x  

Liquid gm/cm3 gm/cms dyn/cm cm cm cm/s 7 Y 
Ethylene glycol 1.100 0.135 42.0 1.24 6.1 53.3 2650 24.2 
Paraffin oil 0.883 2.00 37.5 1.30 6.3 55.0 153 23.5 

Aq. sugar solution 1.366 3.40 76.2 1.51 6.3 54.1 137 17.4 

TABLE 2. Properties of the five liquids in which Grace et al. (1978) observed the maximum size of 
a rising air bubble. d,,, is the diameter of the sphere of the same volume as the largest bubble, and 
U is its observed speed of rise. 

Aq. sugar solution 1.310 0.54 73.1 1.51 4.6 49.2 549 9.3 

Aq. sugar solution 1.392 13.40 79.1 1.51 8.9 64.2 59 34.7 

momentum of the impinging drops, but the enlargement of the horizontal lengthscale 
of the disturbances due to the flow of the liquid round the bubble is clearly 
visible. 

Observations of the maximum volume of air bubbles that remain intact in five 
different liquids in a wide tank were made by Grace et al. (1978), and table 2 shows 
the relevant physical properties of these five liquids. In the last two columns values 
of the Reynolds number and Bond number for the bubbles of maximum size are 
shown. Unfortunately for the present purpose it appears from the shape-regime 
diagram compiled by Clift et al. (1978, figure 2.5)  that only for the first of these 
liquids, ethylene glycol, were the values of the Reynolds and Bond numbers large 
enough for the bubbles to be likely to have a clear spherical-cap shape. For this liquid 
Grace et al. give 119 cm3 as the observed maximum volume of bubbles remaining 
intact, and for a bubble of spherical-cap shape with a semi-cone angle of 50" this 
corresponds to R, = 7.0 cm. This observation is compatible with the curve for AC = 
1.25 (which is appropriate for ethylene glycol) in figure 10 if 5 = 0.082 and if the 
magnitude of the initial disturbance was rather large. Grace et al. say that they 
allowed ' a t  least one minute ... between injections' of bubbles of known volume in a 
tank 46 cm in diameter and 2.8 m deep. 

No observation of the break-up of gas bubbles rising in a blocked vertical tube 
appear to have been reported, and in view of the values of R, shown in figure 10 this 
is hardly surprising. In  the case of a bubble whose vertical extent is large compared 
with the tube radius, like that in figure 1 ( d )  and like the interface in a draining tube, 
the tube radius a is approximately 1.5R (see figure 9 in Davies & Taylor 1950). A long 
vertical tube full of liquid might be expected to be ' quieter ' than a wide tank since 
the tube wall has a damping effect on velocity fluctuations in the liquid, but if for 
definiteness we suppose the initial disturbance magnitude to be the same as in the 
experiments by Temperley & Chambers so that R, = 15 cm in an air-water system, 
then the interface of a long bubble rising through water in a vertical tube will be 
disrupted only if a > 23 cm. Tubes of this size will not often be used in the 
laboratory. It would be interesting to know what the outcome of break-up is in this 
case of long bubbles in a tube. It may be noted in this connection that a gas bubble 
hugging the wall of a vertical tube, with the interface intersecting the wall a t  an angle 
of 60" in the vertical plane of symmetry, is known to be a possible steady 
configuration, and that such an interface is likely to be less gravitationally unstable 
as a consequence of its inclination to the horizontal. 

Similar considerations of the stability of the interface no doubt apply to 'two- 
dimensional ' bubbles in the liquid-filled space between two close vertical plates, like 
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that shown in figure 1 ( c ) .  Provided the liquid motion is irrotational over most of’the 
gap between the plates, the analysis in $3 of the behaviour of a small disturbance to 
the interface needs modification in only one minor respect, viz. to allow for the fact 
that the rate of contraction in the liquid normal to the interface is here equal to the 
rate of extension of the interface, not twice it. Thus the numerical coefficient of kA 
in the first term on the right-hand side of (3.14) becomes - 1  instead of -2, with 
consequential changes in some of the numbers in (3.16), and the numerical 
integrations need to be done again. It is unlikely that the results will be radically 
different since the dominating gravity term is unchanged. No observations of the 
maximum size of such two-dimensional bubbles appear to have been made, although 
Clift & Grace (1972) reported that an air bubble of cap radius about 10 cm rising 
through sugar solution split into two smaller bubbles as a consequence of a 
disturbance to the upper surface of the bubble. Two-dimensional bubbles might be 
more convenient experimentally for an investigation of the instability of the 
interface since the quantity of liquid required is much smaller ; on the other hand 
there may be uncertainties about the influence of the sidewalls. 

In a thesis which was drawn to my attention after this paper had been submitted, 
Pelce (1986) has considered theoretically the stability of the interface of a long gas 
bubble rising in a liquid-filled tube. He supposes that the wavelength of a small 
disturbance is stretched like the material of the interface and that at  any instant the 
rate of growth of the amplitude is the same as that for an (inclined) interface between 
stationary fluids. The growth continues as the disturbance is carried down the side 
of the bubble, and the bubble is regarded as unstable if the disturbance amplitude 
attains a value comparable with the tube radius. The resulting criterion for 
instability appears to be different in form from that given here. 

I am glad to acknowledge the expert help of Dr Joyce Wheeler with the 
computing. 

Appendix. Asymptotic solutions of (4.7) and (4.8) 

By Herbert E .  Huppert 
Department of Applied Mathematics and Theoretical Physics, University of 

Cambridge, Silver Street, Cambridge CB3 9EW, UK 

The aim of this Appendix is to prove that the solutions of (4.7) subject to the initial 
conditions (4.8) can be represented in the forms (4.6) and (5.2) provided 7’ is 
sufficiently large and a B 1. 

The proof commences with the definition 

in terms of which the equations become 

p(7’) Y = 0 ,  
d2Y 
d7’2 
-- 

where p(7’) = a e-.’( 1 - e-2r’) + a 
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2.0 3.0 

FIGURE 11. (a) Graphs of ~ ( 7 ’ )  and T@’) for a = 50. ~ ( 7 ’ )  has a maximum of (82/3a+9) /36  at 
7’ = 4 In 3. ( b )  Graph of a S ( y )  for comparison with 7 itself, for a = 50. 

and is graphed in figure 11 (a )  for 01 = 50. The shape of the curve is similar for all large 
values of 01. We now introduce new variables (Erdelyi 1956, p. 93) by setting 

where ~ ( 7 ’ ~ )  = 0, and ~(7’) also is graphed in figure 11 (a) .  Note that ~(7’) >< 0 
according to whether 7’ $ 7’0. The differential equation can now be written as 

where 

d2Z 
--yz = S(T)Z, 
dT2 

S(7) = - 1 9“‘ 3 - f2 
2 7’3 4 7’4 

and a prime to 9 denotes differentiation with respect to 7’. S(7)  is plotted in figure 
11 ( b )  along with 7. We now denote two linearly independent solutions of (A 6) as 
H l ( 9 )  and H,(v)  such that H l ( r )  is exponentially large while H,(v) is exponentially 
small for large (positive) 7. I n  terms of these and the relationships (A l),  (A 3) and 
(A 5), the solution of (4.7) and (4.8) becomes 

where W is the constant Wronskian of H , ( q )  and H,(q) and the subscript * indicates 
evaluation a t  7‘ = I n p  = 7;. 

For large 01, S(7)  is of order a-i. Thus (A 6) is dominated by the left-hand side and 
the solution to lowest order can be expressed in terms of the Airy functions as 

HI(9) = Bi(7)? HA91 = Ai(9). 
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Further, because 7; is approximately - 1/8a, it can, to  lowest order, be equated to 
zero in (A 5b) .  Then for positive 7‘, because 7 is large (of order a;)), H l ( 7 )  %- H 2 ( 7 ) .  As 
long as /? is not too large on the other hand, neither Hl(7*) nor H2(7*)  is very much 
larger than the other. Inserting these relationships into the last bracket of (A 8), we 
obtain 

None of the first four terms of (A 9) is a function of 7’ and (minus) their product can 
be identified with the C(p) of (4.6). Additionally, none of the last three terms of 
(A 9) is a function of /? and their product can be identified with the f(7’) of (4.6). This 
completes the first part of the proof. 

It is now of interest to go further and evaluate some of the terms explicitly, a t  
least to  lowest order. Using the result W = - 71-l (Abramowitz & Stegun 1965) and the 
fact that 

we can rewrite (A 9) so that 

x ~-3p-z 1 1  exp { [ p”x) dx - 9’ 

where (A 13) is obtained from (A 12) by using the asymptotic representation of Bi(7). 
Following the spirit of the asymptotic analysis, we evaluate the maximum of f(7’) by 
determining the stationary point of the rapidly varying exponential term in (A 13). 
This occurs when pf = $ a t  7’ = s, where 

a e+( 1 - ecZ8) = 2 .  (A 14) 

For large a therefore, s x lnia.  
We can now prove the validity of the decomposition (5.2). For/? = 1,  from (4.5) and 

7” = 7’-ha. (A 15) (4.9) 

Thus with respect to 7” coordinates, d has a maximum, dependent on a, say K(a) ,  at 
7“ = - In 2 = - 0.693 . . . . Considered as a function of 7“, 

7 (A 16) = e-T” + 1- a-2 e-3‘7” 
4 

in which a appears only to order aP2. Thus integration with respect to 7’’ of the linear 
differential equation for d commencing a t  7” = -In 2 (independent of a) with d = 
K(a)  and dd/d7” = 0 will lead to  solution of the form 

d = K ( a ) F ( 7 ” ) ,  (A 17) 

where F is approximately independent of a until 7” is sufficiently negative that the 
last term of (A 16) becomes important. 
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Numerical evaluation of C ( p ) f ( ~ ’ )  from (A 11) and (A 12) was conducted to 
investigate the accuracy of the asymptotic formulae for various values of a. The 
results agreed well with direct numerical solution of the differential equation as 
graphed in figures 3, 5 and 7 .  For example, for a = 50 the error was 3% for 7 = 0.4 
(7” = -3.4) and less for larger values of 7.  
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