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Lee waves in a stratified flow 
Part 3. Semi-elliptical obstacle 

By HERBERT E. HUPPERTT AND JOHN W. MILES? 
Institute of Geophysics and Planetary Physics 

University of California, La Jolla 

(Received 9 May 1968) 

The stratified shear flow over a two-dimensional obstacle of semi-elliptical cross- 
section is considered. The shear flow is assumed to be inviscid with constant 
upstream values of the density gradient and dynamic pressure (Long’s model). 
Two complete sets of lee-wave functions, each of which satisfies the condition of 
no upstream reflexion, are determined in elliptic co-ordinates for E 2 1 and 
E < 1, where E is the ratio of height to half-width of the obstacle. These functions 
are used to determine the lee-wave field produced by, and the consequent drag 
on, a semi-elliptical obstacle as functions of E and the reduced frequency (recipro- 
cal Froude number) within the range of stable flow. The reduced frequency at 
which static instability first occurs is calculated as a function of 8. 

1. Introduction 
We consider the generation of lee waves by, the consequent wave-drag on, and 

the parametric range of (statically) stable flow for a two-dimensional obstacle of 
semi-elliptical cross-section in a stratified shear flow. We assume that the flow 
is inviscid and steady and that the upstream density gradient and dynamic 
pressure are constant (Long’s model) and obtain a solution by separation of 
variables. The present paper is a natural extension of parts 1 and 2 (Miles 
1968a, b) ,  in which an infinitely thin barrier and a semi-circle are considered. We 
obtain approximate solutions for obstacles of more general shape in part 4 
(Miles & Huppert 1969) and test these approximate solutions by comparing 
those for a semi-elliptical obstacle with the exact solutions obtained here. We 
refer subsequently to the various parts as I, I1 and IV followed by the appropriate 
section or equation number. 

Let H represent the height of the ellipse, B its half-width and U ,  p, and N the 
wind speed, density, and intrinsic (Vliisiila) frequency of the basic flow. The 
hypotheses that the upstream dynamic pressure, 

and the upstream density gradient are constant imply (Long 1953) that the 
vertical displacement of a streamline, say Ha, from its position in the basic 
flow satisfies the Helmholtz equation 

q = +PU2, (1.1) 

v2&+ K2& = 0, (1.2) 
t Also Department of Aerospace and Mechanical Engineering Sciences. 
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where K = N H / U  (1.3) 

is the reduced frequency (reciprocal Proude number) and x, y are dimensionless, 
Cartesian co-ordinates based on H (see figure 1). We satisfy the boundary con- 
dition of zero normal velocity a t  the obstacle surface, say C ,  and the hypothesis 
of no upstream retlexion of waves by setting 

a,nd 

where 

ucv), 

s = o  (Y = 07 1x1 > e-l), ( 1 . 4 ~ )  

s = y  on C, (1.4b) 

s = o ( 4 )  (x + -Go) ,  ( 1 . 4 ~ )  

6 = H / B .  (1.5) 

Hx 

FIGURE 1. Geometrical configuration for the tall ellipses. The codguration is similar for 
the squat ellipses except that 9 = O(n) along the positive (negative) z-axis. 

As in 11, we pose the asymptotic representation of the solution to (1.2) and (1.4) 
in the form 

where ,f (0) is the complex scattering amplitude of the far field. We define [cf. I1 
(1.8)-( 1. lo)] the differential scattering cross-section, (r(O), and the total scattering 
cross-section, Q, and relate these to the wave-drag on the obstacle, D,  by 

6 N (2/7T/Cr)&g{eXp[i(KT- $77)]f(8)) ( K T + G o ,  X > o), (1.6) 

(1.7a) 

( 1 . 7 b )  

and 

We determine these three quantities as functions of K and E for 0 < K < K,, where 
K, is that value of K for which the condition for static stability, S, < 1, is first 
violated. Local density inversions (which imply static instability) and flow 
reversals appear for K > K,, in consequence of which the basic hypotheses on 
which Long's model rests are almost certainly untenable (see I for a more com- 
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plete discussion of this point). Closed streamlines appear for K > K ~ ,  where K~ is 
only slightly greater than K,; their existence definitely violates Long's hypothesis 
that all streamlines originate in the undisturbed, upstream flow. 

The analysis falls naturally into two sections: E > 1, the tall ellipses, and E < 1 ,  
the squat ellipses. The thin barrier corresponds to E = 00, the semi-circular ob- 
stacle to E = 1.  The squat ellipses correspond more closely to  obstacles of physical 
interest. 

We obtain the solution to  ( 1  2) and (1.4) as an expansion in a complete set of 
functions, each of which satisfies (1.4a, c). We then determine the expansion 
coefficients by invoking the boundary condition (1.4b). This leads to  an infinite 
set of coupled, linear equations, which we solve approximately by truncation. 
The number of equations, say N ,  that  must be solved depends upon E .  For E > 1, 
M = 1 leads to reasonably accurate results, and N = 2 is numerically adequate 
for K < K,. For E < 1 ,  we find that N = 3 suffices except for very small E ,  say 
E < 0.1, for which N 2 5 would be required. We present an alternative procedure 
for determining the solution in the limit E + 0 for fixed K in IV.  

An alternative approach to  the boundary-value problem posed by (1.2) and 
(1.4) is via the construction of the Green's function (point-source solution) for 
the half-space. The analysis is similar to that presented in 11. 

2. Lee-wave functions for the tall ellipses (E 
We define the elliptic co-ordinates 6 and 7 and the modified, reduced frequency 

w by x = hsinhgsinr, y = hcosh(cos7, ( 2 . l a ,  b )  

1) 

and Q = K h  = ( N H / U ) { l -  (B/H)2)4, (2 . l c )  

where h = C'(E'- l )*  = (1 - (B/H)')&. ( 2 . 1 4  

5 = to Coth-lE. (2.2) 

The obstacle is then specified by the t-surface 

Substituting (2.1) and (2.2) into ( 1 . 2 )  and (1.4) and denoting the displacement 
function 6 as S(& q ) ,  we obtain 

(2.3) aCC + ST7 + w2(sinh2 5 + sin2 7) S = 0, 

a, k = 0 (5 > t o ) ,  (2.4a) 

SC60, 7) = COSY, (2 .4b)  

and &(k,y) = o(exp[-&$]) (<-too, --.&7r < q < 0). ( 2 . 4 ~ )  

We seek a set of elliptical lee-wave functions, say Sn(6, r), n = 1 , 2 ,  .. ., appro- 
priate to  the tall ellipses ( E  > 1 )  that is complete in the interval 171 < in for 
fixed 6 and each member of which satisfies (2.3) and (2.4a, c). We find that a set 
satisfying (2.3) and (2 .4a) ,  subsequently referred to as 9, is given by 

a ? n + l ( t , ~ )  = Nc!2+1(< ,  iw2)ce2n+,(q, tu2) + +2n+1(&> 7) (a == 0 7 1 ,  -.*) (2-5a)  

and &n(t7 7) = Ms'i%(6, + ~ ~ ) ~ e z n ( ~ ,  + +2n(E7 7) ( n  = 172,  ...), (2.5b) 
31-2 
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where 1 ~ . 2 , + 1 ( ~ ; 7  7) = 2 Gn,Msg)(C;, iw2)se2r(7, ao2) (2.6a) 

and 9 2 n ( C ,  7) = C HnrMc(zl!+I(C, )02)ce2r+,(7, )w2).  (2.6b) 

Our notation for the Mathieu functions follows that of Blanch (1964): ce,(q, &a2) 
and se,(q, a d )  are periodic Mathieu functions and Mc$)(C;, $02) and Nso,'(C, &02) 
(j  = 1,2) are radial Mathieu functions; we suppress the parametric argument of 
these functions, $ o 2 ,  in the subsequent development. 

We can show, using known theorems in Hilbert space, that Y forms a complete 
set in the interval 171 < 3.. 

Invoking the known, asymptotic expansions of the radial Mathieu functions 
(Zoc. cit. ante. p. 740) in (2.5) and (2.6) and requiring the resulting 8, to satisfy 
(2 .4c) ,  we find that the coefficients Gnr and H,, must be determined such that 

r=1 
co 

r=O 

and 

(2.7a) 

(2.7b) 

in 7 = ( -  &r, 0). Invoking the fact that each of the sets se2,.(7) and ~ e ~ ~ + ~ ( 7 )  is 
orthogonal and complete in ( - Bn, 0) ,  we satisfy ( 2 . 4 ~ )  by choosing 

(2.8a, b )  

(2.9a) 

- - ( - )"++4n-lce 2n+l(0)se~r(0)(b, ,-a2n+,)-1 ( n  = 0,1,  ..., r = 1,2,  ...), (2.9b) 

where a2n+l and b,  denote the characteristic values of the even and odd periodic 
Mathieu functions respectively. 

We derive the alternative, integral representations 

$2n+l(<, 7) = ( -)nn-l/nsin ( o c o s h ~ ~ o s ~ ~ o s t ) s i n  (osinh<sin7sint)ce2,,,(t)dt 
0 

(2 .104  
and 

992n(& 7) = ( - )%-l sin (o cosh < cos 7 cos t )  cos (o sinh 6 sin 11 sin t )  se2,(t) dt 
I0= 

{ 2.10 b)  
by expanding the integrands in (2.10a, b)  in Fourier-Mathieu series and inte- 
grating term by term. These integrals are used subsequently to determine the 
streamlines (the contours of y - 8). 

Recalling that ~ e ~ , + ~ ( 7 )  [se,,.(q)] are even [odd] functions, we see that asymp- 
totic cancellation of the two terms of (2.5) in 7 = ( - frn, 0) implies their asymp- 
totic equivalence in 7 = (0, in). Hence, far downstream from the ellipse the lee- 
wave functions have the form 

&,L+l(C,y) - 2M~!%+~(C)ce, ,+,(y) (wcoshC;+Kr+m, 0 6 7 < 4.) (2.11a) 
N 23( - )n(nocosh~)-~cos(wcosh~-~n)cezn+l (~)  ((-+m), (2.11b) 
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&&,q) N 2Hsi%)sezn(q) (wcosh6-tKr-t00,O < q < &) (2.12a) 

(2.12b) 

We employ these simple, asymptotic representations in the next section to 
determine the total scattering cross-section and the drag for K < K,. 

- 2+( - ) n ( ~ w  cosh 6)-*sin (w  cosh 6 -  &n)se,,(q) (c-+co). 

3. Solution for the tall ellipses (e 3 1) 
We pose the solution to (2.3) and (2.4) in the form 

m 

W, 7) = P C Ynan(!i, 71, 
n=l  

where the normalization factor 

p =  - ~ n ( l + E - f ) K  (3.2) 

is introduced to simplify the subsequent analysis. Substituting (3.1) and (3.2) 
into (2 .4b) ,  we find that the yn must be determined such that 

m m 

P C Y n a n ( S o , q )  = COST C Af'+'ce2r+1(~), (3.3a, b)  

where the AY+l are the coeficients of the even Mathieu functions. Substituting 
(2.5) into (3.3) and equating coefficients of cezn+l(q) and sezn(q), we obtain the 
infinite set of linear equations 

n= 1 r=o 

m 
I 

yzn+12Mci%+1+McL%+l c y z r ~ m  = ~-1A;n+' ( n  = 0,1,  ...) (3.4a) 

and y z n M s ~ ~ - - 2 M s $ ~  C y2r+lKnr = 0 (n = 1 ,2  ...), (3.4b) 

where the argument of the radial Mathieu functions is to except as explicitly 
noted otherwise. 

Considering the complex scattering amplitude f(@, we substitute (2.1 1 b)  and 
(2.12b) into (3.1) and equate the result to (1.6) to obtain 

r = l  

00 

r=O 

I) 

f(@ = 2P C ( - )n+1[~2n+1ce2n+1(7) - i~zn+2se,n+z(q)l. (3.5) 
n=O 

Substituting (3.5) into (1.7a), we obtain 

( 3 . 6 ~ )  

Substituting (3.6b) into (1 .7b,  c )  we obtain 

(3.7) 
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(3.8) 

(3. '1 0 a) 

1 ] (3.10b) 
1 - 4(r - s ) ~  + 1 - 4( r + s + 1)2 ' 

3 "  m 
= -  c cA;;$;A2P+' 

'> -r=O s=O 

(3.1 1 a) 

(3.1 1 b) 

and the B," are the coeficients of the odd Mathieu functions. Our definition of the 
starred quantities and our normalization of the yn is such that yl, cr*(O),  Q,, and 
D, are all l + O ( ~ ~ l o g ~ )  a s ~ - + O .  

Turning to  the actual solution of the linear equations (3.4), we truncate at  
n = N = 1 to obtain the first approximation 

[d?(@, Q$), D!?] = {~$')}~[1, 1,401, (3.12) 

where yi') = P-1A:/M@) ( 3 . 1 3 ~ )  

(3.13 b) = 1+$(1+C1 ) K2 1 0 g K + O ( K 2 ) .  

Truncating at n = N = 2, we obtain the second approximation 

[a!?(@, Q$), D$)] = ( ~ i ~ ) } ~ [ l  +f2{sei(q)/cel(q)}, 1 + f z ,  loo+$2Jo,J, (3.14) 

where y p  = y p {  1 + ( f K l 0  M c p / M c p ) y  (3.15~)  

(3.1 5 b) 

and 2 = yd2)/yf2) = Klo Msd1)/MsJ2) (3.16~4 b) 

= - €-'( -k €-1)2K4 + o ( K G ) .  (3 .16~)  
1 

48 

The first approximation breaks down entirely (yil)  = 00) a t  the smallest posi- 
tive value of K ,  say K ~ ,  for which M c , ( ~ ) ( ~ , ,  $w2) vanishes. We can show that the 
N'th approximation breaks down at K = K,,,, where K~,, is approximately the 
smallest positive value of Y K  for which M C $ ) ( ~ ~ , & L J ~ )  vanishes. Examining the 
curves of Mcd2)(6,s), n = 0,1,2, presented by Wiltse & King (1958a)t and re- 
calling the interlace theorem for the zeros of Yn(z), the corresponding functions 

t The tables of Wiltse & King (1958a, 6 )  [see Blanch (1959) for a summary of both sets 
of these tables] appear to be the only ones that tabulate both kinds of radial Mahhieu 
functions. They are not, however, adequate for the present numerical investigation, which 
was performed on a CDC 3600. 
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for E = 1, we conjecture that K~ increases monotonically with N (for fixed e). We 
find that K~ is considerably larger than K,. 

Numerical investigation shows that the difference between successive approxi- 
mations is largest for E = 1. We find that the first approximation is adequate for 
reasonably small K;  D$) differs from D$) by a t  most 1 % at K = 0.75 but de- 
parts rapidly therefrom for larger K ( 5 %  at K = 1.0, a maximum of 18% at 
K = KJ. The third approximation to D,  differs from the second by less than 
0.2 yo at K = K, and approximately 1 yo at K = 2.0. We find the second approxi- 
mation entirely adequate for numerical purposes. 

1.5 

1 .o 

0 5  

0 

K 

FIGURE 2. Normalized drag (D, )  and drag coefficient (C,) for three tall ellipses. 

Considering the limit K + 0 in (3.4) we find that 

Y ~ ~ , Y ~ ~ + ~  = ~ 4 7 9  (n = ~ 2 ,  ...I ( K + o )  (3.17) 

unless 8 = 1, in which case ygnfl = O ( K ~ ~ + ~ ) .  In  particular, we infer from the 
third approximation (not given explicitly here because it is algebraically un- 
wieldy) that a*(O), Q,, and D, differ from one another by O ( K ~ )  unless E = 1, in 
which case they differ by O(K*). We also can prove that the error factor associated 
with the first approximation is O(K4) unless E = 1, in which case it is O ( K ~ ) .  

Setting to = 0 (thin barrier) in (3.4) and recalling that M s $ ) ( O ,  &oz) = 0,  we 
find that the infinite set of equations (3.4) is no longer coupled and has a solution 
equivalent to that given by I (6.14a). The value of K,, as reported in I, is 1.73. The 
results for D, and the drag coefficient 

c, = DIqH, (3.18) 
are presented in figure 2 .  The streamline pattern for K = K, is presented in figure 3. 
[All figures depicting streamlines, in both I1 and this paper, are scaled such that 
the various obstacles are of equal height.] 

The semi-circular obstacle is described by E = 1, which implies to = 00. Letting 
to+m in (3.2)-(3.16), we recover the results given in 11, $3. The value of K,, as 
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/////////////////////////////////////////////////////, 

FIGURE 3. Stratified shem flow over a thin barrier for K = K, = 1.73. 

////,/,//,/ 

FIGURE 4. Stratified shear flow over the semi-elliptical obstacle E = 2.2 for K = K~ = 1.5. 
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reported in 11, is 1.27. The results for D* and C,, also reported in 11, are 
reproduced in figure 2. 

The values of Q* and D, for ellipses with 1 < e < cg are similar to those already 
presented for E = 1, co. We find that for 1 < E < co and K < 1.7 the variation in 
D,, qua function of e, is less than 15 % and that Q* is less than or equal to D, and 
differs from D, by at most 12%. We present D,  and the drag coefficient for a 
representative ellipse, e = 2.2, in figure 2. The streamlines for this elliptical 
obstacle for K = K, = 1-5 are plotted in figure 4. Examining the curves of C,  
against K for various values of e,  we find that the maximum drag coefficient (the 
drag coefficient at  K = K,) increases from 2.3 to 2-8 as E decreases from infinity to 
one. 

I I I I 

0 . 5 ~  0 0 1  0.5 10 50 I( 

C 

FIGURE 5. The reduced frequency at which static instability f ist  occurs. 

0 

Considering the stability of the flow (8, < 1 everywhere for K < K,), we find 
that, as E decreases from infinity to one, K, decreases monotonically from 1-73 
(thin barier) to 1.27 (semi-circle). We present K, as a function of e in figure 5. 

4. The squat ellipses (e G 1) 
We abbreviate the following analysis in recognition of the fact that the 

mathematical details for the squat ellipses are similar to those for the tall ellipses. 
We define t'he variables [, q,G,  & by 

(4.la, b )  
G = KA = ( N H / U ) { ( B / H ) 2 -  l}*, h = e - l ( l - ~ ~ ) *  = ( (B/H)2-  I}*. ( 4 . 1 ~  d )  

x = 8% cosh [cos@, y = & sinh %sin@, 

These variables are related to those defined in (2.1) by 

<=[-I. 22n, 7 = $77 - q, 
w = id, h = ii. 

The obstacle is now specified by 
[ = to = tanh-le. 

(4,2a, b )  
(4.2c, d )  

(4.3) 



490 Herbert E .  Huppert and John W .  Miles 

Substituting the definitions (4.1)-(4.3) into (1.2) and (1.4) and dropping the hats, 
we obtain 

$66 + 4, + w2(sinh2 t + sin2 7) 6 = 0, (4.4) 

= n-l(i)n/)gn(=&n-t) e-iwcosh~cos~coslsin (wsinhtsin 7 sint)se,(t)dt, 

(4.7b) 

on, = Fnr (nodd, reven) 
= -Frn (neven, rod-d) 

( 4 . 8 ~ )  

( 4 . 8 b )  

= 0 (n-reven), (4 8 c )  
and Fnr = tw'qs , . ,g , , rB~B~/(br-bn) .  (,4.9) 

We again suppress the argument +.w2 from the Mathieu functions. Each member 
of the set ( 4 . 6 )  satisfies ( 4 . 5 4  and has the asymptotic form 

Sn([ ,7 )  N 2Ns(:)(t)se,(q) (wcosh[+Kr-+a, 0 < 7 < in) (4.10a) 

(( + 00). (4.10 b)  N ( - )" 23(nw cosh [)-$ sin (w cosh + inn - &I-) sen(?) 
We pose the solution to (4.4), (4.5) in the form 

where 
and the yn, are to  be determined such that 

m m 

(4.1 1 a)  

(4.1 1 b)  

(4.12 a, b )  

Proceeding as in 9 3, we obtain the infinite set of linear equations 

Y , , M ~ ~ ~ + M ~ ( ~ ' C Y , D , = P - ~ B ; "  (a=  1,2  ....), (4.13) 

where B y  0 (S = 1,2, ...) (4.14) 

and Msg) = Ms;)([o, awz, (j = 1,2) .  (4.15) 

t Mcrbt (1959) considered the set of equations (4.4), (4.5~4, b, d )  and S(0, r )  = s e z ( ~ ) .  
These equations result from Lyra's (1943) model for lee-wave formation. Merbt posed an 
expansion similar to (4.6) but determined the coefficients of 8, (the only mode required) 
approximately. His is an inverse method of solution in the sense that his obstacle is a 
function of the reduced frequency. There is no significant overlap with our work. 

r - 1  
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Calculating the complex scattering amplitude, the differential scattering cross- 
section, the total scattering cross-section, and the drag, we obtain 

f(@ = 'P Z ( - )n+1[~2n+l~e2n+1(r)-i~2n+2~e2n+2(lj)I, 
m 

n=O 
(4.16) 

(4.17 a) 

and 

(4.18) 

(4.19) 

where Xnp = 

- - 

and Tnr, = 

- - 

( 4 . 2 2 ~ )  

Turning to the actual solution of (4.13) and the evaluation of the scattering 
cross-sections, drag, and instability point, we truncate (4.13) at n = N = 1 to 
obtain the first approximation 

[a$'(@, SY), DPI = { ~ P } ~ [ 1 , 1 ,  S&I, (4.23) 

where yil) = P-1Bi/Ms$2) (4.24 a) 

(4.24 b) = 1 + 1 + 8 )  K21og K + O ( K 2 ) .  

Truncating at  n = N = 2 ,  we obtain the second approximation 

[u$?(O), Q$), BP)] = (~:2)}~[1+ 92{sez(q)/sef(r)), 1 + g 2 ,  Soo+ g2TO0], (4.25) 

where (4.2 6 a) 

= y\y1 - 2-c-4 144 (1 + s ) ~ K ~ + o ( K ~ ~ o ~ K ) )  (4.2 6 b) 

and 3 = - #')/Yi2) = F12 MSL')/MS',~) (4.27a, b)  

7i2) = Y\'){ 1 + ( gF12 ~MS~'/MS\'))}-~ 

= - ~ 8 - 3 (  1 + €12 K4 + 0 ( ~ 6 ) .  (4.274 

Our procedure now departs from that of $3. We find that two terms in the 
expansion (4.11) do not suffice for small B .  The number of terms required increases 
with the parametric argument of the Mathieu functions 

a 0 2  = a(€-2- l ) K 2 ,  (4.28) 
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which tends to infinity as E + O  for fixed K .  For E = 0.3, 0 2 )  is less than DP) by 
10% at K = K, = 0.93. For E = 0.1, D p  is less than D(,2) by 13% at K = 0.6 
( K ,  = 0.78). 

The linearized solution to (4.4) and (4.5) yields (IV, $ 7 )  

D ,  = Gk-3 k + J , ( 2 k )  - ~ 0 2 k J 0 ( 4 d z ]  (€-to) [ (4.29) 

= 1--- ,1,k2+O(k4) ( E + O ,  k - t o ) ,  (4.30) 

-0 2 0  4.0 60 8 0  10.0 

KIE 

FIGURE 6. Normalized drag coefficient for squat ellipses with small 8. 

where k = K / € .  (4.31) 

We use (4.29) to determine the accuracy of the solution obtained by truncating 
(4.11) a t  n = N = 3. 

We present C&K, qua function of k,  for various values of E in figure 6. This 
plot gives some indication of the domains of validity of the third approximation 
and the linearized solution. We develop the solution for E < 1 and k 9 1 in IV 
($5), which covers the domain for which the expansion (4.11) is not satisfactory. 

The approximate solutions to (4.13) break down in a manner entirely similar 
to that described in $3, we need only replace Hc$'(&,, &w2) by iKsp([o, ad). We 
mention explicitly only that K ~ ,  the value of K at which the first approximation 
breaks down, is always larger than K,. Truncating (4.13) at n = N = 3, we infer 
that a,(@, Q*, and D ,  differ from one another by O(/c4) for E < 1 and that, the 
error factor associated with the first approximation is O ( K ~ ) .  For E = 1, (4.13) 
reduces to the equations given by I1 (3.4). 

Using the third approximation, we present D ,  and CD in figures 7 and 8. We 
remark that D,, qua function ofe for the squat ellipses, varies by orders of magni- 
tude. This constrasts with the 15 yo variation determined for the tall ellipses. We 
also find that Q, for the squat ellipses may be either greater or less than D, and 
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0 1.0 

K 

FIGURE 7. Normalized drag for squat ellipses. 

0 1.0 

K 

FIGURE 7. Normalized drag for squat ellipses. 
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K 

FIGURE 8. Drag coefficient for squat ellipses. 
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_____c_z__c/ 

FIGCIRE 9. Stratifled shear flow over the semi-elliptical obstacle e = 0.6 for K = K, = 1.12. 

/ / / / // / / /// / /// // // // / / 

FIGURE 10. StratSed shear flow over the semi-elliptical obstacle E = 0.3 for K = 0.5. 
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may differ from D ,  by as much as a factor of ten. We present K ~ ,  which is mono- 
tonically increasing, in figure 5. From this figure and the values of C,, we find 
that the maximum C, for stable flow is approximately 3.0 for all squat ellipses. 
We present the flow pattern for various values of E and K in figures 9-1 1. 

FIGURE 11. Stratified shear flow over the semi-elliptical obstacle E = 0.3 for K = K, = 0.93. 

5. Conclusions 
The maximum reduced frequency for static stability of the lee-wave field 

excited by a semi-elliptical obstacle of fixed height in a stratified shear flow 
decreases with increasing width. The maximum drag coefficient for stable, 
unseparated flow over a family of ellipses of constant height increases from 2.3 
to 3.0 as the slenderness ratio decreases from infinity to zero. The amplitudes of 
the lee waves excited by a semi-elliptical obstacle gradually decrease with in- 
creasing altitude. The scale of the lee-wave field decreases with decreasing re- 
duced frequency for fixed slenderness ratio and decreases with increasing slender- 
ness ratio for fixed reduced frequency. 
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