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Influence of cross-section shape on granular column collapses 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We obtain the relation between cross- 
section shape and granular collapse 
behaviors. 

• The initial radius in each direction af-
fects the run-out distance in that 
direction. 

• An equivalent normalized run-out dis-
tance is proposed to describe collapse 
behaviors. 

• Finite-size scaling is connected to the 
cross-section shape influence.  
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A B S T R A C T   

We investigate granular column collapses with different column cross-sections and associate the cross-section 
shape influence with a finite-size analysis. Previous research, confined to initially circular configurations, 
reviewed the importance of granular column collapse studies and concluded that the run-out distance scales with 
the initial aspect ratio. In this work, granular columns with three different types of initial column cross-sections 
(square, equilateral triangular, and rectangular cross-sections) are simulated using the discrete element method 
(DEM). We explore how non-circular cross-sections lead to different run-out distances. Based on the previously 
obtained finite-size analysis, we further link the initial radius in different directions to the relative size of a 
column and perform the finite-size analysis to explain the cross-section influence. In the end, a universal rela-
tionship, which includes frictional properties, relative sizes, and the cross-section influence, is proposed. Our 
results are shown to have direct relevance to various natural and engineering systems.   

1. Introduction 

Granular materials are ubiquitous in natural and engineering sys-
tems. The dynamics of granular column collapses play an important role 

and can bring insights into understanding the kinetics and rheology of 
complex granular systems in civil engineering, chemical engineering, 
pharmaceutical engineering, food processing, and geophysical flows 
[1–3]. In recent decades, progress has been made in terms of the 
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rheological behavior of granular systems [3–5]. Pouliquen et al. [4,6] 
concluded that the rheology of granular systems was controlled by in-
ertial numbers (μ − I rheology), and continuum models based on μ − I 
rheology were proposed accordingly [7–9], which have made significant 
contributions to understanding and modeling the behavior of granular 
assemblies. 

Initially, the behavior of granular column collapses was investigated 
to better understand the post-failure behavior of discrete systems, such 
as geophysical flows with similar flow mechanisms [10,11]. Roche et al. 
[10,12] linked the dam-break experiments to the physics of pyroclastic 
flows, and argued that the behavior of granular flows is similar to py-
roclastic flows when they are in certain regimes. Lube et al. [11,13] and 
Lajeunesse et al. [14] independently discovered that both the run-out 
distance and the final deposition height can be determined by the 
initial aspect ratio of the column. In particular, the normalized run-out 
distance, ℛ = (R∞ − Ri)/Ri, where R∞ is the final radius of the granular 
pile and Ri is the initial radius of the granular column, proportionally 
scales with the initial aspect ratio, α = Hi/Ri, where Hi is the initial 
height of the column, when α < αc (where αc is a transition point 
determined by experimental results), and proportionally scales with α0.5 

when α > αc. 
Zenit [15] performed discrete element method (DEM) simulations on 

two dimensional (2D) granular column collapses, and confirmed that the 
shape of the final deposition was mainly determined by the initial aspect 
ratio. Staron and Hinch [16,17] further investigated 2D granular col-
lapses with DEM, and found that the inter-particle frictional coefficient 
played an important role in the run-out distance. Lacaze and Kerswell 
[18] studied axisymmetric granular collapses to test the viscoplasticity 
of granular materials. Lagrée et al. [8] implemented the μ − I rheology 
to a Navier-Stokes solver to study the behavior of granular column 
collapses using a continuum approach. The results of the continuum 
approach with μ − I rheology showed good agreement with the results of 
DEM simulations. Farin et al. [19] even associated the characteristics of 
granular column collapses with high-frequency seismic signals, and used 
it to further evaluate geological events. With experiments, Cabrerra 
et al. [20] and Warnett et al. [21] discovered that the relative size of the 
granular column could also influence the normalized run-out distance. 
They also found that, when the system size was large enough, the size 
effect can be neglected. 

Based on previous studies, we implemented dimensional analysis, 

and obtained an effective aspect ratio, αeff =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/(μw + βμp)

√
(Hi/Ri), 

where μw is the basal frictional coefficient, μp the inter-particle frictional 
coefficient, and β = 2.0 a constant that can be physically interpreted as 
the ratio of contributions between inter-particle frictions and particle/ 
boundary frictions [22]. The effective aspect ratio includes the influence 
of both friction and the initial aspect ratio. Furthermore, we investigated 
the finite-size scaling of granular column collapses [23], and come up 
with a universal scaling equation to describe the run-out behavior. We 
showed that changing the system size could not only influence the 
normalized run-out distance but also shift the characteristic aspect ratio 
αc that marks the transition of granular column collapses from a quasi- 
static regime to an inertial regime. A general scaling equation for the 
run-out distance of columns with different sizes was obtained [23] and 
given by, 

ℛ = (Ri/d)− β1/ν
ℱ r

[(
αeff − αc∞)(Ri/d)1/ν

]
(1)  

where ℱ r[⋅] is a scaling function, scaling parameters ν = 1.39 ± 0.14 and 
β1 = 0.28 ± 0.04 are obtained to best collapse all the data, αc∞ is the 
transitional effective aspect ratio when the system size goes to infinity, 
and d is the average particle diameter. The current ℱ r[⋅] function still 
lacks a functional form, which limits the application of the finite-size 
scaling and the generalization of our findings to other granular flow 
cases. However, there is no contradiction between the finite-size solu-
tion and the power-law scaling. In fact, they are both related by the 

renormalization group formalism of statistical mechanics. The power- 
law relationship between ℛ and αeff (of systems with the same relative 
size) has a unique critical point, ℛc and αc, which marks the transition 
from quasi-static collapses to inertial collapses. The finite-size solution 
with Ri/d is utilized to, in some sense, collapse ℛ and αc for systems with 
different relative sizes. In other words, the power-law relationship is still 
embedded inside the ℱ r[⋅] function. We are also aware that it is of vital 
importance to obtain the exact function for ℱ r[⋅], but the current results 
have not led us to that stage, and we will continue to work on this 
problem. 

So far, only granular column collapses of circular cylinders or 2D 
granular column collapses have been considered. We were somewhat 
surprised by our early toy experiments of the collapse of rectangular 
granular columns, where the final deposition approaches a circular 
pattern when the initial height is sufficiently large. Thus, we wondered 
how granular columns with different initial shapes collapse and what 
their final deposition patterns are. In this paper, we investigate the in-
fluence of cross-section shape on granular column collapses. Previous 
research focuses on pseudo-2D or axisymmetric granular column col-
lapses, where the shape of the cross-section does not play a role in 
determining the run-out distance. However, non-axisymmetric cross- 
sections lead to different initial column radii in different directions. For 
instance, for a square cross-section, the initial radius in the diagonal 
direction is 

̅̅̅
2

√
times of that in the direction pointing from the cross- 

section center to the center of the edge. A different initial radius re-
sults in a different initial aspect ratio, which further leads to a different 
normalized run-out distance. This paper systematically explores the 
relationship between normalized run-out distance and effective aspect 
ratio in different directions resulting from different types of cross- 
sections, including square, rectangle, and equilateral triangle (We 
choose these types of cross-sections with right angles or sharp angles so 
that the direction of vertex and edge can be clearly and conveniently 
defined). The paper is organized in the following way. In Section 2, the 
simulation setup and the associated numerical method are introduced. 
In Section 3, we present the simulation results, and further discuss the 
physical insight that follows the simulation results. We further imple-
ment the finite-size analysis that we obtained from our previous work 
[23]. An experimental validation in Section 4 will also be provided to 
show experimental evidence of the influence of cross-section shapes, 
before concluding remarks are provided in Section 5. 

2. Simulation method and setup 

2.1. Discrete element method 

To explore the behavior of the collapse of granular columns, we 
implement a Voronoi-based sphero-polyhedral discrete element method 
(DEM) [24,25], so that we could obtain detailed particle-scale infor-
mation during a column collapses. We note that the particle shapes 
could significantly affect the deposition morphology but, in this study, 
we focus on using Voronoi-based particles to investigate a general 
behavior similar to that of sand particles. 

The sphero-polyhedra method was initially introduced by Pourning 
[26] for the simulation of complex-shaped DEM particles. Later, it was 
modified by Alonso Marroquin [27], who introduced a multi-contact 
approach in 2D allowing the modeling of non-convex shapes and was 
extended to 3D by Galindo-Torres et al. [25]. A sphero-polyhedron is a 
polyhedron that has been eroded and then dilated by a sphere. The result 
is a polyhedron of similar dimensions but with rounded corners. 

An advantage of the sphero-polyhedra technique is that it allows for 
an easy and efficient definition of contact detection and force calculation 
between particles. This is due to the smoothing of edges of all geometric 
features by circles (in 2D) or spheres (in 3D). A particle is defined as a 
polyhedron, i.e. a set of vertices, edges and faces, where each one of 
these geometrical feature is dilated by a sphere. 
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Since two contacting particles are dilated by their sphero-radii R1 
and R2, there exists a contact when the distance between two geometric 
features is less than the addition of their corresponding dilating radii, 
and the corresponding contact overlap δ can be calculated accordingly. 
The advantage of the sphero-polyhedra technique becomes evident since 
this definition is similar to the contact force calculation of two spheres 
[28]. In our simulation, three types of contacts (vertex-vertex contact, 
edge-edge contact, and vertex-face contact) are considered. For these 
types of contacts, we implement a Hookean contact model with energy 
dissipation to calculate the interactions between particles as illustrated 
in Ref. [22]. At each time step, the overlap and the tangential relative 
displacement between adjacent particles, δ, are checked, and the normal 
and tangential contact forces can be calculated accordingly. 

In this study, since we use Voronoi-based particles, no rolling resis-
tance need be considered. The motion of particles is then calculated by 
step-wise resolution of Newton's second law with normal and contact 
forces mentioned before. The same neighbor detection and force 
calculation algorithms have already been discussed and validated in 
previous studies. This DEM formulation has been validated before with 
experimental data [28,29] and is included in the MechSys open source 
multi-physics simulation library [30]. 

2.2. Simulation setup 

The DEM in this work has already been validated in previous studies 
to simulate the behavior of granular materials in various conditions, 
such as triaxial tests of granular soils [25], contact erosion phenomena 
[31], and axisymmetric dry granular column collapses [22,23]. We 
implement this DEM model to granular column collapses with different 
initial cross-sections. As shown in Fig. 1, we create granular columns 
with three different types of initial cross-sections: (1) columns with 
square cross-sections, where the side length Ls = 5 cm; (2) columns with 
equilateral triangular cross-sections, where the side length Ls = 6 cm; 
(3) columns with rectangular cross-section with side lengths 6 cm ×

3 cm and 8 cm × 2 cm. The cross-section size of granular columns are 
chosen so that the edge length is approximately more than 10 times the 
particle size, and the area of the cross-section is around 20 cm2. We 
exclude simulations with larger cross-section sizes because of the 
correspondingly unacceptable computational time. For each type of 
granular column, we vary the inter-particle frictional coefficient 
(μp = 0.1, 0.2, 0.4), while keeping the particle-boundary frictional co-
efficient constant at μw = 0.4. For simulations with square and trian-
gular cross-sections, we also implement μp = 0.6. The height of granular 
columns varies from 1 cm to 50 cm to obtain various initial aspect ratios. 

The original sphero-polyhedral granular packing is established using 
the 3D Voronoi scheme with the Voro++ package [32]. The average 
particle size is d = 0.2 cm, so that the size of particles is similar to the 
size of typical medium sized river sand and, at the same time, small 
enough compared to the length of the cross-section of granular columns. 
Then 20% of particles are randomly chosen and deleted to create an 
initial packing with a solid fraction φs of 0.8 to keep the initial solid 
fraction the same as our previous work [22]. The initial solid fraction of 
80% is, on one hand, for reducing the volume change during the collapse 
process, on the other hand, for introducing randomness. We acknowl-
edge the influence of the initial solid fraction on the collapse and 
deposition of granular columns, and will conduct further studies to 
address such influence in the future. Besides, we should be awared that, 
due to the property of 3D Voronoi structure, the initial packing is more 
similar to a fractured porous rock than to loosely packed sand. 

Then, we remove the container in the simulation, release particles, 
and let them flow under gravity. During the collapse of a granular col-
umn, the stored potential energy will be transformed into kinetic energy 
and dissipated through particle collisions. In the end, a stable granular 
pile can be obtained with a final run-out distance, R∞(θ), where θ is the 
direction angle in the horizontal plane showing that, for a granular 
column with non-circular cross-section, the final run-out distance varies 
with respect to the direction in which we take the measurement. In 
detail, for columns with square cross-sections, we present measurements 

Fig. 1. (a) Shows the collapse of a granular column with square cross-section. Part of particles are cut from the figure to reveal the un-moving core during the 
collapse. (b)–(e) show four types of cross-sections we use in this work. 
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in the eight directions of 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦. 
For columns with equilateral triangular cross-sections, we present 
measurements in the six directions of 30◦, 90◦, 150◦, 210◦, 270◦, and 
330◦. For columns with rectangular cross-section of length 6 cm and 
width 3 cm, we present measurements in the eight directions of 0◦, 
26.6◦, 90◦, 153.4◦, 180◦, 206.6◦, 270◦, and 333.4◦. Similarly, for col-
umns with rectangular cross-section of length 8 cm and width 2 cm, we 
present the measurement in the eight directions of 0∘, 14∘, 90∘, 166∘, 
180∘, 194∘, 270∘, and 346∘. These measuring directions can be classified 
into two groups: i) edge directions (for rectangular cross-section, the 
edge direction can be further classified into longitudinal and width edge 
directions); and ii) vertex directions. 

3. Results and discussions 

3.1. Granular columns with square cross-sections 

For granular columns with square cross-sections, we take measure-
ments of initial radius and final deposition radius in both edge and 
vertex directions. The initial radius in the edge direction is Re

i = 2.5 cm, 
and the final deposition radius in the edge direction is denoted as Re

∞. 
Similarly, the initial radius in the vertex direction is Rv

i =
̅̅̅
2

√
Re

i , and the 
final deposition radius in the vertex direction is denoted as Rv

∞. Thus, we 
obtain the following key parameters of initial aspect ratios and effective 
aspect ratios,  

αe = Hi
/

Re
i , αv = Hi

/
Rv

i , (2a)  

αe
eff = αe

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
/(

μw + βμp
)√
,

αv
eff = αv

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
/(

μw + βμp

)√

,
(2b)  

where αe, αv are the initial aspect ratios in the edge and vertex directions, 
αe

eff and αv
eff are the effective aspect ratios in both edge and vertex di-

rections, μw is the frictional coefficient between particles and the hori-
zontal plane, μp is the inter-particle frictional coefficient, and β = 2.0 as 
suggested by Ref. [22]. We could also obtain the normalized run-out 
distances in both directions, ℛe and ℛv, as  

ℛe = (Re
∞ − Re

i )
/

Re
i , (3a)  

ℛv = (Rv
∞ − Rv

i )
/

Rv
i . (3b)  

The choice of only measuring run-out behaviors in both edge and vertex 
directions is for simplifying the analysis. In a more ideal condition, we 
can measure the run-out distance in any arbitrary directions so that our 
analysis can be more complete. In Fig. 2(a)–(d), we plot, for a range of 
initial heights, the polar histogram of the number of particles in different 
directions to show the initial and final pattern of the granular system. To 
plot the polar histogram, we divide the round angle (360◦) into 100 
pieces so that dθ = 3.6◦. Each bar in the polar histogram is obtained by 
counting the number of particles presenting within (θ, θ + dθ], and 
dividing it by the total number of particles in the system. Fig. 2(a) shows 
the initial state of the system, where the majority of particles locate in 
the vertex direction, since the initial radius of it is larger than that of the 
edge direction. For systems with Hi = 1 cm [Fig. 2(b)], the polar 

Fig. 2. (a)–(d) Show the polar distributions of particle numbers in different directions for granular column collapses with square cross-sections and faces parallel to 
the edge of the paper. The numbers on the vertical axis represent the percentage of particles locating in certain directions, and the numbers on the circumferential 
axis is the direction angle measured counter-clockwise. (e) denotes the relationship between the normalized run-out distance, ℛ, and the initial aspect ratio, α, where 
markers represent simulations μp = 0.1 in the edge direction , μp = 0.2 in the edge direction , μp = 0.4 in the edge direction , μp = 0.6 in the edge direction , 
μp = 0.1 in the vertex direction , μp = 0.2 in the vertex direction , μp = 0.4 in the vertex direction , μp = 0.6 in the vertex direction . (f) plots ℛ against the 
effective aspect ratio, αeff, with the same markers as those in Fig. (e). 
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histogram still shows features of squares, where more particles locate in 
the vertex direction. As we further increase the initial height of the 
granular column, the final deposition becomes approximately circular 
[Fig. 2(c) where Hi = 5 cm] with an increased horizontal length scale. 
This indicates that, as we increase the initial aspect ratio of the granular 
column, the system evolves from a quasi-static system [22], where most 
particles remain stationary during the collapse, to an inertial system, 
where most particles participate in the collapse event, and, during the 
evolution from a quasi-static system to an inertial collapsing system, 
memory of its initial state is forgotten; hence, a circular deposition 
pattern is developed. We note that, to be consistent with Ref. [22], the 
quasi-static collapse is for describing the overall collapse and deposition 
behaviors, and does not indicate that no particle inertia is playing a role 
during the early stage of granular column collapses. Further increasing 
the initial aspect ratio leads to more drastic changes to the deposition 
pattern, where particles in the edge direction propagate much further 
than particles in the vertex direction, as shown in Fig. 2(d) where Hi =

25 cm. This usually happens in the liquid-like collapse of granular col-
umns in the phase diagram in Ref. [22]. We obtain the general conclu-
sion that, for a granular column with square cross-section, the run-out 
distance in the edge direction is larger than that in the vertex direction, 
especially when the initial aspect ratio is large enough to trigger a liquid- 
like collapse. This is because the initial aspect ratio in the edge direction 
is effectively larger than that in the vertex direction for the same gran-
ular column. 

We further explore the run-out distance in different directions in 
Fig. 2(e) and (f), where we plot the relationship between ℛ and α, and 
the relationship between ℛ and αeff. In Fig. 2(e), we show that the 
normalized run-out distance in both directions has a similar behavior 
with increasing the initial aspect ratio. For granular columns with the 

same initial aspect ratio but different inter-particle frictional co-
efficients, a smaller inter-particle frictional coefficient results in a larger 
run-out distance, which is the same for both edge and vertex directions. 
Interestingly, the normalized run-out distance in an edge direction is 
larger than that in a vertex direction, even when the initial aspect ratio is 
the same. 

We further investigate the relationship between ℛ and αeff, and 
expect that changing the x− axis from α to αeff could lead to the collapse 
of normalized run-out distance data of simulations with different fric-
tional coefficients, according to our previously published work [22]. 
Fig. 2(f) shows that, for simulation results in either an edge or vertex 
direction, all the simulation data nicely collapse onto one curve. How-
ever, the data of measurements in the vertex direction are still smaller 
than those of measurements in the edge direction. This is surprising, 
especially after we analyzed the finite-size scaling of granular column 
collapses, where larger system sizes (larger Ri/d) lead to larger 
normalized run-out distance when the effective aspect ratios, αeff, are 
same [23]. The finite-size scaling of granular column collapses implies 
that, with the same αeff, the ℛ in the vertex direction should be larger 
than that in the edge direction. This paper aims to solve such a counter- 
intuitive situation (in Sections 3.4 and 3.5). 

3.2. Granular columns with equilateral triangular cross-sections 

We here investigate the collapse of granular columns with equilateral 
triangular cross-section. Again, to simplify the analysis, we only take 
measurement in edge and vertex directions. Such a cross-section has 
three edge directions and three vertex directions, so we can define αe, αv, 
αe

eff , αv
eff , ℛ

e, and ℛv as we did for columns with a square cross-section. In 
Fig. 3(a)–(d), we plot polar histograms of the initial state and final 

Fig. 3. (a)–(d) Show the polar distributions of particle numbers in different directions for granular column collapses with equilateral triangular cross-sections with a 
vertex at the top of the page. (e) and (f) denote the relationship between ℛ and α, and the relationship between ℛ and αeff, where markers represent simulations with 
μp = 0.1 in the edge direction , μp = 0.2 in the edge direction , μp = 0.4 in the edge direction , μp = 0.6 in the edge direction , μp = 0.1 in the vertex direction , 
μp = 0.2 in the vertex direction , μp = 0.4 in the vertex direction , μp = 0.6 in the vertex direction . 
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depositions of columns with different initial heights. The polar distri-
butions of the initial state shows that initially most particles locate in the 
vertex direction. Similar to columns with square cross-sections, when 
the initial height is relatively small [Fig. 3(b)], the final pattern is still 
somewhat triangular. Increasing the initial height leads to changing the 
deposition pattern from approximately a triangle to approximately a 
circle [Fig. 3(c)], which implies the memory of its initial triangular 
cross-section has been largely forgotten during the collapse. Fig. 3(d) 
shows that, when the initial height of a granular column is large enough, 
the final deposition pattern becomes no longer circular. The run-out 
distance in the edge direction is much larger than that in the vertex 
direction, which results in a reverse of the equilateral triangle so that the 
original edge directions become vertex directions in the final deposition. 
It looks as if the triangle was flipped over. This surprising, but important, 
behavior is exactly the same as that when the cross-section is a square. 

We plot the relationship between ℛe (or ℛv) and αe (or αv), as well as 
between ℛe (or ℛv) and αe

eff (or αv
eff) in Fig. 3(e) and (f). Similar to the 

case for a axisymmetric granular column collapse, either ℛe or ℛv 

approximately scales proportional to αe or αv when the aspect ratio is less 
than a threshold, or scales proportional to (αe)

0.5 or (αv)
0.5 when the 

aspect ratio is larger than that threshold. Meanwhile, the normalized 
run-out distance is influenced by the frictional coefficient, as we pre-
dicted in our previous work [22]. Decreasing the inter-particle frictional 
coefficient can not only change the ℛ − α curve but also change the 
critical initial aspect ratio. Additionally, for a same initial aspect ratio, 
ℛe is apparently larger than ℛv. We shift the x− axis to αeff in Fig. 3(f), 
and find that the behavior is similar to that of square granular columns. 
The gap between measurements in the edge direction and in the vertex 
direction is even larger than that when the cross-section is square sha-
ped. This is explained by the fact that for a square cross-section, Rv

i /Re
i is 

only 1.414, while the initial radius ratio is 2.0 for a triangular cross- 
section. 

3.3. Granular columns with rectangular cross-sections 

Another set of simulations we present here is the collapse of granular 
columns with two different rectangular cross-sections (6 × 3 and 8 × 2), 
where we take measurements in three directions: (1) the vertex direc-
tion, where its initial radius is Rv

i ; (2) the long-edge direction, where its 
initial radius is Rel

i ; and (3) the short-edge direction, where its initial 
radius is Res

i . In this study, the long-edge direction is the direction par-
allel to the longer edge of the cross-section, and the short-edge direction 
is the one parallel to the short edge of the cross-section. For granular 
columns with a 6 × 3 rectangular cross-sections, Rel

i = 3 cm, Res
i =

1.5 cm, and Rv
i ≈ 3.35 cm. Similarly, for the granular columns with an 

8 × 2 rectangular cross-section, Rel
i = 4 cm, Res

i = 1 cm, and Rv
i ≈ 4.12. 

We notice that the difference between Rel
i and Rv

i is small, so we expect 
that the run-out distance in these two directions will not differ much 
from one another. Also, since the initial aspect ratio in the short-edge 
direction is always the largest among three directions, we expect to 
obtain a larger run-out distances in this direction. 

We show the initial polar distribution of particles in Figs. 4(a) and 5 
(a). In the initial configuration, most particles locate in the vertex and 
long-edge directions The pattern varies when we change the initial 
height of the column. When the initial height is short, the final deposi-
tion pattern approximately remains rectangular [Figs. 4(b) and 5(b)]. 
Surprisingly, when Hi ≈ 12 for 6 × 3 rectangular columns and 8 × 2 
rectangular columns, the final deposition pattern already becomes cir-
cular, which indicates that the increase of the run-out distance in the 
short-edge direction is much stronger than the other two directions 

Fig. 4. (a)–(d) Show the polar distributions of particle numbers in different directions for granular column collapses with an initial 6 × 3 rectangular cross-section. 
(e) and (f) denote the relationship between ℛ and α, and the relationship between ℛ and αeff, where markers represent simulations with μp = 0.1 in the short-edge 
direction , μp = 0.2 in the short-edge direction , μp = 0.4 in the short-edge direction , μp = 0.1 in the long-edge direction , μp = 0.2 in the long-edge direction , 
μp = 0.4 in the long-edge direction , μp = 0.1 in the vertex direction , μp = 0.2 in the vertex direction , and μp = 0.4 in the vertex direction . 
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[Figs. 4(c) and 5(c)]. With further increase of the initial height of the 
column, we observe that the particles in the short-edge direction out-run 
those in the other two directions since the initial aspect ratio in the 
short-edge direction is larger than that in both the long-edge and the 
vertex direction, as can be seen in Figs. 4(d) and 5(d). 

What we have observed can also be validated by the plot of the ℛ-α 
relationship and the plot of the ℛ-αeff relationship in Figs. 4(e)–(f) and 5 
(e)–(f). On one hand, since the initial radius in the vertex direction is 
similar to that in the long-edge direction, their results of normalized run- 
out distances are also similar. One the other hand, since the initial radius 
of the short-edge direction is much smaller than that of the other two 
directions, we see that the ℛes - αes relationships are always above the 
ℛel - αel relationships and ℛv - αv relationships, and it is the same for the 
ℛes - αes

eff relationships. 
Failing to collapse all the data with even the effective aspect ratios 

leads us to re-think the way we normalize the run-out distances. Parti-
cles are connected with each other with inter-particle collisions, which 
form force networks. Mehta et al. [33] and our previous work [23] 
suggested that particles tend to move collectively, especially when the 
initial height is large enough to generate strong inertia among particles. 
Non-local effect tend to be strong, so that using the initial radius in a 
direction to normalize the run-out distance in that direction might not be 
an optimal choice. 

We plot the relationship between the front position in different di-
rections and the collapse time in Fig. 6. The left column of the figure 
shows the collapse of granular columns with a small initial height, while 
the right column plots those with a large initial height. For short 

columns, a larger initial radius often leads to a larger final front position. 
However, we can observe that the front position in the edge direction (or 
short-edge direction for rectangular cross-sections) is catching up with 
the front positions in other directions. In Fig. 6(e), we find that particles 
in the long-edge direction, while lagging behind those in the vertex di-
rection at the beginning, quickly overrun particles in other directions 
even with such a small initial height. This shows clearly that particles in 
the edge direction have a better chance to acquire a larger run-out dis-
tance. This phenomenon is not obvious when the cross-section is an 
8 × 2 rectangle. That is because, when the cross-section is an 8 × 2 
rectangle, the difference between Rv

i and Rel
i is almost negligible. Fig. 6 

(b), (d), (f), and (h) also confirm what we have seen in Figs. 2, 3, 4, and 5 
that, at the end of the collapse, the front position in the edge direction 
(or in the short-edge direction) is always larger than that in other 
directions. 

Fig. 7 shows the evolution of polar histograms with respect to time. 
We only plot the polar histogram of tall columns with four different 
cross-sections [(a) Square cross-section, Hi = 25 cm; (b) triangular cross- 
section, Hi = 25 cm; (c) 6 × 3 rectangular cross-section, Hi = 32 cm; and 
(d) 8 × 2 rectangular cross-section, Hi = 32 cm]. Figs. 7(a)–(d) show 
similar behavior that, when the column is tall enough, the deposition 
pattern will quickly forget its original shape. The polar histogram 
quickly develop to be approximately a circle within 0.3 s. However, for 
tall columns, as we have shown in the previous section, the circular 
distribution could not last long until it evolves to its final deposition 
histogram shown in Figs. 2(d), 3(d), 4(d), and 5(d). This shows that tall 
granular columns, which can generate tremendous inertia, often 

Fig. 5. (a)–(d) Show the polar distributions of particle numbers in different directions for granular column collapses with an initial 8 × 2 rectangular cross-sections. 
(e) and (f) denote the relationship between ℛ and α, and the relationship between ℛ and αeff, where markers represent simulations with μp = 0.1 in the short-edge 
direction , μp = 0.2 in the short-edge direction , μp = 0.4 in the short-edge direction , μp = 0.1 in the long-edge direction , μp = 0.2 in the long-edge direction 

, μp = 0.4 in the long-edge direction , μp = 0.1 in the vertex direction , μp = 0.2 in the vertex direction , and μp = 0.4 in the vertex direction . 
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collapse in a way that most particles localize into certain directions, and 
those localized directions are often not the initial dominant direction in 
original configurations. 

We note that polar histograms may exaggerate the percentage of 

particles presented in certain directions. Thus, we also plot contour plots 
of the deposition, in Fig. 8, for tall granular column collapses with four 
different cross-sections. We can see from Fig. 8(a) and (b) that particles 
initially presented in the edge direction tend to travel farther, and more 

Fig. 6. Relationship between the front position in different directions and time of granular columns with different initial heights and different types of cross-sections.  
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particles seem to rest in the edge direction in the end. The accumulation 
of particles in the short-edge direction is more obvious for systems with 
rectangular cross-sections shown in Fig. 8(c) and (d), and particles in 
short edge direction have larger deposition radius. The final deposition 
pattern is not so exaggerate as the polar histograms, but it still reflects 
the behavior shown in Figs. 2(e & f), 3(e & f), 4(e & f), and 5(e & f), and 
does not weaken our argument that particles in certain directions prefer 
to travel farther than other directions, and the classical method for 
quantifying the run-out behavior is not enough to describe systems with 
non-circular cross-sections. The detailed deposition pattern of systems 
with different initial cross-sections is also intriguing and is worth of 
further explorations in future studies. 

3.4. Analysis with equivalent column radius 

In the previous section, we argue that it is not appropriate to use the 
initial column radius in certain directions to normalize the run-out 
distance in that direction. In this section, we conveniently suggest an 
equivalent column radius, the same for any direction of a column, for 
obtaining a so-called equivalent normalized run-out distance, ℛ̃, defined 
by 

ℛ̃ = (R∞ − Ri)
/

Requiv, Requiv =
̅̅̅̅̅̅̅̅̅̅
Ac/π

√
, (4)  

where Requiv is the equivalent column radius and Ac is the area of the 
cross-section. The advantage of using such a definition of Requiv is that, 
on one hand, the area-equivalent radius can, in a sense, help us compare 
granular columns with various cross-sections to axisymmetric columns. 
On the other hand, when the cross-section is circular, Requiv becomes the 
same as Ri, which makes it convenient to formulate a universal equation 
to describe the behavior of granular column collapses with any types of 
cross-section. 

Figure 9 shows the relationship between ℛ̃ and αeff of simulations 

with different cross-sections. In Fig. 9(a), we plot the results of columns 
with square cross-sections. After changing the y− axis to ℛ̃, all the 
simulation data collapse nicely onto one curve. The relationship also 
performs well in terms of granular columns with equilateral triangular 
cross-sections. However, one thing that concerns us is that the ℛ̃

v
− αv

eff 

relationship is slightly above the ℛ̃
e
− αe

eff relationship, which indicates 
that, in terms of the equivalent run-out distance, particles in the vertex 
direction may travel longer equivalent distances than those in the edge 
direction. Our concern is confirmed by the results of granular column 
collapses with rectangular cross-sections [Fig. 9(c) and (d)], where, even 
though there is almost no difference between the ℛ̃

v
− αv

eff relationship 

and the ℛ̃
el
− αel

eff relationship, the ℛ̃
es
− αes

eff relationship is below the 
other two relationships, especially for columns with 8 × 2 rectangular 
cross-sections. This can be seen as a failure of implementing the equiv-
alent column radius, yet also an opportunity to perform the finite-size 
scaling to our work. Similar to what we obtained in our previous work 
[23], larger initial radii in vertex and long-edge directions lead to larger 
relative system sizes, Ri/d, and larger normalized run-out distances (in 
this case, it is the equivalent normalized run-out distance, ℛ̃). We should 
also be careful about Requiv that the currently definition of the equivalent 
cross-section radius, Requiv, is rather geometrical than physical. In future 
works, we should try to link this geometric parameter to the dynamics of 
particle in different direction. 

3.5. Finite-size analysis 

We summarized the finite-size scaling of axisymmetric granular 
column collapses as Eq. (1) in Section 1. In our previous work, we 
analyzed the size effect of granular column collapses [23]. The relative 
system size, Ri/d, ranged from 2.0 to 30.0. We found that, as we increase 
the relative system size, both the transitional α and the transitional ℛ
decreases in a power-law manner, which led us to perform a finite-size 

Fig. 7. Evolution of polar histograms of tall granular column collapses with respect to time. (a) Square cross-section, Hi = 25 cm; (b) triangular cross-section, 
Hi = 25 cm; (c) 6 × 3 rectangular cross-section, Hi = 32 cm; and (d) 8 × 2 rectangular cross-section, Hi = 32 cm. Sub-figures in the same row share the same legend. 
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scaling with results shown in Eq. (1). We also confirmed the size effect 
by measuring the relative correlation length scale, which also showed a 
power-law decay with respect to αeff and decreased as we increased the 
system size. In this study, the normalized run-out distance is calculated 
using the equivalent initial radius in each direction. We plot the rela-
tionship between ℛ̃(Ri/d)β1/ν and 𝒜 = (αeff − αc∞)(Ri/d)1/ν of all the 
simulation results in Fig. 10 with the same scaling parameters as in 
Ref. [23] that ν ≈ 1.39 and β1 ≈ 0.28. The following relationship is 
expected 

ℛ̃ =
(
Rθ

i

/
d
)− β1/ν

ℱ r

[(
αθ

eff − αc∞)
(
Rθ

i

/
d
)1/ν

]
(5)  

where the superscript θ denotes the direction in which we take the 
measurement, and can be replaced with e, v, el, or es. The results in 
Fig. 10 agree with our expectation that all the simulation data of 
ℛ̃(Ri/d)β1/ν

− 𝒜 relationship with different cross-sections and different 
measuring directions form a function, ℱ r(⋅). 

The collapse of the ℛ̃(Ri/d)β1/ν
− 𝒜 relationship indicates that the 

finite-size scaling is still valid when we consider a non-circular cross- 
section. In other works related to the size effect of granular column 
collapses, sizes effects refer to different sizes of different columns. This 
work shows that, even within one granular column, size effect should 
still be considered. We realize that, without a proper definition of ℱ r(⋅), 
it is impossible to accurately calculate the run-out distance with any 

cross-section. Nevertheless, this work helps formulate a universal solu-
tion to describe the run-out behavior considering frictional coefficients, 
initial conditions, and geometric factors, which is convenient to utilize 
when evaluating some geo-hazards, such as landslides and pyroclastic 
flows, where both the system size and the geometric factor are important 
for understanding the mobility of them. We note that, the analysis, based 
on equivalent cross-section radii, may fail to work for systems with 
extremely slender cross-sections. A more proper definition of Requiv need 
to be discussed with a clearer physical definition in future works. 

4. Experimental evidence of the cross-section influence 

To show the evidence of the influence of changing cross-section 
shapes, we performed two sets of experiments of granular column col-
lapses from both square cross-section and rectangular cross-section 
tubes with sand particles of diameters ranging from 0.1 mm to 
0.2 mm. The aim of this section is showing the orientation anisotropy 
presented in granular column collapses with non-circular cross-section, 
instead of presenting a comparison between simulations and experi-
ments. We considered two different types of granular columns: (1) 
granular columns with 50 mm × 50 mm square cross-sections; and (2) 
granular columns with 40 mm × 21 mm rectangular cross-sections. For 
both experimental setups, after placing sand particles into the plastic 
tube, we measured the initial height of the granular packing, Hi. Sand 

Fig. 8. Contour plots of the final deposition of granular columns collapses with four different initial cross-sections: (a) a column with square cross-section and 
Hi = 30 cm; (b) a column with triangular cross-section and Hi = 30 cm; (c) a column with 6 × 3 rectangular cross-section and Hi = 32 cm; (d) a column with 8 × 2 
rectangular cross-section and Hi = 32 cm. 
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particles are dropped in from the top of the tube so that the initial 
condition resembles a randomly loose packing of granular system. Then, 
the tube was manually lifted to release all the particles to form a gran-
ular pile. For columns with square cross-sections, we measured run-out 
distances in both vertex and edge directions. For column with rectan-
gular cross-sections, we only measured run-out distances in both long 
edge and short edge directions as previously defined in Fig. 1(d) and (e). 
The corresponding normalized run-out distances, ℛ and ℛ̃, can be ob-
tained accordingly. Since the frictional coefficient was kept as constant 
during experiments, we use the initial aspect ratio, α, as the x− axis in 
the figures (Fig. 11), without considering the corresponding effective 
aspect ratio, αeff. 

Fig. 11(a) and (b) shows the initial condition and the final granular 
pile of a granular column collapse from a tube with a square cross- 

section. We can see that, even thought the final deposition pattern still 
shows some clue of the initial square cross-section, Particles in the edge 
direction are catching up to make the final pattern approximately cir-
cular. Figure 11(c) shows the relationship between the normalized run- 
out distance and the initial aspect ratio of granular columns with square 
cross-sections. For the same initial aspect ratio, the normalized run-out 
distance in the edge directions is apparently larger than that in the 
vertex directions which shows similar behavior to that in Fig. 2(e). As we 
convert the y− axis into the equivalent normalized run-out distance, ℛ̃ in 
Fig. 11(d), the data collapse onto one curve, which is the same as that in 
Fig. 9(a). No obvious size effect is shown in Fig. 11(d) because that Rv

i is 
only approximately 1.4 times of Re

i . 
Fig. 11(e) shows experimental results of granular columns with 

40 mm × 21 mm rectangular cross-sections. Similar to Fig. 4(e), the 
normalized run-out distance in the long-edge direction is larger than 
that in the short-edge direction. As we shift the measuring direction from 
the edge direction to the vertex direction, the transitional initial aspect 
ratio also changes accordingly. In Fig. 11(f), we plot the relationship 
between ℛ̃ and α in both short-edge and long-edge directions. The 
equivalent normalized run-out distance in the long-edge direction be-
comes larger than that in the short-edge direction, and significant size 
effect can be observed since the initial radius in the long-edge direction 
is almost twice the initial radius in the short-edge direction. The 
experimental work shows significant similarities in both cross-section 
shape influence and size effects with the simulation results we pre-
sented earlier. This set of experiments confirms that, due to the influence 
of cross-sesction anisotropy, particles tend to flow towards certain di-
rections, and size effect caused by different initial radii for granular 
columns with non-circular cross-sections should be considered. 

5. Conclusions 

In this paper, we explore the influence of cross-section shapes on the 
collapse of granular columns. Four different cross-sections are consid-
ered: square, equilateral triangular, 6 × 3 rectangular, and 8 × 2 

Fig. 9. Relationship between the equivalent normalized run-out distance, ℛ̃, and the effective aspect ratio, αeff, of granular columns with (a) square cross-sections, 
(b) equilateral triangular cross-sections, (c) 6 × 3 rectangular cross-sections, and (d) 8 × 2 rectangular cross-sections. The markers are the same as those in Figs. 2–5. 

Fig. 10. Relationship between ℛ̃(Ri/d)β1/ν and 𝒜 = (αeff − αc∞)(Ri/d)1/ν, 
which considers the size effect of granular columns with different cross- 
sections. The markers are the same as those in Figs. 2–5 and the dashed 
curve is a fitting line 
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rectangular. We show that the normalized run-out distance in the edge 
direction tends to be larger than that in the vertex directions when they 
have similar initial aspect ratios or effective aspect ratios. It indicates 
that the geometric factor plays an important role in determining the run- 
out distance of granular column collapses. This might be important 
when dealing with other problems in granular physics. 

We propose that using an equivalent initial radius, instead of using 
the initial radius in the measuring direction, to normalize the run-out 
distance in that direction, performs better in terms of collapsing the 
simulation data. In this study, we defined the equivalent initial radius as 
Requiv =

̅̅̅̅̅̅̅̅̅̅
Ac/π

√
, which is the radius of the circle with the same area as 

the cross-section. Using the equivalent radius, we could obtain the 
equivalent normalized run-out distance, ℛ̃ = (R∞ − Ri)/Requiv in any 
measuring directions. However, the ℛ̃ − αeff relationship fails when 
considering the columns with rectangular cross-sections, especially 
when the length of the cross-section is much larger than the width. This 
leads us to perform the finite-size analysis to obtain the ℛ̃ − αeff rela-
tionship, and results in a universal relationship which could simulta-
neously consider the influence of inter-particle friction, particle/ 
boundary friction, initial aspect ratio, and geometric factors. 

We conclude that size effect should be considered not only when 
dealing with different granular columns but also when calculating the 
run-out distance in different direction within the same granular column. 
This becomes important when we have a geo-hazard source with an 
irregular initial geometry. We also note that, due to the nature of Vor-
onoi diagrams, the initial packing of the system is denser and more or-
dered than natural granular systems. We also believe that the run-out 
behavior of granular columns should be linked to the rheological 
properties of granular systems, which implies that the rheology of 
granular systems with different system sizes and different frictional 
coefficients should be included in the ℱ r[⋅] function so that the scaling 
law could become more physics-based. In fact, the body of study we 
have introduced here offer clues on the true form of the rheology law 

governing this behavior. Furthermore, a similar critical point should be 
observed at some micro-mechanical quantity and should be included in 
the true rheological law. Further investigations to link the behavior of 
idealized granular system and realistic geophysical flows and include 
granular rheology into the analysis of granular column collapses are still 
needed, and will be presented in future publications. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.powtec.2022.117591. 
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