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Dynamic solidification of a binary melt
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The fundamental physics and fluid dynamics of a solidifying two-component system cooled from below is analysed
quantitatively. Theoretical results for the rate of growth of the solid are in good agreement with experimental measurements
on crystallizing aqueous solutions. The results are applicable to the solidification of a wide variety of binary alloys.

THE cooling and resultant solidification of a melt is important
in many different fields, including crystal growth'?, electrical
engineering®®, geology™®, geophysics”®, metallurgy®'® and
oceanography'"’2. The investigation of the fluid dynamic pro-
cesses which often dominate solidification has been advanced
by the suggestion'®>"'® that the mechanisms may be elucidated
by laboratory experiments on the freezing of aqueous solutions.
In some cases'*"* the studies were aided greatly by the concur-
rent analysis of a predictive mathematical model. Here, we use
this powerful approach and describe some simple experimental
and associated theoretical models for the cooling and crystalliz-
ing at a horizontal boundary of an initially homogenous fluid.
The aim is to highlight the fundamental phenomena and to
minimize consideration of inessential details by studying a
simple and straightforward situation. We use aqueous solutions
because they are easy to handle in the laboratory, but the
concepts developed are applicable directly to the solidification
of a wide variety of binary alloys.

First, we discuss briefly the phase diagram of the solid/melt
mixture and then concentrate on effects associated with cooling
and solidifying a melt from below. We determine theoretically
the rate of solidification if the solid/melt interface is perfectly
flat and horizontal, and also evaluate the criterion for which the
interface becomes unstable. In a series of laboratory experi-
ments, we have grown ice with unstable interfaces from different
aqueous solutions and we have developed a simple theoretical
model whose predictions are in good agreement with the
observations. Our main quantitative conclusions are theoretical
and experimental relationships for the rate of growth of the
crystal block, the total volume of solid produced and an
expression for the volume fraction of the solid product.

Phase diagram

The chemical composition of the phase obtained by the solidifi-
cation of a melt with two chemical components is determined
at thermodynamic equilibrium by the phase diagram (Fig. 1).
This diagram represents the chemical compositions of melt and
solid in equilibrium with each other by the liquidus and solidus
respectively. At a temperature and composition represented by
a point above the liquidus, the system is liquid. Between the
liquidus and the eutectic line, the solidus defines the composition
of the material solidifying from the melt, and in general
specifies solid phases whose composition differs from both the
melt and the pure components of the system®®. For most
aqueous solutions and many binary alloys, however, the phase
diagram has the special form illustrated in Fig. 1a, where solidifi-
cation from a melt (solution) with sub-eutectic composition
yields a solid phase consisting of a pure component (ice). It is
usually the case that density in the melt is a much stronger
function of composition than of temperature (see Fig. 1),
which plays an important role in the fluid dynamics of solidifi-
cation.

The solidification of a melt of eutectic composition, yielding
solid of the same bulk composition, is equivalent to the solidifi-
cation of a pure material. Otherwise, study of the process of
solidification requires that melts with compositions greater and
less than that of the eutectic must be dealt with separately, while

the direction of cooling (from above or below) also requires
distinctive treatment. Table 1 shows the 3 X2 matrix by which
the problems of solidification may be classified. What follows
concentrates mainly on cooling from below of a melt whose
composition is below the eutectic value.
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Fig. 1 a, Phase diagram for an aqueous solution of NaNO; (refs
20,24) with axes of temperature and concentration. The same
diagram acts as a schematic for a general binary alloy with com-
ponents A and B. The figure also presents the lines of constant.
density with the density values attached. Hatched region, mor-
phologically stable region for T, =15 °C. The curve just beneath
the hatched region indicates the curve of marginal stability for
T, =30°C. In determining the curves the following values of the
constant physical parameters have been used: C, =1.0cal
g'°C™!, C,=048calg™'°C™, D=10""cm’s™!, L=80calg™",
K =0.0013 cm?s™?, k,=0.012 cm?s™!, p,=0.916 g cm>. Further,
the values of I' and p,,, were obtained as a function of C, from
ref. 20. b, Phase diagram used here, with temperature and con-
centration axes chosen so that a solid of zero concentration forms
at zero temperature. Heavy solid line, straight-line approximation
to the liquidius. Thin curve a, temperature against concentration
profile in the morphologically stable regime. Dashed curve b,
approximate profile used in our model of the morphologically
unstable regime.
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Table 1 The six different cases that arise when an initially
homogeneous solution is cooled at a horizontal boundary

Cool from
Above Below
C>Cg 13 25 Light fluid released
- Uniform composition
C=Ce 13 14 throughout
C<Cg 22 here Heavy fluid released
Thermally Thermally
unstable stable

Numbers refer to the reference in which each case is discussed. See
text for explanation of symbols.

Eutectic growth

The solidification of a melt of eutectic composition involves
only variations in temperature, because the composition in the
melt and solid is constrained to remain at the eutectic value.
This situation is equivalent to one described by Carslaw and
Jaeger'®, who present the analytical solution for a column of
melt of infinite height whose initial temperature is T, and which
is cooled at a lower boundary whose temperature is Ty, We
conducted two experiments using eutectic compositions of
aqueous Na,CO; (eutectic composition Cg = 5.7 wt%, eutectic
temperature Tg = —2.1 °C) in an insulated Perspex tank 20 cm X
20 cm X 45 cm high. Our observations of the height of the com-
pact eutectic solid as a function of time in one of our experiments
are plotted in Fig.2. They are in good agreement with the
analytical solution, which attests to the reliability of our experi-
mental methods.

Sub-eutectic growth

We have extended the study of the solidification of a eutectic
melt to the case where the composition is not that of the eutectic
but in which the initial uniform concentration of solute C, is
less than Cg. Solid of composition C =0 grows on the cooled
boundary and, to begin with, we assume that the solid/melt
interface remains flat and parallel to the boundary. The fluid
released by the crystallization is relatively heavy and thus
remains just above the interface, so that the concentration
gradient which develops is stable. Thus, no physical motion
takes place and the transport of heat and solute is by molecular
diffusion alone. The governing equations are then those for heat
transport (in one dimension, taken as z measured upwards from
the cooled boundary) above and below the interface and for
solute diffusion in the melt. The equations for the temperature
T(z, t) and the composition C(z, t) are

oT T
pC,, —=k,— (for z<h(t), the position of (1
at 9z the moving boundary)
oT T
pmcp,“ = km w2 (2)
ot 8z . .
2C 2C (z> h(t); that is, for z in the melt)
5 Pz @)
T=T; (z=0) (4)
T->T,, C>C, (z>0o0rt->0) (5)

The physical parameters are the solute diffusivity D, the thermal
conductivity k, the density p and the specific heat C,, all of
which are considered to be constant. Subscripts s and m refer
to properties of the solid and the melt, respectively. The differ-
ence in heat flux across the interface z = h(t) results from the
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latent heat released on solidification. This can be expressed by
. aT aT
pLh=—k,—(h+,t)+k,—(h—,1) (6)
[:54 0z

where a dot denotes a time derivative and L is the latent heat
of fusion. Conservation of solute requires

C(h+,t)li=—D%29(h+,t) (7)

Further, with the assumption that the solidification kinetics can
be described by equilibrium thermodynamics, we require that
the temperature and composition at the interface lie on the
liquidus, which we approximate by the linear relationship

T=T(C)=~TC (8)

This tacitly assumes, merely for convenience, that the liquidus
temperature is 0 at zero composition, as it is for all aqueous
solutions.

The system of equations and boundary conditions represented
by equations (1)-(8) admits a similarity solution, with variable

n=HD1)"?z 9
in which the interface has position
h=2A(D1)?= 44" (10, 10"

This similarity form of solution can be shown to be the only
solition of the equations. The temperature and concentration
fields, determined from equations (1)-(5), can then be expressed
in terms of error functions'” as

T(z t) = To+(T,~ Tp) erf (esn)/exf (e,A)  (z<h) (11)
_ _ erfc (M)
T(Z, t)—Too+(Ta Tao) erfc(emA) (z>h) (12)
C(z, 1) = Cot(Cy— Cp) ST (13)
erfc A

where T, and C, are the temperature and concentration of the
melt at the interface. There are two parameters &, ,=
(D/Kqm)"?, where x =k/pC, is the thermal diffusivity. The
interface conditions in equations (6)-(8) are now used to deter-
mine the eigenvalue A from

F()) pnC,,. . PsCo,
FC"[ ] [F(af)«)* G(esn]

1— F(A)
pscp Tl pmcp TO

=feopc] FPmope 0y 14
G(eX) Flenr) ™ 14

where
G(x)=7"*xe" erf x

Ty=To— TL(CO)

F(x)=m"?xe* erfc x,
Ty=T(Co)— Ty,

The solute diffusivity D is typically much smaller than the
thermal diffusivity . In this case, €« 1, and in the limit e >0
equation (14) reduces to the simpler expression

F()«)z[l+(FC0/T1)]_I=(C3—C0)/CO (15,159
Because F increases monotonically from 0 to 1, equation (15)
has a unique solution of A of order unity. This confirms the
scaling used in equation (10) and indicates that the growth
of the flat interface is controlled by solute diffusion. Note,
however, that when C, is small (of the order of ¢2 = D/«, with
K/ Kk Of the order of unity) the growth is no longer controlled
by solute diffusion but rather by thermal diffusion. This is
indicated by the fact that in this event A =O(¢™') and so k=
O(«t)"/2. It would be interesting to carry out an experimental
verification of the validity of equation (14).
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Fig. 2 Experimental and theoretical data on the height of the
block as a function of time. Line a, an experiment using a Na,CO;
solution at eutectic composition with Ty=-5.7°C, T,=17.3°C.
Line b is the representative experiment R with parameters in the
morphologically unstable regime. Line b is the prediction of the

theoretical model whereas line i is the predicted height of a fiat
interface at the same conditions.

Morphological instability

If the undercooling, T, — T, is too large, solidification proceeds
too quickly and the solidification interface is no longer planar.
It grows in a spatially irregular manner, which will be described
photographically in more detail below. The initial break-up of
the planar interface is often called morphological instability. A
useful physical description of the instability is discussed at
length by Langer'®. Detailed calculations'® indicate that, on the
assumption that surface tension effects are negligible, instability
occurs when

aT aT aC
ki—(h—, t)+ ke — (h+, t) =—(k;+ k) — (h+, 1) (16)
0z iz dz

If thermal conductivity in the solid is neglected (k, = 0), equation
(16) becomes equivalent to the statement that instability arises
whenever the predicted values of temperature and composition
on the melt side of the interface lie beneath the liquidus (where
the system should be partially solid). The diffusion of heat in
the solid away from the interface somewhat alters the onset of
instability. Surface tension does not alter equation (16) sig-
nificantly in most practical situations, so we may use it as a
good approximate criterion and express it in terms of our similar-
ity solution as

I<rC [ F(A) ][km+ks F(em}\)_]]

0 *Li—FY] L 2k, €LF())
1 p, L
&= F(e A 17
20 Co {(emA) (17)

For given values of T, and C, the value of Ty at which super-
cooling first occurs is found by solving equation (17) simul-
taneously with equation (14). The critical value of Ty is plotted
as a function of C, for two values of T, in Fig. la.

Experiments

We performed 12 experiments with various solutes at different
values of Ty and C in the tank described above. Temperatures
were monitored continuously with thermistors, some of which
were held fixed, and the ice block allowed to freeze around
them. Occasional measurements of concentration were made by
withdrawing small samples and analysing them with a hand-held
refractometer. All the experiments were in the morphologically
unstable regime.

The results of a representative experiment, denoted by R
(NaNOQO;; Ty=-16.5°C, T.=14.7°C and C,=14wt%), are
shown in Figs 2-4. Figure 3 shows three views of the solid ice
block after it was removed from the tank. The humpy form of
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Fig. 3 a, An oblique view of the top of the ice block in experiment
R showing the humpiness of the surface on a scale of centimetres
and the finer scale ‘facets’ on a scale <1 mm. Horizontal scale,
2 cm long. b, Vertical view of the same experiment showing the
lines of solid ice and the compositionally-enriched fluid. ¢, Close-
up view looking vertically downwards onto the top of the block
in the same experiment. Note the very fine-scale irregularities.

the surface (Fig. 3a) and the small-scale facets (Fig. 3¢) depict
cearly that the system is in the morphologically unstable regime.
Figure 2 presents the (maximum) height of the block as a
function of time and compares this with the result obtained by
solving equations (10) and (14). The difference between the two
indicates that the contortions of a morphologically unstable
surface allows it to grow much more rapidly than if it were to
remain stable. Figure 4 presents experimental and theoretical
data on temperature and concentration at various times. There
is considerble difference between the experimental results and
those given by equations (11)-(14). The generality of this dis-
agreement is confirmed in Fig. 5 which compares the experi-
mental values of y with those given by equations (11)-(14) for
varying initial C, at fixed Ty and varying T; at fixed C,.
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Clwt%)
Fig. 4 A, Temperature profiles as a function of depth for experi-
ment R at a, 3 h 40 min and b, 25 h 35 min. Crosses, data points;
dashed lines, observed heights, A, of the ice block. Solid curves,
temperatures predicted by the model of the mush. B, Composition
profiles as a function of depth for experiment R at @, 3 h 20 min;
b, 7h 0 min; ¢, 25 h 20 min. Crosses, NaNQ; concentration in fluid
withdrawn by means of inserting a thin sampling tube; dashed
lines, observed heights, h, of the ice block; solid curves, concentra-
tions predicted by the model of the mush.

Theoretical model

The experimental observations described here suggest that a
mixed phase of solid and melt, sometimes called a mush phase,
is formed when the flat interface is morphologically unstable.
Equations describing the evolution of a mush have been
developed previously’’*? and similarity solutions have been
found®'. These equations relate bulk properties of the mush,
averaged over a length scale larger than the typical crystal
spacing. Thus, when a melt is cooled from below and crystallizes
in such a way that relatively heavy fluid is released, the averaged
equations predict convective stability of the interstitial fluid.
The large pore size in the ice-blocks, however, suggested that
compositional convection resulting in solute redistribution had
occurred on a sub-pore scale. This would render the previous
models inapplicable to the present situation. However, a simple
predictive model of the growth of the mush (when Ty > Tg) can
be developed, based on the controlling nature of thermal
diffusion and the appropriate use of bulk conservation relation-
ships.

We assume, for simplicity, that the densities of the solid and
melt are the same. The mush extends from the cooled boundary
to some position z = h(¢) and we assume the solid fraction, ¢,
within the mush to be constant. In reality, ¢ varies with height,
but our model conserves mass only on a global scale and the
constancy of ¢ is a necessary and consistent approximation.
The solute concentration has uniform value C, throughout the
melt in z>h and obeys the liquidus relation described by
equation (8) in the interstices of the mush. Diffusion governs
the heat transfer in both the mush and the melt. Thus the thermal
field is given by equations (11) and (12) with k; and C,, replaced
by the approximate expressions, whose validity are discussed
by Batchelor®

k= ¢k +(1-¢)k, (18)
and
Co=¢C, +(1-9)C,_ (19)
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Fig. 5 a, Growth rate coefficient () and solid fraction () as
functions of concentration for Tg=—17°C and T,=15°C. The
crosses are experimental values of A. The heavy curve is the
theoretical prediction obtained by solving equations (22) and (23).
The light curve yc is the result of the model which assumes a flat
interface and results in equation (14). b, y and ¢ as a function of
the undercooling T, = Ty — Ty for Cy=14wt% and T, =15°C.

and T, replaced by T.(C,). Global conservation of solute
requires that

(1-¢) [0 Cdz=-T'(1-¢) 2 Tdz=h(1)C, (20)

while conservation of heat at the mush/melt interface is
expressed by

. T T
pLoh = k. 2 (ht, )+ B (h=, 1) 1)
0z 0z

Expressions (11) and (12) are used in equations (20) and (21)
to obtain

¢=[1+£T-Cl—°H(5y)] l (22)
-C, T, C,T,
L= G o)
where
H(x)=[exp (x*) - 11" G(x)
5= (kmpC,/ )2
and

n=EnA

In terms of the new variable u, the height of the block is given
by

h=2u (k) = yyt'/? (24,24))

which confirms that the growth of the block is governed by
thermal diffusion. Note, alternatively, that solute diffusion is
ignored in the model and correspondingly D does not appear
in equations (22), (23) or (24).
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Equations (22) and (23) can be solved simultaneously for ¢
and u. The growth rate coefficient v, is plotted as a function
of C, for fixed Ty in Fig. 5a and as a function of Ty for fixed
C, in Fig. 5b. The predicted growth rate is compared with the
experimental results in Figs 2 and 5 and the agreement is
good.

The measured temperature profiles at two different times
during experiment R compare well with the predicted tem-
peratures (Fig. 4A) and the measured concentration profiles
agree reasonably well (Fig. 4B). The disagreement between the
experimental data and the theoretical model at points deep in
the block may result from the difficulty of inserting a sampling
tube reliably to that depth and withdrawing fluid for the con-
centration measurement.

The validity of the theoretical relationships was tested further
by conducting some experiments with different aqueous sol-
utions. The experimental results obtained from using NaCl and
NH,CI, which have different liquidus relationships and diffusion
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coefficients, again showed good agreement with the results of
the theoretical model.

In conclusion, the experiments and related theory indicate
that accurate predictions can be obtained from the use of simple
conservation relationships when a melt whose composition is
less than the eutectic is cooled from below. Variations of this
same approach allow all six different cases, as mapped out in
Table 1, to be solved. We plan to publish further details else-
where.
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Cordilleria, a newly defined
Canadian microcontinent
V. E. Chamberlain & R. St J. Lambert

Department of Geology, The University of Alberta, Edmonton, Alberta, Canada T6G 2E3

Palaeomagnetic data and geological field evidence indicate that most of the western Canadian cordillera lay 1,500 km
south of its present position in the early Cretaceous. We suggest that this region comprised a microcontinent, termed
Cordilleria, which moved on the Kula plate and collided with the craton ~ 100 Myr ago to form first the Mackenzie

Mountains and then the Rockies.

MODELS for the evolution of the North American cordillera
have proliferated since the first attempt' at a plate-tectonic
synthesis for western North America, based on the classical
fivefold division of the cordillera in British Columbia. Earlier
models concentrated on the history of palaecosubduction zones;
later a long list of dextral transcurrent faults of regional signific-
ance were added®’ and integration of the United States and
Canadian portions of the jigsaw attempted®*. More than 50
microplates and terranes are now recognized®. Palaeonto-
logical®'® and palacomagnetic (refs 11-16 and E. Irving, G. J.
Woodsworth and P. J. Wynne, manuscript in preparation) data
clearly show the necessity for major Mesozoic transcurrent
movement.

The earlier palacomagnetic data indicated that elements
of superterrane Terrane II (ref. 17; Fig. 1) were far travelled.
More recent data (refs 14, 15 and E. Irving et al, in preparation)
show that Quesnellia and Stikinia, elements of Terrane I (ref.
17), are also far travelled, consistent with the palaeontological
evidence”®. The most recent palacomagnetic evidence (refs 15,
16 and E. Irving et al., in preparation) suggests that both Terranes
I and II have been displaced northwards by 14-20° of latitude
and rotated clockwise through 45-50° with respect to the North

11-13

American craton since the early to mid-Cretaceous. These data,
from two laboratories and a wide range of Triassic, Jurassic and
Cretaceous rocks, show that the southern half of British Colum-
bia was at the present-day relative latitude of California in the
early Jurassic, and was probably still there in the early to
mid-Cretaceous. The movement to be accommodated between
Terranes I and 1I and the North American craton is ~1,500 km
since the mid-Cretaceous. The locus of a possible innermost
(eastern) transcurrent fault on which to take up this movement
has remained a problem>'’. Recent palacomagnetic evidence is
difficult to reconcile with the relatively small geologically observ-
able transcurrent movements on any of the major cordilleran
faults.

Transcurrent faults

The major transcurrent faults of the Canadian cordillera are
shown in Fig. 2. The Denali, Queen Charlotte and Yalakom-
Pasayten fault systems are too far west to accommodate move-
ment of any elements of Terrane I. The Finlay fault system
(Kutcho-Kechika-Finlay-Pinchi faults}) has a total offset of
~300km'® and no true southern extension. The Fraser fault
system can accommodate only ~ 150 km of early Tertiary move-
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