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Chandrasekhar’s (1961) solution to the eigenvalue equation arising from the 
Kelvin-Helmholtz stability problem for a rotating fluid is shown to be incorrect. 
The unstable modes are correctly enumerated with the aid of Cauchy’s principle 
of the argument. Various previously published solutions using Chandrasekhar’s 
analysis are corrected and extended. 

1. Introduction 
Chandrasekhar (1961, $105) devotes a section of his treatise to the investiga- 

tion of the effect of rotation on the development of Kelvin-Helmholtz instability. 
Two uniform, horizontally -superposed fluids of different densities are in relative 
horizontal motion and are rotating with uniform angular velocity about a vertical 
axis. Perturbing the solution with a travelling wave in the direction of streaming, 
imposing the boundary conditions at  the interface, and linearizing, Chandrase- 
khar obtains the eigenvalue equation for the wave speed. He then uses a graphical 
method, together with the fundamental theorem of algebra, to enumerate the 
eigenvalues. His argument necessitates determining the singular points of the 
eigenvalue equation. We show that Chandrasekhar’s determination of these 
singular points is incomplete, leading to erroneous results. With the aid of 
Cauchy ’s principle of the argument, we enumerate the eigenvalues and present 
a simple, sufficient condition for stability. 

Alterman, in a series of papers (1961 a, b, c )  dealing with the Kelvin-Helmholtz 
stability problem under various force fields, uses Chandrasekhar’s results and 
generalizations of his method, in consequence of which her results are incorrect. 
We present the correct results and, in one instance, extend our analysis to solve 
the problem for a more general flow configuration than that treated by Alterman. 

2. Chandrasekhar’s analysis 
Chandrasekhar considers two uniform, superposed fluids of densities pl, p, 

having velocities U,, U, in the x direction and in a state of uniform rotation about 
the z-axis with an angular velocity M. [In what follows a subscript 1 (2) refers 
to the lower (upper) fluid; p1 is greater than p,.] Imposing upon the steady-state 
solution a small disturbance whose dependence on z and t is given by 

exp [ik(x - c t ) ] ,  

where k is the wave number and c the wave speed, linearizing the equations of 
23 Fluid Meoh. 33 



354 H .  E.  Huppert 

motion, and applying the conditions of continuity of pressure and normal 
velocity a t  the undisturbed interface, Chandrasekhar obtains the eigenvalue 
equation 

a,( u, - c)2 [ 1 - 4QZk-2( u, - c)-2]4 + a2 (u, - c)2 [ 1 - 4QZk-2( v, - c)-2]?2 

-gk-l(a,-a,) -kT(p,+p,)- l  = 0, (2.1) 

where ai = Pi/(Pl+P,) (i = 19% (2.2a, b )  

g is the acceleration due to gravity, and T is the surface tension. The square 
roots of (2.1) must be taken to have positive real parts since the product of 
wave number and the inverse of these real parts represents the rate of decay 
of the disturbance with increasing distance from the interface. 

Applying the transformation 

u, --c = <(9/44 u , - C  = 7(9/k)4 (2.3a, b )  

originally due to Taylor (1931), and neglecting surface tension, Chandrasekhar 
reduces the problem to the simultaneous equations 

a, <2( 1 - w2<-2)i + a272( 1 - w27-2)i = a, - a2 (2-4) 

and <-r=v,  (2.5) 
I 

where w2 = 4W/(gk), P = (q- 72,) (k/g)B. (2.6a, b )  

In  order to apply the fundamental theorm of algebra, which is not directly applic- 
able to (2.4), Chandrasekhar introduces the following set of four equations : 

a, <2( 1 - w2<-2)4 + a272( 1 - 027-2)4 = a, - a2, 

a, <2( 1 - w2<-2)i - a272( 1 - w27-2)i = a, - as, 

- alp( 1 - w2<-2)4 + a2y2( 1 - w2?/-2)4 = a1 - a2, 

- alp(  1 - w2<-2)4 - a,q( 1 - w27/-2)3 = a, - a2. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

He then states that, from the fundamental theorem of algebra, equations (2.7) to 
(2.10) ‘have a total of exactly eight roots . .. [which] are continuous functions of 
the parameters of the equation[s] except at the singular points ( t go,  k w )  and 
( k w ,  q0), . . . where to and lo are determined by the equations 

a 1 < 2 ( l - ~ 2 ~ - 2 ) ~  = a1-a2 and a2q2(1-ww2~-2)4 = al-a2’. (2.11) 

Using these two facts, Chandrasekhar determines the number of roots of each of 
(2.7)-(2.10) as follows. 

is then 
increased until the first singular point is reached, = go-  w = 5, say. At this 
point the equations may exchange roots. Using the enunciated theorem and the 
graphs of the equations, Chandrasekhar determines the number of roots of each 
equation at lvl = V, + . This procedure is then continued, Chandrasekhar con- 
sidering the exchange of roots at each of the singular points quoted above. 
However, ( k go, 0 )  and (0, -t v0) are also singular points, in consequence of 
which Chandrasekhar’s results are incorrect.? Furthermore, the inclusion of these 

t Prof. Chandrasekhar informs me that he is aware of this error and will present an 
amended treatment in a second printing of his book. 

The equations are solved for the particular case P = 0 (< = 7). 
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has a double root in - 1 +x < s < 1 - x (or, equivalently, that value of x for 
which F”(s) = 0 in this range of 8). xl(c), which is determined numerically, is 
shown in figure 2. For sin the range ( - 1 +x, 1 -x), P(s) has one maximum if 

0 0.25 0.50 0.75 1 .o 
X 

FIGURE 2. The curves z,(a), P ~ ( C T ) .  

x 2 xl(g) and two maxima and one minimum if x < xl(g). We label the values of 
s, at the maxima a and b, F (a )  = F ,  2 F(b)  = 4, and a t  the minimum m, 
F(m) = Fna. 

We also define x z ( ~ ) ,  determined numerically and shown in figure 2, by 

Fa = P(1) = Fl for x = x2(a). 

It can be shown that x 2x2(g)  implies Faz Fl. In  addition, the stipulation that 
the square roots of (3.3) have positive real parts requires that for all x 

[I - xz(s + 1)-2] t = i[x2(s + 1)-2 - 114 sgn (s + 1) (s on BD), 

[l - xZ(s - 1)-2]4 = i[x2(s - 1)-2 - 114 sgn (s - 1) (s on EG). 

(3.5) 

(3.6) 

The construction of the Cauchy-Nyquist diagrams, examples of which are shown 
in figure 3, is now straightforward. 

To enumerate the complex eigenvalues, we determine the number of times 
the Cauchy-Nyquist diagram encircles the origin [from Cauchy’s principle and 
the absence of poles of F ( s )  within %, this is the number of pairs of complex 
conjugate eigenvalues]. The position of the origin in figure 3 is dependent upon 
the particular values of x, g, K ,  T. Exploring all possibilities (there are approxi- 
mately thirty), we determine the number of complex eigenvalues as shown in 
table 1 = B’( - 1) therein]. From the table, we see that: there cannot be 
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FIGURE 3. The Cauchy-Nyquist diagrams. (a )  I% < xl, x2. ( b )  r2 < x < zl.  (c) x1 < x < x2. 
(d )  Zl,xa < x < 1. ( e )  1 < 5 < 2. ( f )  x > 2. 
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instability for x >, 2; a sufficient condition for Stability? in x < 2 is 

1 - C + T  3 4 4 1  - (x2/4)]* (x < 2). (3*7)$ 

N 

0 
0 
0 
0 
2 
2 
1 

TABLE 1. The distribution of complex eigenvalues. N is the number of pairs of complex 
conjugate eigenvalues in the indicated range of z 

For max (x,, x,) < x < 2 this is also a necessary condition. For x < max (x,, x,), 
we see from lines (iii) and (iv) of table 1 that there may be a region of stability for 
which (3.7) is not satisfied. Returning to physical variables, we find that a suffi- 
cient condition for stability is 

(U, - U,), < 2QZk-2+ k-2(4Q4+ k2p,2[g(p1 -pz) + k2T]2}*. (3.8) 

A table enumerating the real eigenvalues can be easily obtained, but is of 
excessive length and hence is omitted. It can be simply seen from the Cauchy- 
Nyquist diagrams, however, that the number of real eigenvalues varies between 
zero and four. We can also show that the total number of eigenvalues is never 
more than four. Finally, we note from the Cauchy-Nyquist diagrams that if 
F-, < 0 < F(l +x) (3.3) has no solution whatever, in which case the original 
linearized perturbation equation does not admit a discrete spectrum solution. 

Generalizing Chandrasekhar's argument to include the effect of surface ten- 
sion, Alterman (1961 a)  asserts that the system is unstable to long waves. From 
(3.8) we see that the actual condition for stability is 

(U,-U,)'< 4Q221c-2+0(1) (k+ 0), (3.9) 

and hence there is stability to a long wave length disturbance. 
In  a later publication, Alterman (1961 b )  considers the problem of two hetero- 

geneous fluids, with horizontal velocities U,, U, in the same direction, separated 
by a horizontal interface a t  z = 0, the densities being given by 

p = p,e-pz ( X  < o) ,  p = p2e-pz ( x  > 0). (3.10 a, b )  

Invoking the Boussinesq approximation, she shows that the eigenvalue equation 
governing stability is formally equivalent to (2.1) if Q2 is replaced by ips. The 
correct sufficient condition for stability is hence given by (3.8) once this replace- 

? By stability here we mean stability to an exponentially growing disturbance; the as- 
sumed form of the disturbance rules out any possibility of investigatingalgebraic instability, 
for which an initial value approach is required. 

1 In Chandrasekhar's notation, this becomes I vl < g,, after setting T = 0. 
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ment has been made. Generalizing Alterman's model such that the fluid densities 
are given by 

p = ple-liZ ( z  < O ) ,  p = pze-lzz ( z  > O), (3.11 a, b )  

we obtain the eigenvalue equation 

a,( u, - c)2 [ 1 -pl gk-2( u, - c)-2]4 + a2( u, - c)2 [ 1 - Pzgk-2( u, - c)-2]4 

- qk'(a1- ~ 2 )  - kT(pl  +p2)-' = 0, (3.12) 

and the eigenvalues can be enumerated in the same manner as before. For the 
sake of brevity it suffices to say that (3.8) is a sufficient condition for stability if 
Q2 is replaced by (9/4) min (p,, p,). 

In  another paper, Alterman (1961 c) obtains the eigenvalue equation pertinent 
to the fluid system originally considered by Chandrasekhar, with the added 
condition that the fluid be a perfect conductor under the influence of a uniform, 
horizontal magnetic field of intensity H .  In  the limit as the wave length of the 
disturbance tends to infinity, Alterman obtains the equation (3.12) with pig 
replaced by 4Q2 + (pH2k2/277pi) (i = 1,2). Her sufficient condition for stability 
should be replaced by 

(u1- u,)' < 2 Q 2 k 2  + (pB2/477pl) + k2(4[  Q2 + (pH2k2/8np,)]2 + k2pi2 [g(p,- pz) 
+ IC2TI2)4. (3.13) 

4. Conclusion 
We conclude that an eigenvalue equation of the form (2.1) arises in various 

Kelvin-Helmholtz stability problems and that applying Cauchy's principle of 
the argument is a simple and efficient method of enumerating the eigenvalues. 
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