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This paper presents a study of steady gravity currents entering a two-layer system, 
with the current travelling either along the boundary to form a boundary current, 
or between the two different layers to form an intrusion. It is shown that, at the front 
of an intrusion, the streamlines meet a t  angles of 120" a t  a stagnation point. For an 
energy-conserving current the volume inflow rate to the current, the velocity of 
propagation and the downstream depths are determined. In contrast to the pioneering 
study of Benjamin (1968), it is found that the depth of the current is not always 
uniquely determined and it is necessary to use some principle additional to the con- 
servation relationships to determine which solution occurs. An appropriate principle 
is obtained by considering dissipative currents. In  general, if the volume inflow rate 
to a current is prescribed, the current loses energy in order to maintain a momentum 
balance. We thus suggest the criterion that the energy dissipation is a maximum for 
a fixed volume inflow rate. It is postulated that the energy which is lost will go to 
form a stationary wave train behind the current. A nonlinear calculation is carried 
out to determine the amplitude and wavelength of these waves for intrusions. Such 
waves have been observed on intrusions in laboratory experiments and the results of 
the calculation are found to agree well with the experiments. Similar waves have not 
been observed on boundary currents because the resulting waves have too much 
energy and break. 

1. Introduction 
A gravity current is formed whenever one fluid flows primarily horizontally into 

a lighter or heavier fluid. When the flow is into a two-layer fluid, the gravity current 
may be sufficiently heavy to travel along the bottom or sufficiently lighk to  travel 
along the top, to form a boundary gravity current. Alternatively, when the current 
is of a density between the densities of the upper and lower layers, the current will 
travel at  the intermediate height to form an intermediate gravity current, or intrusion. 
There are many naturally occurring examples of gravity currents and intrusions, 
including cold fronts and sea-breeze fronts, the currents that form when freshwater 
rivers flow into salt-water oceans and when freshwater locks empty into the sea, 
thunderstorm outflows and avalanches of snow-laden air. 

The classical theoretical work on the subject (Benjamin 1968) considers gravity 
currents entering homogeneous fluid using perfect-fluid theory, though including a 
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model for energy dissipation. The work presented here extends Benjamin’s work to 
currents of prescribed volume flux entering a two-layer fluid as either tt boundary 
current or an intrusion. This two-layer model is studied as a preliminary to investigat- 
ing a continuously stratified model in the future. It is found that, except for specific 
volume inflow rates, energy cannot be conserx ed between upstream and downstream 
sections. In  contrast to Benjamin’s work, we find that the depth of the current is not 
always uniquely determined and it is necessary to use some further condition to 
determine which solution will occur. The condition suggested is that the energy dissi- 
pation is a maximum for a fixed volume inflow rate to the current. This is equivalent 
to the suggestion that the total energy of the current falls to its lowest possible value. 
This is discussed further in 3 4. The stability of the current is considered in 3 5. In 
order to keep the model as simple as possible, we consider the different density fluids 
to be immiscible and to have surface tension forces acting along the interfaces between 
them. Surface-tension forces play an important role in an investigation of the stability 
of the steady solution, but only a marginal role in the determination of the steady 
solution itself. For this reason we neglect surface tension effects which stabilize short- 
wavelength disturbances, until § 5, where we consider the stability of the current. In 

6, we examine the consequence of allowing the energy which is lost by most currents 
to form a stationary wave train behind the current. A nonlinear calculation is carried 
out to determine the amplitudes and wavelengths of these waves for intrusions. Such 
waves have been observed on intrusions in laboratory experiments conducted at  
DAMTP by Mr J. E. Simpson, and the results of our calculations are found to agree 
well with the experiments. Similar waves have not been observed on boundary 
gravity currents and we believe this to be because the wave train would consist of 
waves so high that they would break. 

Experimental work in the field of gravity currents has mostly been concerned with 
the flow of salt water into fresh water, as a boundary current, using a lock exchange 
(Keulegan 1958; Simpson 1969). Work has also been carried out on the emptying of 
a cavity, which, apart from differences in the stability of the system, is equivalent to 
a bottom boundary current (Zukovski 1966; Gardner & Crow 1970). The work on 
emptying cavities has shown that it is possible to obtain energy-conserving gravity 
currents experimentally. Both Zukovski and Gardner & Crow obtained supercritical 
flows close to Benjamin’s half-depth energy-conserving solution. For the emptying 
cavity, this solution is stable to Kelvin-Helmholtz waves, and hence can be obtained. 
For the bottom boundary current, Benjamin’s half-depth solution is unstable 
(Benjamin 1968, 54.1). Thus Keulegan and Simpson do not observe the half-depth 
energy-conserving solution, but always see large-amplitude billows downstream. 
Recent experiments by Britter & Simpson (1978, see figure 1, plate l), which were 
designed to be as close as possible to Benjamin’s theoretical model, clearly show 
Kelvin-Helmholtz billows on a bottom boundary current. We thus see that it will be 
very important to know, in any given physical situation, whether or not the current 
is unstable to Kelvin-Helmholtz waves. 
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2. Energy-conserving currents and infinite-depth solutions 
We consider the problems of a boundary current and an intrusion entering a two- 

layer fluid. For given layer densities and upstream fluid depths, the mass, momentum 
and energy conservation equations are obtained. These equations are then manipu- 
lated to obtain two coupled polynomial equations for the downstream depths. These 
equations are solved numerically in 5 3. In  this section we consider various special 
cases, including the case of currents entering infinitely deep stratified fluids. For a 
boundary current entering an infinitely deep homogeneous fluid, Benjamin (1968) 
showed that no energy-conserving solution could exist. We show here, however, that 
the introduction of two-layer stratification makes it possible to maintain a current 
without energy loss. 

In 5 2.2, we consider the flow locally in the neighbourhood of the most forward 
point of the intrusion. By doing a calculation similar to that resulting in the 120” 
angle for surface waves (Stokes 1880), it is shown that the furthest forward point of 
the intrusion is a stagnation point and that each angle a t  the front must be 120”. 

We concentrate entirely on steady flows, which are considered to be the response 
when there no longer remain any transients due to the initiation of the current. The 
gravity current disturbance then generates only a stationary wave pattern. The 
dispersion relationship for the two-layer system upstream (Phillips 1977 (5.3.6)) 
indicates that the group velocity of waves on the interface is always less than the 
phase velocity evaluated at  the same wavelength. This implies that energy is carried 
downstream from the steadily propagating current and does not appear upstream, as 
explained for an analogous flow so evocatively by Lighthill ( 8  3.9, 1978). 

2.1. The boundary current 

The model is shown in figure 2. The current is brought to rest by imposing on the 
system a velocity equal and opposite to the velocity of the current. The velocity is 
assumed to be uniform and horizontal across upstream and downstream sections far 
from the current head, 0, which implies that the pressure is hydrostatic across these 
sections. The possibility .of having waves on the downstream interfaces is considered 
in Q 6. The fluids are taken to be inviscid, incompressible and irrotational with zero 
surface tension (and no diffusion) between the fluids. 

We choose units so that d, = 1 and we write 

and 

We choose the zero pressure level so thatp = 0 at 0. As the current is at  rest, Bernoulli’s 
theorem implies p = 0 downstream on the floor. There will be a stagnation point at  0 
and the angle made by the interface with the floor will be 60”. The proof of this was 
given by von KBrmbn (1940) for a current entering a homogeneous fluid and it also 
applies here. We suppose the depths d, (=  1) and 2 and the densities p,, pz and p3 
are specified and we seek the velocities cl,  c2 and c3, the upstream pressure on the 
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FIGURE 2. A boundaxy current. 

lower boundary, p2,  and the depths x and H .  We use mass continuity, Bernoulli's 
equation along each streamline and the momentum integral. 

Mass continuity gives 

c1 = c2z and c l ( Z -  1) = c3y .  (2 .1))  (2.2) 

Bernoulli's equation on OD gives 

From OC we find that 
C$ = 2a12gH. 

P2 = - Q z 4 *  
By applying Bernoulli's equation along AB in the p3-fluid, we find 

1 ) 2 / P 3  = a 2 3 g ( i - X ) - a 1 3 g H + g ( c $ - c z , ) '  

Conservation of momentum flux in FGEC then gives 

PZ c; -PZ c% +P3':(' - - hC$ Y +PZZ - 4P29 - 4P39(' - I2 - P 2 d Z  - 
= - *Pl9H2 - P19HX - i5P2 sx2 - P19HZ - P2P' 

+ (P19H + P294 (z + H )  - &P39Y2. (2.6) 

Equations (2.1)-(2.6) are six independent equations in six unknowns. By eliminating 
p 2  from (2 .4)  and (2 .5 )  and using mass continuity, we find that 

Substituting for p 2  in (2 .6)  and using (2 .3)  and (2 .7)  to eliminate c$ and c$, we obtain 
an equation in x and H only: 

= a 1 z ( l + a 2 3 ) H ( 2 Z - H ) + a 2 3 [ ( Z - l ) 2 - y 2 ] .  (2.8) 
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The second equation for x and H comes from (2.2). Substituting for c; and c% from 
(2.3) and (2.7) and using (2.1), we obtain 

Equations (2.8) and (2.9) have been solved numerically for certain values of the 
free parameters 2, a12 and aZ3 and these solutions are discussed in $3 .  First we look 
at some special cases. 

(9 P 2  = P3 
If p2 = p3 the current is entering a homogeneous medium, which is the problem 

considered by Benjamin (1968). In this case a23 = 0 and the only non-trivial (i.e. 
H 0)  solution of (2.8) and (2.9) is H = $2, x = S and c2 = c3, which is in agreement 
with Benjamin's unique energy-conserving solution. 

(ii) p3 = 0 

If p3 = 0 we have the problem of flow beneath a free surface and we find that 

1 - 2 ~ + 0 l 1 2 ( 1 - ~ ) ~ ( 1 - ~ ~ )  = 0, H[1+a12(l-x2)] = 1--2. (2.10) 

For small a12, these give x = +( 1 + && and H = *( 1 - ga12), which agrees with 
Benjamin (1968, p. 211). 

(iii) 2 1 

An interesting case to examine is that of Z --f co with x and H finite, which we can 
solve exactly. If pz = p3, the model reverts to that considered by Benjamin (1968), 
and in this limit no current can exist as the momentum fluxes cannot be balanced 
unless a wake is introduced behind the current head. However, if pz p3, the existence 
of two layers makes it possible to balance the momentum by the change in velocity 
as the layer passes over the current. 

We let 2 -+ 03 in (2.8) and (2.9). In  this limit (2.9) gives 

H[1+y(l-xZ)] = 1 - X ,  
where 

(2.11) 

Substituting this value for H in (2.8) gives 

1 - 2x + y(  1 - x2) ( 1  - x)2 = 0, (2.12) 

which is of the same form as (2.10). The solution for x and H for different values of y 
is shown in figure 3, which indicates that (2.12) always has a solution with 4 < x < 1.  
If y is infinite, and hence pz = p3, then x = 1 and H = 0 and no current can be main- 
tained. However, if y = 0,  and hence p1 = p2, then x = H = 4. From figure 3 we see 
that in an infinite-depth fluid it is possible to maintain an energy-conserving current 
for all finite values of y. 
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FIGURE 3. The energy-conserving solution for the boundary current when 2 1. 

2.2. The local solution at the front of the intrusion 

The model for the intrusion is shown in figure 4. As for the boundary current, we 
assume that the fluids are inviscid and incompressible, and we neglect any eurface- 
tension effects, We again work in the frame in which the current is a t  rest. We first 
show that the point, 0, where the three dividing streamlines meet is a stagnation point. 

Suppose 0 is not a stagnation point and that the speed of each fluid a t  0 is V,, V, 
and V3 in the pl, pz and p3 fluids respectively. We have assumed that the current is at 
rest and hence that V, is zero. If V, and V, were both non-zero then we would require 
two smooth streamlines to merge smoothly a t  0. This cannot occur, for the same reason 
that streamlines always meet a boundary at a non-zero angle. Thus only one of V, 
and V, can be non-zero. If we apply continuity of pressure across the streamlines at 
0 and use Bernoulli’s equation, we find that 

P I S X  = P Z ( B E + S X )  = P3(8VE+SX), 

where X is the reference height of 0. From this the only consistent solution with 
V. 3 = 0, wherej = 2 or 3, is 

g(Pj - P A  x = 0. 

So X = 0 and hence the third velocity is also zero. 
Thus 0 is a stagnation point, and the dividing streamlines can be taken locally as 

straight lines meeting at non-zero angles, as shown in figure 5. In region i the velocity 
potential will be 

q$ = rn.i(Aicosni8+ B,sinn,f3). 

The boundary conditions of no normal velocity on the streamlines OA, OB and OC 
imply that 

nl($+X) = T ,  n2(n-/3-$) = T and n,(n+p-X) = IT.  (2.13) 

These three equations are not independent and for a solution to exist 

IT(nT1 +ni l  +ni l )  = 2n. (2.14) 
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FIGURE 6. The stagnation point at  the front of the intrusion. 

The other boundary conditions we must apply are continuity of pressure across 
dividing streamlines. Choosing the pressure to be zero a t  0 and using continuity of 
pressure across OA and Bernoulli's theorem, we find that 
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p3n,2r2("+)(.4: +B;)  -plntr2("l-1)(A2+B;) = 2(p1-p3) grsin e (2.16) 

p2nirqnn-1)(Ai+Bi) -plnqrz(fll-l)(A?+Bf) = 2(p2-p1) grsinx. (2.17) 

Each of these equations must be true for all r, hence 2(n, - 1) = 1, i = 1,2,3.  From this 
we see that n1 = n2 = n3 = Q. Putting this result into (2.3)' we obtain 

+ + x  = Qn, n-p -4  = gn, n+P-x = gn. (2.18) 

and 

Hence the angle between each pair of streamlines is 120'. 
Equations (2.15)-(2.17) are not independent and for consistency they require 

(PZ -P3) sin P -k (P1 -P3) sin @ = (P2 -Pl) sin x. (2.19) 

Substituting for @ and p i n  (2.19), we obtain 

P1+ P2 - 2P3 
4 3  (P2 - P1) * 

t anx  = (2.20) 

Suppose that p2 > p1 > p3 so that the intrusion is of density pl. Then, from (2.20)' we 
see that tan x > 3-4, and hence n/6 < x < 7712. Thus, since x < n/2 and $ c n/2, 
the point 0 will always be a t  the front of the intrusion. 

Also we find, from (2.18) and (2.20), that 

(2.21) 

From (2.21) we see that p will be negative, and hence that the streamline will be 
above the horizontal, if p1 > Q(p2 +p3)  and that /3 will be positive if p1 c &I,+&. 
Thus if the intrusion is of larger density than the average it will 'sink' and ,8 < 0, 
while if the density of the intrusion is less than the average it will 'rise'. This effect 
can be seen in figure 12 (plate l ) ,  where the density of the intrusion is larger than 
the average and the 120" system of angles is tilted so that /3 < 0. In  figure 13 (plate 2) 
the intrusion is of a slightly larger density than the average. Here we can again see 
that the intrusion has 'sunk' and p < 0. In  figure 14 (plate 2) the intrusion is lighter 
than the average density and the 120" system of angles is tilted so that /3 > 0. 

2.3. The intrusion 

We now obtain the governing equations for the intrusion. We choose units so that 
d,  = 1 and write 

and 
.61 =(PZ-Pl)/P2, .13 = (Pl-P3)/P3 

4 2 3  = (Pz-Ps)/P3 (.k+@-i3)/(1-'&d* 

The zero pressure level is chosen so that p = 0 at 0. The upstream pressure on the 
central interface is p2 .  Applying Bernoulli's equation on OA in the p2- and p3-fluids 
respectively, we obtain 

and 
P2+ +P2c; = P 2 9 G -  1) (2.22) 

P2+iP3c? =P3g(L-1).  (2.23) 
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Now pz + p3, so p 2  = 0 and 

(2.24) 

Thus the stagnation point 0 is raised above the interface far upstream to enable the 
pressure to be continuous across the upstream interface. Mass continuity gives 

C 2  

9 

c1 = c2x and cl(Z- 1 )  = c3y. 

Bernoulli’s equation on OC gives 

c;( 1 - a;lx2) = 2ai,g( 1 - x). 

Bernoulli’s equation on O B  gives 

c : ( 1 + f i 2 )  = 2 a ; , g ( z - l - y ) .  

(2.25) 

(2.26) 

(2.27) 

Conservation of momentum over the entire region then gives 

-p2c;x(1-x)-p3c~y(z- l -y ) / (Z-  1 )  = -$p2gd;+$p3g(z-  1 ) 2  

- s P 1 9 ~ 2 + $ P 1 9 y 2 - 3 P 1 9 z ( ~ - 2 ~ ) + ~ P 2 9 ~ 2 - ~ P , 9 ~ 2 .  (2.28) 

Substituting for c; and C: from (2.26) and (2.27) in the momentum equation yields 

= a21 ‘ - (1-~6~)+’bl;~[(z-l)~-~~]. (2.29) 
(1  - 4 

From (2.26) and (2.27) and mass continuity, we find that 

&(l -x)x2/(1-cL;,1x2) = 01i3(Z- l-y)y2/[(Z- 1)2+a;,y2]. (2.30) 

Equations (2.29) and (2.30) are two independent equations for x and y which we 
solve numerically in $ 3 .  First, though, we consider two special cases. 

(i) P3 = 0 
In this case we have a current flowing along a free surface. Equations (2 .29)  and 

(2.31) 

(2.30) then simplify to 

and 
1 - 2x+a; ,23 (2 -4  = o 

H(l-a;,22) = l - x .  

Figure 6 shows graphically the solution to (2.31).  For stable stratification we have 
0 < a; < 1.  We see that for this problem the current thickness always remains close 
to one half. 
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(ii) 2 9 1 

From (2.30) with 2 -+ a, we obtain 

H(l-a;,,Z?) = (1--s)  

Substituting into (2.29), we find that 

If the fluids are Boussinesq, so that ail < 1, (2.33) reduces to 

(2.32) 

(2.33) 

1--22++x4 = 0. 
%3 

(2.34) 
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The solution of (2.32) and (2.34) is shown in figure 7. There is always a unique solution 
for the depths x and H for given o~; l~ /a ;~ .  Asp, -+ p3, + co and H + CO. However, 
this solution breaks down for H = O ( Z ) ,  so there is no solution with the current height 
finite if ai1/ai3 1. This is analogous to there being no energy-conserving solution 
for a boundary current entering homogeneous fluid. If a;,/.;, is finite, an energy- 
conserving current can exist in the infinite-depth fluid. 

3. The energy-conserving solutions 
In this section we consider the results of solving the equations (2.8) and (2.9) for 

the boundary current and of solving (2.29) and (2.30) for the intrusion. For both 
boundary currents and intrusions it is found Lhat, for a range of fluid depths and 
densities, the solution is not unique. This is a feature which also occurs for dissipative 
currents, for which it is necessary to use some extra condition in order to determine 
which solution will occur in practice. The condition suggested for dissipative currents 
is that the energy dissipation is a maximum for a given volume inflow rate. The only 
condition that can then be consistently applied to determine the solution for energy- 
conserving currents is that the volume inflow is a maximum. This is because, if there 
is an energy-conserving solution with a lower inflow rate, there is always found to be 
another solution at the same inflow rate, but with an energy loss. By the condition 
used for dissipative flows, that the solution with the largest energy loss occurs, the 
only energy-conserving solution which can be obtained is that with the maximum 
volume inflow rate. 

3.1. The boundary current 

The equations (2.8) and (2.9) were solved numerically using a double Newton- 
Raphson method. Two typical sets of results are shown in figure 8. The current height, 
H ,  and the lower layer depth, x, are plotted against aZ3, for fixed values of a12 and 2. 
When a23 = 0 there is only one solution with H + 0: H = 4 2  and x = 4. However, for 
0 < a23 < a,, for some a, dependent upon 2, there is no longer a unique solution. 
There are three non-trivial solutions. At a, two of these solutions coalesce and for 
a > a, they no longer occur, leaving a unique solution as a23 -+ 00. For larger values of 
a23 the solution becomes close to the free surface solution obtained in $ 2.1. It can be 
shown numerically, using the analysis of appendix A, that each three-layer system 
corresponding to the solutions presented in figure 8 can support a hydraulic jump 
over the current. The stability to infinitesimal disturbances will be studied in $ 5  
when we can include dissipative currents. 

Thus, for energy-conserving currents, there is frequently no unique solution. We 
have argued that the solution to occur in practice will be that with the largest volume 
inflow, 1M = c l H .  From equations (2.1) and (2.3) we find M 2  = c;H2 = 2a12gH3x2. 
For the cases illustrated it has been calculated Lhat the solution with the maximum 
value of M is always that with the largest value of H .  
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FIauRE 8. The energy-conserving solutions for the boundary current plotted against a,, for 
(a) 2 = 10, a,, = 0.01 and (b) 2 = 2, a,, = 0.01. The dashed line represents 2 and the solid 
line H .  As H varies along the curve ABC, z varies along the curve A’B’A. 

3.2. The intrusion 

Equations (2.29) and (2.30) were solved for the intrusion. Two typical sets of results 
are shown in figure 9. In appendix B, we show that the solutions are such that not both 
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It is also shown that there will be three solutions for a range of ail/ai3. For Bous- 
sinesq currents with ail < 1 and a;3 < 1 the range in which there are three solutions 
can be given explicitly by 

where 
U < ai3/a& < V ,  (3.2) 

U = 27/(Z4+3)3(2*- 1) and 7 = [ 3 ( 2 -  1)4+2*]3/{27[(2- l)*++*][Z- 112). 

These positions are shown in figure 9. In figure 10, U and V are plotted as functions 
of 2. 

For a, symmetrical current, by which we mean one with 2 = 2 and akl = ai3, there 
are always three energy-conserving solutions, not just one solution near x = +, y = 4 
and H = 1.  Again, however, the solution we expect to obtain is that which has the 
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FIGURE 10. U and V plotted as functions of 2. 

maximum value of M (=  c1H). For the symmetrical current, this is the solution with 
x and y approximately one half and H approximately one. 

4. Dissipative currents 
We now consider currents that do not conserve energy. If the volume inflow, M ,  

is specified, then unless the volume inflow happens to be exactly that required for the 
energy-conserving current, the current cannot conserve energy. A model of dissipation 
is used which allows a uniform head loss down streamlines. This IS a simple model, 
but is sufficient to give a basic idea of the physics involved and is identical to that used 
by Benjamin (1968). We make frequent use of the Boussinesq approximation, which 
allows the effects of density differences to be neglected unless they are incorporated 
with gravity. This is equivalent to assuming each of the quantities aij and air to be 
small. 

It is now found that a continuum of solutions is possible. The energy loss, E ,  is 
evaluated as a function of x and y, the downstream depths. If the volume inflow, 
M(x,  y), is given, then we can determine y as a function of x. But we still have a one- 
parameter family of apparently obtainable solutions. We obtain a unique solution by 
supposing tha t  the solution with maximum energy loss occurs. It is envisaged that, 
if the system has an energy loss below the maximum, it will lose more energy until the 
energy loss reaches a maximum. Hence the solution which will occur is found by 
maximizing E(x ,  y) subject to M ( x ,  y) being constant. 

4.1. The boundary current 

The system we consider is exactly as before, but now we suppose there is a uniform 
energy loss, D,, in the p2-fluid above the current, OD, and a uniform energy loss, D2, 
in the p3-fluid above OD. 

We define head losses 
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Then the energy equations (2.3) and (2.5) are changed to include the energy dissipation, 
and become 

and 

The remaining equations (2.1)-(2.6) stay exactly as before, and we can manipulate 
the equations to obtain expressions for A, and A,. Defining 

c% = 2ai29(H - A1/a12) 

Pz/p3  = a,3g( 1 -2) - a13gH + $C: - &c: + gA2. 

(4.1) 

(4.2) 

P = a,Z(i +a,,) (~Z--H)H+E,~[(Z- 

4? = 2x{(1 + 0123) (2  - x) + X ( Z  - 1) [ 2 P  - 1)  - Y  + ~ , 3 ~ l / Y } ,  

R = &y2/X2(Z - l)', 
we find that 

and 
A1 = a12 H - P/Q (4.3) 

(4.4) 

Thus, using (4.3) and (4.4) we can determine A1 and A,, given x and y. If Al = A, = 0 
then we return to the energy-conserving currents of the previous section. VC'e suppose 
there is no outside agency putting energy into the system and so only solutions with 
E = D, + D, 2 0 are acceptable. One of D, or D, is, however, allowed to be negative, 
since energy can be transferred across the interface A B .  So we now have a continuum 
of solutions for the current and layer depths. 

As already suggested, the solution which will be attained is that which has the 
maximum (positive) value of E subject to iM held constant. Using the method of 
Lagrange for finding extremals of functions subject to constraints, the above condition 
can be written as 

A2 = a,,( 1 + ~ 2 3 )  H + a,3(H + x - 1 )  - (P/R) [ 1 + a23y2(Z - 

8 ~ 8 ~  a i w a ~  
(4.5) ax ay ay ax 

M = constant, (4.6) 

- -=--  

with 

provided that the solution found is a maximum, and not any other stationary value. 
We now make the Boussinesq approximation, by assuming a,,, a13 < 1. Then 

substituting the known functions E and M into (4.5) and differentiating, we obtain 

2 C2 +- (2-2-y)  1 {c;(z-l)~[y-x(z-l)]-a12(x+y)[y3-x3(2-1)3]-a23y} D x" y" 

where 

In  general (4.6) and (4.7) must be solved numerically. 

D = 2x(Z- 1) ,+  (2-xZ)y and c: = 2x2P/Q!. 
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The only situation in which the solution is easily obtained analytically is when 
a 2 3  = 0, that is when the current is entering homogeneous fluid. The solution of (4.7) 
is then y = x ( Z  - 1). Then 

and 

A, = A, = aZ( 1 - x), ( 2 ~  - 1 ) / 2 ~ ( 2  - X) 

E = p3p1ZA1. 

These agree with Benjamin (1968). Now E > 0 only for 8 6 x < 1, SO only solutions 
in this range are possible. 

4.2. The intrusion 

Energy losses are incorporated into intrusions in a similar way to that used for 
boundary currents. We assume there is an energy loss D, in the region beneath OC 
and an energy loss D, in the region above OB,  and that no energy is lost upstream of 0. 
We define A, and A, by 

A1 = D1/pzclg, and A, = D,/p,c , (Z-  1)g. 

The point 0 will remain a stagnation point and the only equations that change are 
(2.26) and (2.271, which become 

cg( 1 - aL1z2) = 2&g( 1 - x - Al/aL,) (4.10) 

and 

ai3 y 2 / ( Z  - 1)2] = 2ai3g[Z - 1 - y- A2/ai3] .  (4.11) 

We now define 

4? = 2X{P + 4 3 )  (2-X-aL1X)/(1 -a;,) + ( s / y )  ( Z -  1)  [2(2-  1)  - y + a ; , y ] }  

R = &y”lZ2(Z- 1)2. 

and 

Then 

A, = ail( 1 - X) - P/Q,  (4.12) 

c: = 2z2Pg/( 1 - a; ,~,)  Q (4.14) 

and 
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For the intrusion we allow only solutions with A, > 0 and A2 > 0, since there can 
be no transfer of energy through the current. We again impose the condition that E 
is a maximum subject to M constant. If a;,, ai3 < 1 this condition can be written as 

3 2 [  c; 2[c;(z- 1)2-43y ] (Z- 1 - y) [a;,(z- 1)  - a;,] + (Z-x- y) - 
YD 9x3 

2Y + - (Cf - a;,X3) (1 - x) (ai,(Z - 1 )  -a;,) XD 

C2 
- (z -x-Y)  2 

SY3 
2c: 

9x3 
-- (c; - C&x3) = 0, (4.16) 

where 
L) = 2x(Z - 1)2 + (2 - XZ) y and c4 = 2x2P/&. 

In general, (4.16) must be solved numerically. However, if ail = ai3(Z- 1)  then the 
solution of (4.16) can be shown to be y = x(Z- 1) .  We have already called this the 
symmetrical current ( 5  3), since it sits symmetrically between the top and bottom. 
For the symmetrical current 

A, = A2 = 9ai3( 1 - x ) ~  (22 - 1) (2 - 1 ) / ~ ( 2  - X) 

E = ZAlp3c,g. 

From the above equation it can be seen that the energy-conserving solution has 
x = 4, y = &(Z - l ) ,  H = 42. This is the solution obtained in 5 3 for the symmetrical 
current. 

This symmetrical current has some similarities with the boundary current entering 
homogeneous fluid, as there is almost a plane of symmetry through the upstream 
interface. However, it is not precisely a plane of symmetry since the point 0 must be 
raised above the upstream level in order to satisfy the condition of continuity of 
pressure. The most fundamental difference between the symmetrical current and the 
bottom current occurs in the stability of the system, which we discuss in the next 
section. 

(4.17) 
and 

5. Stability 
We examine the stability of the system as shown in figure 11 to infinitesimal wave- 

like disturbances. We have introduced surface tension at  each interface; otherwise 
short waves would always be unstable. Although there is always surface tension 
between two immiscible fluids, provided it is weak enough the addition of surface 
tension will affect only the deformed shape of the current head and the stability of 
the current downstream. The surfaces a t  z = H, and z = HI+ H2 are displaced to 
z = Hl + ~ ( x ,  t )  and z = HI + H2 + h(x, t).  We suppose that the displacements h and 7 
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/ / / / / / / / / / / / / / / / / /  
4 
I 

H ,  

FIGURE 11.  The three-layer system. There is a surface tension Te3 between the p; and pj fluids 
and a surface tension T I ,  between pi and pi fluids. For the boundary current take U, = 0, 
U, = c,, U3 = c3, H I  = H ,  H2 = x, H ,  = y and pi = pi for i = 1, 2, 3. For the intrusion take 
U, = c,, U, = 0, U,  = c,, HI = x, H ,  = H ,  H ,  = x and pi = p,, pi = pl,  and pj = p3. 

are infinitesimal and look to see whether they grow or decay with time. If we look for 
solutions with 

7 = yoexp[ik(z-ct)J 
and 

h = h, exp [ ik(z  - ct)] ,  

then using standard methods we obtain the dispersion relation 

[P;(C - U1)' k coth kH1 +P;(c - V2)2 k coth kH2 - (/I; -&) g 

- T,2k2] [P;(c - U3)2 k coth kH3 +P;(C - U2)2 k coth kH2 

- (ph-pj)g-TZ3k2]- [ p ; 2 ( ~ -  U2)4k2/sinh2kH2] = 0,  (5.1) 

where Ti, is the surface tension between the pi- and the pi-fluids. 
Equation (5.1) is a quartic in c.  If  it has four real roots for c = c(k)  then the system 

will be stable. If it has a pair of complex-conjugate roots then there will be a solution 
which grows exponentially with time and the system will be unstable. 

Given a polynomial such as (5.1) it is possible to find the number of real and complex 
roots it possesses by setting up a Sturm sequence of polynomials (see Burnside & Panton 
1960). When approached numerically this is a very useful method, although it is hard 
to use analytically as the expressions involved become rather complicated. Alter- 
natively, if we write (5.1) as 

then (5 .2)  has four real roots if and only if (Salmon 1866) 

S3-  27T2 > 0, bf2--a'c' > 0, 3a'T + 2(b'2-afc')S > 0. (5.3) 
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We shall consider the stability of the current downstream from the stagnation 
point of a symmetrical intrusion, with 2 = 2 and aLl = a;, < 1. From Q 4 we know 
that any such current will have x = y .  By using the conditions (5.3) it  is possible to 
show analytically that long waves are always stable for any intrusion with a non- 
negative energy loss. It is known that short waves will be stabilized by surface tension. 
So we expect to find a range of wavenumbers (kl, k,) for which the system will be 
unstable. If the surface tension is sufficiently large, this range will be empty, and the 
flow will be stable everywhere. 

For a current with x = y = 0.7 and T12 = T,,, using the Sturm polynomials, we find 
the current downstream is stable for all wave-numbers if 

Tl,/plgd; 2 5 x 

T < k ,< 9 ~ 1 2  if T12/p1gdT = 2.5 x 
and unstable for 

For simplicity we shall consider only the case of pz = p, for the boundary current 
and suppose there is no surface tension between the pz- and p,-fluids. The dispersion 
relation for this system is 

plkC2cOthk~+pz(c-Cz)2kcothk(x+y) = (p l -pZ)g+ TlzL2. 

This is a quadratic equation and the condition for it to have two real roots is easily 
found to be 

k-l([tanh kH/( 1 + a12)] + tanh k(x: + y)] (1 + [Tl,k2/alzpzg22]~ > c2,/alZg. 

If x+ y = 0.72  then the current is stable for Tl, /plgZ2 = 2.5 x The symmetrical 
intrusion is unstable at this surface tension. 

We can see from the two numerical examples cited that the stability of the intrusions 
is both physically and numerically very different to the stability of the boundary 
current entering a homogeneous fluid. The stability of the system is very important, 
since if the system is unstable Kelvin-Helmholtz billows will form on the interface 
and lead to a large amount of mixing. 

Unfortunately we know of no gravity current experiments which have used immis- 
cible fluids, so it is not possible to make a direct comparison of these results with 
experiments. Although experiments which study boundary currents in miscible fluids 
have always had Kelvin-Helmholtz billows downstream, we predict that experiments 
using immiscible fluids with sufficiently high surface tension would result in stable 
boundary currents. 

6. Downstream waves 
In Q 4 we considered dissipative currents. If the volume inflow into the current is 

higher than the critical value the flow downstream will be supercritical and, since 
stationary waves cannot form on a supercritical stream, the energy loss, which must 
still occur, will have to be by turbulence and small-scale viscous dissipation. However, 
if the volume inflow is sufficiently low, the flow will be subcritical downstream and 
this will allow the necessary energy loss to occur by the formation of a stationary wave 
train behind the current head. A stationary wave train is one for which the phase 
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speed, c, of the waves is zero relative to the motion of the current. There are four 
wave modes in any three-layer system, so there will be two stationary wave modes, 
as we show below. 

If we look for stationary waves of infinitesimal amplitude then we can use the dis- 
persion relation (5.1) to calculate their wavelengths, by setting c = 0. For the intrusion, 
where c = U, = 0,  we find 

(Fgkx-tanhkz)(P2,ky-tanhky) = 0, 
where 

P2 - - c,/a;,gx 2 and F$ = c:/a;,gy. 

(6.1.) 

Provided the flow is subcritical, this gives two solutions for k, given by the solutions of 

and 

The first of these solutions has the amplitude on the upper interface, h,, equal to zero 
and a wn-zero amplitude on the lower interface, and the second solution has the 
amplitude on the lower interface, q,, equal to zero and a non-zero amplitude on the 
upper interface. Thus the system of stationary waves will have one wavelength on the 
lower interface and a different wavelength on the upper. 

The amplitudes of the waves can be calculated by relating the energy losses D, and 
D, to the energy flux radiated away by the waves, namely the wave energy times the 
group velocity: 

D, = $c,p,a;,gqE[ 1 - 2kx/sinh 2kx] ( 6 . 2 ~ )  
and 

D, = +c3p3a;3ghE[1 - 2ky/sinh 2kyI. (6.2b) 

When typical laboratory values are inserted into these equations, it is generally found 
that the amplitudes h, and 7, are not small compared with the wavelength. If D, and 
D, are small, this infinitesimal theory may be reasonable, but generally the amplitudes 
are too large and we need to consider nonlinear waves. 

The nonlinear problem is solved by setting it up as a perturbation expansion in the 
wave amplitude, a. We have worked only as far as third order in a. As shown in 
appendix C, the waves on each interface are equivalent to surface waves moving under 
reduced gravity. The high-order perturbation theory results of Cokelet (1 977) for 
surface waves on a finite-depth layer could be used to calculate the amplitudes and 
wavelengths. However, Cokelet’s results for only ten separate depths do not cover the 
range sufficiently closely to obtain accurate estimates for the amplitudes. Comparisons 
of the wavelengths calculated from our third-order theory and Cokelet’s higher-order 
results indicate that the third-order theory may underestimate the wavelength by up 

F& kx = tanh kx F$ ky = tanh Icy. 

to 20 yo. 
The wavelength of the wave on the Iower interface is now given by 

k = k,+a2k,, (6.3) 
where k, is the root of 

and 
F$ kx = tanh kx 

k, = ~k~(9coth4k0x- 10coth2kOz+9)/[1 -2k,x/sinh2k0x]. 
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z(= Y) 
layer 

depths 

0.95 
0.9 
0.85 
0.8 
0.75 
0.7 
0.68 
0.66 

A, /a ; ,  = c,/aL: = .,/a;: F i  ( = F;) Wavelength Wavelength 
energy layer Froude to first to third a, wave 
losses velocities numbers order order amplitude 

1.13 x 10-3 0.313 0.103 0.614 0.417 0.065 
4.04 x 10-3 0.438 0.2 13 1.21 0.839 0.121 
8.06 x 10-3 0.533 0.334 1.79 1.28 0-163 
1.25 x 0.612 0.469 2.43 1.75 0.196 
1.67 x 0.683 0.622 3.29 2.24 0.220 
1.98 x 10-2 0.749 0.801 4.96 2.71 0.211 
2.06 x lo-' 0.774 0.881 6.62 2.73 0.176 
2.09 x 0.799 0.967 12.90 2.04 0.095 

TABLE 1 .  Wavelengths for the symmetrical current with 2 = 2 and 
all/aia = 1 ,  ail, a& < 1. 

In order to find the wavelength, we need to know the amplitude of the waves. This 
we calculated from the energy to obtain 

( 3 ~ h 4  - &h4 + & k0x 1 - 
sinh 2k0x (1 - 2kox/sinh 2k0x) 

where ch = coth kox and th  = tanh kox. The equations for the wave on the upper 
interface are similar. 

For the symmetrical intrusion the wavelengths obtained for different values of the 
volume inflow are shown in table 1. We have taken Z = 2 and c~; , /a;~ = 1 with 
a;,, ai3 < 1. For this case the amplitudes and wavelengths for the waves on the upper 
and lower interfaces are the same. If a;, < ai3 and Z = 2, then the wavelength is 
longer on the upper interface than on the lower. If a;, > ai3 and Z = 2, then the wave- 
length is shorter on the upper interface. Using equations (6.3) and (6.4) it is possible 
to calculate the amplitudes and wavelengths of the stationary waves behind the head 
quite easily for any intrusion. 

We show in figures 12, 13 and 14 examples of intrusions. They were obtained by 
John E. Simpson of DAMTP by setting up a two-layer system of salt water in a 
tank with salt water of intermediate density behind a lock a t  one end. The lock was 
then raised to form the current. There are several differences between his experi- 
mental set-up and this theory. The main difference is that the volume inflow to the 
current is not specified and it will decrease as the lock empties. Also reflexions from 
the back wall can catch up with the current and cause shocks at  the front, although 
by making the lock long these reflexions take a long time to reach the front, making 
it possible to carry out the experiments without the problem of reflexion arising. 

For figure 12 the current is almost symmetrical with Z = 2, a;, = 1.48 x 
ai3 = 1.52 x and d, = 5 cm. Since the volume inflow to the current is not known, 
we cannot use the theory to calculate the downstream fluid depths, although it does 
predict that the upper depth, y, should be very nearly equal to the lower depth, x. 
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From figure 12 we can measure x and y and find that x M y M 0.7d1. Using equation 
(4.14), we predict that the velocity of the current should be 4.49 cm s-l. The wave- 
lengths, as given by (6.3) and (6.4), are 13.0 cm on the lower interface and 14.2 cm 
on the upper interface. The wave amplitude is predicted to be 1-1 cm on each interface. 
The velocity, c,, for this experiment was measured as 3.9 cm s-l, which is 12 % 
smaller than the value predicted theoretically. Waves can be seen on each interface. 
The wavelength on the lower interface is about 12.5 cm on the lower interface and 
14.0 cm on the upper interface. So we see that the theory has predicted the wavelength 
rather accurately, although the theoretical calculations were only to third order. 
The reasons that the wavelengths are different on the upper and lower interfaces are 
that, first, the current is not quite symmetrical and, second, it is not quite Boussinesq. 
The amplitude of the waves cannot be easily measured because of the mixing between 
the fluids, although it can be estimated as 1.2 cm, which is consistent with the pre- 
dicted value. In 4 2, we predicted that the angles at the front of the current should 
be 120" and that the current should be slightly 'sunk'. The angles a t  the front of the 
current cannot really be determined from the experiments, as the interfaces are not 
sharp as assumed. However, it does seem possible that the 120" angles could fit, and 
the orientation is almost horizontal with the current 'sunk ' slightly. 

and d, = 6.7 cm. The 
depths x and y must be measured as before and x M 0-76d1 and y w 0.39d1. The current 
velocity predicted by (4.14) is then 2.85 cm s-l. The wavelengths given by (6.3) and 
(6.4) are 5.5 cm on the upper interface and 13.7 cm on the lower interface. The ampli- 
tudes are predicted as 1.5 cm on the lower interface and 0.6 cm on the upper interface. 
The current velocity was measured as 3.85 cm s-1, which is 30 % larger than the 
theoretical value. The upper wavelength was measured as about 5 cm and the lower 
as 14 cm. The lower interface shows signs of mixing and this is probably due to shear 
instability, as the waves on the lower interface are much longer and less steep than 
those on the upper interface, which are not breaking. At the front stagnation point, 
the current is 'sunk' and the system of 120" angles is rotated so that B < 0 because 
the current is heavier than the average density. 

and d, = 2.3 cm. The 
depths x and y are approximately 0.67d1 and 1.34d1. The flow over the intrusion is 
almost supercritical. The current velocity predicted by (4.14) is 3.65 cm s-l. The 
wavelengths given by (6.3) and (6.4) are 6.1 cm on the lower interface and 24-1 cm 
on the upper interface. The amplitudes of these waves are predicted to be 0.3 cm and 
0.5 cm. The current velocity was measured to be 3.75 cm s-l, which is 5 yo larger than 
the theoretical value. On the upper interface no wave can be seen and the interface 
show$ signs of mixing. The predicted wavelength for this interface is, however, so 
long that the section of current shown is shorter than one wavelength and this may 
be why no wave can be seen. On the lower interface the beginnings of a wave can be 
seen about 6.2 cm from the front. This distance is close to the theoretically predicted 
wavelength. At the front the current is raised with respect to the horizontal upstream 
layer so that the angle is positive, as predicted. 

Bearing in mind the differences between these lock exchange experiments and the 
theory under consideration, the comparison is good and it seems that the ideas intro- 
duced here are quantitatively correct for the experiments. 

For figure 13 2 = 1.5, a;, = 4.99 x 10-3, a;3 = 1-01 x 

For figure 14 2 = 3, a& = 1.97 x 10-2,  a;B = 1-01 x 
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7. Conclusions 
In this paper we have presented a theoretical study of gravity currents in a two- 

layer fluid. We have shown that energy-conserving gravity currents can exist in an 
infinitely deep two-layered fluid, in contrast to Benjamin's result that they cannot 
exist in homogeneous fluid of infinite depth. Unless the volume inflow rate to the 
current takes a certain fixed value, energy cannot be conserved between upstream and 
downstream sections. We find that the current depth is not always uniquely determined 
by the equations of motion and to obtain a unique solution we propose the condition 
that the energy dissipation by the current is a maximum for a fixed inflow rate. At 
the front of any intrusion there is a stagnation point where the streamlines meet a t  
120". The system of 120" angles is rotated clockwise or anticlockwise (for a current 
propagating to the left) depending on whether the current is heavier or lighter than 
the average of the densities upstream. We have examined the consequences of allowing 
the energy which is lost by most currents t o  form a stationary wave train behind the 
current and calculated the amplitudes and wavelengths such waves would have. The 
theory was shown to agree well with the experiments. 

We wish to thank John E. Simpson for allowing us to use the photographs of his 
laboratory experiments and.Steve Thorpe for drawing our attention to his paper on 
two-layer fluids. The work was supported by grants from the Ministry of Defence 
(Procurement Executive), the Natural Environmental Research Council and from the 
National Science Foundation under grants ENG 75-02985 and ENG 77-27398. 

Appendix A. Supercritical and subcritical flows 
Following Benjamin (1966), we define a flow to be critical when it can support 

infinitesimal stationary long waves. Ahead of the gravity current, in the two-layer 
system, the velocity of long waves on the interface is (Lamb 1932, p. 371) 

c2 = (Pa - P3) (2 - 1)  gd,l[p,V - 1) + P31 (A 1) 

and the flow is supercritical if c: > c2 and subcritical if c! c c2. If the flow is super- 
critical upstream, no wave-motion can propagate ahead of the current. If the flow is 
subcritical upstream, the influence of the current may propagate ahead of it on the 
initiation of the flow; however, this is not relevant to the consideration of a steady 
current of the type considered in this paper, as explained in the introduction. Both 
boundary currents and intrusions can be eitther supercritical or subcritical depending 
on the values of the parameters. 

Downstream of the gravity current head the flow is in three layers. The dispersion 
relation for long waves in a three-layer system is obtained by letting k + 0 in (5.1), 
from which it is found that the phase speed, c, satisfies the quartic equation 

91 
P' (c  - U2)2+ 2 (c  - u2y- (pi  - p ' )  [i H2 91 [., H2 

P' ( c  - U,)2 + 2 (c - U2)2 - (pi  - p ' )  

-- pi' ( c -  UZ)I = 0, (A 2) 
H i  
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where the quantities involved are as defined in 5 5 and figure 11. Benja.min's (1966) 
discussion of critical %ow can be extended to define a three-layer system as super- 
critical if and only if all long wave modes propagate downstream with respect to the 
gravity current. 

To determine whether or not a system is supercritical it is necessary to find the 
condition that (A 2 )  has four long-wave solutions which propagate downstream (i.e. 
have c > 0). Restricting the investigation to stable systems, we assume that (A 2) 
has four real roots for c. The conditions for the stability of the waves are discussed 
in 8 5. We write (A 2 )  as 

L c ' + K c ~ + J c ~ + H c + G  = 0. (A 3) 

With U,, U2 and U3 positive, it  is easily found that L > 0, and K < 0. It can then be 
shown, by Descartes' rule of signs, that (A 3) will have four positive roots and the 
system will be supercritical only if 

J > O ,  H < 0 ,  G > O .  (A 4) 

For the boundary current, we calculate from (A 2 )  that 

and 

PsC3 P2C2 P 2 C 2  6Pfc: + 4  -+- - 
( y  x ) x  5 2 -  

For the intrusion we calculate that 

2 

G = p$-(P2-P3)9] [+-(P2-P1)9], 

and 

X 

We now define Froude numbers 

and 

Then one sees that G > 0 if and only if Fg > 1 and F$ > 1 or if Fg c 1 and F$ < 1. 
Now if B'g > 1 and F$ > 1, then H < 0 and J > 0, and so this represents a 
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supercritical flow. If FS < 1 and F$ < 1, then H > 0, so this represents a subcritical 
flow. Hence the flow around an intrusion is supercritical if 

F g >  1 and E I $ >  1 (A 6 )  

and it is subcritical otherwise. 

Appendix B. Energy-conserving solutions for intrusions 
In  this appendix we prove that all solutions of the energy-conserving equations for 

the intrusion (2.29) and (2.30) have a t  least one of F$ and Fg greater than unity and 
the flow can thus support a hydraulic jump. Using the expressions (2.26) and (2.27) 
for the velocities we obtain 

F i  = 2(1-~)/x( l -a ;~x2)  and F$ = 2(Z-1-y)/y[1+a~3y2(Z-1)-2]. (B 1) 

Only solutions with x < 1 and y < Z - 1 will be possible since otherwise the velocities, 
as given by (2.26) and (2.27), become imaginary. 

The governing equations for the intrusion (2.30) and (2.29) can be written as 

ahl( 1 - x) x2 a;,@ - 1 - y) y2 E =  - = o  
1 -a;,x2 (Z- 1)2+a;3y2 

and 

Considering (B 3) as an equation for x, given y, one finds aE/ax = 0 when x = 0, 
corresponding to a minimum for 2 ,  and also when 2- 3x+aL1x3 = 0, which occurs 
when F i  = 1, corresponding to a maximum for E. In figure 15, E is plotted as 
a function of x for a particular value of y. It reaches a maximum value when F% = 1 
and can be shown to be negative a t  x = 0 and x = 1 for all values of y. Solutions for 
the lower values of x have Fg > 1. Hence, given a value for y, there will be a solution 
for x only if E > 0 where Fg = 1 and, if this is the case, there will be two solutions for 
x, one with F& > 1 and the other with F% < 1. 

We now consider (B 3) as an equation for y, given x. It can be shown that f has a 
minimum value when y = Z- 1 and a maximum value a t  a value of y such that 
F$ = 1. At y = Z - 1, f is positive or negative according to whether 2s - 1 - aL1x2 is 
positive or negative. At the value of y for which F$ = 1, f is positive if 22 - 1 - a&x2 
is positive. So, as shown in figure 16, we have two situations which depend on the sign 
0 f 2 x - l - a ~ ~ ~ ~ .  

Suppose both F% and F g  are less than unity. From (B l), Fg < 1 if and only if 
32 - 2 - a;1x3 > 0, but, since 2x - 1 - aklxz > 3x - 2 - ailx3 for all x, if Fg < 1 then 
2x - 1 - a;, x2 > 0 and the solution for y will be as shown in figure 16 (b) with F$ > 1. 
Hence there can be no solution to (B 2) and (B 3) which has Fg < 1 and F$ < 1. 

We now determine the range of a;l/a;3 for which there can be three solutions for 
x and y. In  order to obtain a result analytically we assume the fluids to be Boussinesq 
so that a;,, a;, < 1. First we look to see when we will get a double root for y. From 
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E 
I 
I 
I 

FIQURE 15. A plot of E as a function of 2. 

f f 

FIGURE 16. A plot off as a function of y. In (a) 2%- 1 -C&Z* < 0. The value off at F; = 1 
is always positive. In (b) 2x- 1 - L&Z* > 0. The value off at  Pp = 1 can be positive or negative. 

figure 16 ( b )  we see this occurs at the value of y for which F?+ = 1 if the value off at 
that point is zero. Now if F$ = 1, then y = i(2- 1) as the fluids are Boussinesq. 
Hence 

&;3(z- 1)2+a;,(l-s)2(22- 1) = 0 

&fz;3(2 - 1) = ail( 1 - 2) 2 2 .  

(B 4) 

(B 5 )  

for a double root. However, from (B 2),  if y = Q(2- 1) 

The two equations (B 4) and (B 5) can be solved to give 

and 

So when 0-;3/0-;1 = U and y = #(Z- l) ,  z = 2/(3 +Z*) is a double root. There will also 
be another solution for x and y when a&/a;l = U, with F: < 1 and F$ > 1. Similarly 

z = 2/ (3+2&) 

a;S/aLl = 27[(3 + z*)3 (24 - 1)I-l = U. (B 6) 
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it can be shoivn there is a double root for x when Fg = 1 (i.e. x = 8). This occurs 
where 

and 

y = 2(2 -  1)3/[2*+ 3 ( 2 -  1)4] 

0$3 /~ ;1=  &[3(2 - 1)* + Z*l3 [Z* + (2 - l)i]-l(Z - 1)-, E V .  (B 7)  

So for U < ui3/ai1 < V there will be three solutions to the equations (B 2) and (B 3) 
and outside this range there will be only one root. 

Appendix C. Stationary Stokes waves in a three-layer system 
In this appendix we calculate the amplitudes and wavelengths of stationary waves 

on an intrusion for which we can put a, =- 0. The system is as shown in figure 11 with 
U, = 0 and with no surface tension forces acting along the interface. The primes on 
the densities p i ,  p ;  and p;  are dropped. The flow is assumed to be irrotational, so a 
velocity potential can be defined in each region 

$ = U i ~ + $ i  (i = 1 , 2 , 3 ) .  

The fluid is taken to be incompressible so that 

V2$( = 0 (i = 1 ,2 ,3 ) .  

The nonlinear kinematic boundary conditions are 

% = o ( z = o ) ,  _ -  a” - 0 (z  = H l + H 2 + H , ) .  az az 

Continuity of pressure across each interface gives 

The solution to these equations will obviously have 4, = 0, as pointed out for a 
two-layer fluid by Thorpe (1974). The waves on each interface will thus both look like 
surface waves with a reduced gravity, 9’. The waves on the upper and lower interfaces 
will be completely independent of each other. 
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Working to third order in the amplitude, a, of the wave, one finds (from Whitham 
1974, p. 474) the wavenumber of the stationary mode 

where 

and 

k = k, + a2kl, (C 6) 

g' tanh k, H = k, U2 

k,[l -(ZkoH/~inh2koH)] = +@(9~0th~k,H-  1 0 ~ 0 t h ~ k ~ H + 9 )  

with U = Ul,2, H = H,,, and g' = (pi -p!J g/p; or (p; -pb) g/p; according as one is 
considering the lower or upper interface. 

Equation (C 6) gives the wavelength of the stationary mode in terms of the wave 
amplitude. In order to calculate the amplitude of the waves the energy flux must be 
calculated. In  a frame moving with the fluid, the energy flux in the waves 

The energy flux in the rest frame will then be given by (Lamb 1932, 5 249) 

F = U,E+F',  
where 

Calculating these integrals and inserting the known values of p,, A,, A ,  and A ,  one 
obtains 

F = U,(p,-p,)ga2(~[1 - (2k,H,/sinh 2k,H,)] +a2ki(&cs- gc4 + &2 - 

- k,H, (sinh2k,Hl- 2k0H1)-1[&4-+'$2+$j 

- k,H, ( g c 5  - B3 + E c  - & tanh k, H,))]}. (C 8) 

So we can now calculate the wavelengths and amplitudes of waves on the lower 
interface, by setting F = D,. For waves on the upper interface the results are the same 
but with U, replaced by U,, H, by H3, p1 by p2 and p, by p3. 
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FIGURE 1 .  Kelvin-Helmholtz billows on a boundary current, 
For the experimental details, see Britter & Simpson ( 1  978). 

FIGURE 12. Ari intrusion with 2 = 2 and a;, = 1.48 x and a;3 = 1.52 x 

HOLYEK. AND HUPPERT (Facing p .  765)  
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FIGURE 13. An intrusion with 2 = 1.5 and a& = 4.49 x 10-3 and ai3 = 1.01 x 

FIGURE 14. An intrusion with 2 = 3 and .II = 1.97 x and a;, = 1.01 x lo-*. 

HOLYER AND HUPPERT 


