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The leakage from a fracture network to a surrounding medium during drainage, or
backflow, driven by elastic relaxation, is considered. A network model is extended to
include the effects of permeable boundaries, with the permeation through the wall
assumed to be proportional to the local pressure. The regimes in which leakage is dominant
relative to the parallel flow along the channel are evaluated at different times. Results show
that, when the aperture of the channel is large enough, the parallel flow is greater than
the permeation through the wall, and the channel thickness decreases in time, t, with a
t−1/3 behaviour, as reported previously. However, when the aperture is small, the channel
thickness decreases exponentially in time. An asymptotic investigation of the solution
for a single fracture is performed and extended to network systems. The study provides
insight into the influence leakage may have on squeezing-induced flows, which is relevant
to natural and engineering systems.

Key words: porous media, lubrication theory

1. Introduction

The squeeze-induced flow of thin films is found in many engineering and natural
systems. Such cases include hydrodynamic load and thrust bearings (Venerus 2018),
hydraulic fractures (Holditch 2007), diarthrodial joints (e.g. knee and hip, Knox et al.
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2015; Karmakar & Raja-Sekhar 2018), soft robotics (Matia & Gat 2015) and various
microfluidic applications (Christov et al. 2018; Wang & Christov 2019). However, many
such applications involve not only a pressure-driven or boundary-driven motion along the
channel, but can involve permeation into either a rigid or compressible porous layer. For
example, hydraulic fracturing processes are typically characterized by the fluid–structure
interaction with a low-permeability rock layer and in some cases the interaction of discrete
fractures with high-volume natural faults or higher-permeability layers (Pritchard, Woods
& Hogg 2001; Brownlow, James & Yelderman 2016; Ray 2017).

In many of the cases mentioned above, common applications (such as microfluidic
devices, e.g. Pranzo et al. 2018) or their physical description in complex natural systems
(such as joints or fracture systems, e.g. Wei & Xia 2017) involve a network-like structure
in which flow occurs between regions with varying dimensions or mechanical properties.
Invariably, modelling physical mechanisms such as elastic deformation or leakage in
such spatially varying dynamical systems typically comes at the expense of their spatial
complexity (Inamdar, Wang & Christov 2020).

In previous papers we studied the squeeze-induced drainage dynamics for model
networks with spatially uniform properties (Dana et al. 2018), and later, power-law varying
properties (Dana et al. 2019). In this model, each fluid-filled channel was bounded by two
thin rigid plates pressed together in elastic response to a pre-strained state. In this paper,
we extend the model to account for the effects of a permeable boundary.

The flow in a single channel of the network is similar to other problems that have been
treated previously. For example, the hydrodynamic interaction between a permeable wall
and a solid particle (including the case of a variable shape factor) was discussed by Ramon
& Hoek (2012) and Ramon et al. (2013). The limit where the wall is rigid and the particle
has a flat front is analogous to the problem presented here. Venerus (2018), Karmakar &
Raja-Sekhar (2018) and Knox et al. (2015, 2017) investigated squeeze flows in liquid films
in a confined channel bounded by a porous disk in contact with either a uniform-pressure
reservoir or a sealed edge. However, they all considered the case of a constant load driving
the flow. Also, Ray (2017) studied the effect of multiple discrete sinks on leakage rates in
a porous medium in a Hele-Shaw cell, and problems describing a single hydraulic fracture
propagating in a permeable solid along with the dynamics of fluid withdrawal from a
poroelastic layer (in a single fracture) have been discussed previously by Detournay &
Garagash (2003) and Marck & Detournay (2013).

Herein, following Dana et al. (2018, 2019), we use a model of an elastic medium to
study the effect of leakage on increasingly complicated branching systems. This model is
commonly used for a shallow constant-pressure reservoir, a large cavity or a low-pressure
high-permeability layer in contact with a thin low-permeability surface, see e.g. Ray
(2017), Venerus (2018) and Pritchard et al. (2001).

The paper is structured as follows. In § 2 we formulate the model for a network of
fractures with permeable boundaries and provide an appropriate non-dimensionalization.
In § 3 we study a single channel and investigate the limits in which drainage is dominated
either by parallel flow (towards the outlet) or cross-flow (through the upper boundary).
In § 4 we present solutions for a network. Finally, in § 5 we discuss the results and their
implications and in § 6 we summarize the main conclusions.

2. Backflow from a permeable network

Backflow refers to the reversed flow or fluid drainage from a system due to the relaxation
from an initially pressurized state. In the current work, the problem formulation remains
similar to that in Dana et al. (2018) with modified boundary conditions. Consider a
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Viscous backflow from a model fracture network
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Figure 1. A model bifurcating fracture network of n generations.
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Figure 2. A schematic diagram of a single two-dimensional fracture with a permeable boundary. The fracture
is of constant length L and initial aperture h∗ = h(0). For t > 0 the upper plate is forced down by the elastic
response to a pre-strained condition and produces motion of a viscous fluid. When there is no flux at x = L, a
pressure gradient forms in the x direction and results in an approximately parabolic velocity profile towards the
outlet at x = 0 and permeation along the upper boundary (dashed line) according to (2.2).

network as a hierarchical structure originating from a single channel located at x = 0.
This channel is referred to as the outlet channel, as shown in figure 1. The outlet is the
furthest downstream point and the pressure there (for studies of backflow) is set to zero.
Upstream, the outlet channel bifurcates into two identical channels, which in turn split
identically further upstream. The complete set of channels at the same distance, or the
number of nodes from the outlet, is referred to as a generation. The network is assumed
to have n generations indexed using i, with i = 0 signifying the outlet and i = n − 1 the
furthest upstream channels. The tip end is then the furthest upstream point of the network
and flow cannot occur upstream from it (i.e. zero flux at the tip).

2.1. Governing equations
As shown in figure 2, we model the fractures in the network as simple two-dimensional
channels bounded by two parallel rigid walls, one of which is permeable, being squeezed
together by elastic forces. For simplicity, all fractures have the same constant length L and
initial aperture h∗ = h(0). Under the assumption that h∗ � L, we invoke the lubrication
approximation for the quasi-steady fluid flow between the plates. We denote pi(x, t) as
the fluid pressure distribution, hi(t) as the fracture aperture and ui(x, y, t) ≡ (ui, vi) as the
velocity field for each fracture in the ith generation. Since the plates bounding each channel
are rigid, the aperture hi(t) is solely a function of time. The permeation is assumed to occur
against a uniform negligible fluid pressure.

The boundary conditions imposed are no slip at both the top and bottom plates,
yielding a parabolic velocity profile, leading to the vertically averaged horizontal velocity
(Batchelor 2000, p. 220)

ūi(x, t) = −h2
i (t)

12μ

∂pi(x, t)
∂x

, (2.1)
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where μ is the dynamic viscosity. The bottom plate is impermeable while the permeation
through the upper plate into the foundation is assumed to be linearly proportional to the
local pressure, resulting in a permeation velocity

v
p
i [x, hi (t) , t] = k̂

μ
pi(x, t), (2.2)

relative to the moving upper plate, where the pressure in the elastic foundation is used as
the reference pressure and hence set to zero, and k̂ is the permeability k of the foundation
divided by its original (pre-strained) thickness. Thus, (2.2) corresponds to a simplified
Darcy’s law. Although this model is formulated with permeation only through a single
wall, the result (2.4) also applies to permeation through both walls (or, more generally,
for any linear coupling between pressure and permeation), provided that the constant k̂ is
appropriately adjusted.

The cross-channel velocity (measured relative to the stationary, impermeable wall) then
satisfies vi = 0 on the lower, impermeable wall, and vi = v

p
i + dhi(t)/dt on the upper,

permeable wall. The one-dimensional continuity equation is
dhi(t)

dt
+ hi(t)

∂ ūi(x, t)
∂x

+ v
p
i [x, hi(t), t] = 0. (2.3)

Substituting the velocity components, (2.1) and (2.2), into the continuity equation (2.3),
we obtain the equation for the pressure and aperture, in the form of a modified Reynolds
equation,

dhi(t)
dt

= h3
i (t)

12μ

∂2pi(x, t)
∂x2 − k̂

μ
pi(x, t). (2.4)

The dynamic boundary condition to account for the squeezing force driving the flow
was introduced and discussed by Dana et al. (2018, 2019). For simplicity of notation, we
define the position variables

x0 = 0, xi+1 = xi + L. (2.5a,b)

The force balance on the upper plate of each generation of the network is written
accordingly as ∫ xi+1

xi

pi(x, t) dx = Êhi(t)L, (2.6)

where Ê, similar to k̂, is a modified Young’s modulus of the foundation divided by its
original thickness.

We require n initial conditions for hi(t) and 2n boundary conditions for pi(x, t)
(describing zero pressure at the outlet, zero flux at the tip and continuity of pressure and
fluid flux at the bifurcating fracture junctions) to complete the problem statement,

hi(0) = h∗, (i = 0, 1, . . . , n − 1), (2.7a)

p0(0, t) = 0, (2.7b)

pi (xi+1, t) = pi+1 (xi+1, t) , (i = 0, 1, . . . , n − 2), (2.7c)

h3
i
∂pi

∂x

∣∣∣∣
(xi+1,t)

= 2h3
i+1

∂pi+1

∂x

∣∣∣∣
(xi+1,t)

, (i = 0, 1, . . . , n − 2), (2.7d)

∂pn−1

∂x

∣∣∣∣
(xn,t)

= 0. (2.7e)
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Viscous backflow from a model fracture network

The outlet pressure is set to be equal to the reference formation pressure, as any difference
between the two pressures is assumed to be small relative to the overpressure in the fracture
network.

2.2. Non-dimensionalization
Balancing all terms in (2.4) and (2.6), we define dimensionless variables by

X = (x − xi)/L, Hi = hi/
(

12k̂L2
)1/3

, Pi = pi/
(

12Ê3k̂L2
)1/3

and T = Êk̂t/μ.

(2.8a–d)

Since this non-dimensionalization involves a balance between lubrication flow and
permeation leakage, it is different from that presented in the previous studies of
impermeable networks (Dana et al. 2018, 2019). We will use the impermeable scaling,
given by (3.3) below, in some comparisons with previous results. The governing equations
(2.4) and (2.6) for Hi(T) and Pi(X, T) then become

dHi

dT
= H3

i
∂2Pi

∂X2 − Pi,

∫ 1

0
Pi dX = Hi, (i = 0, 1, . . . , n − 1), (2.9a,b)

and the initial and boundary conditions (2.7) become

Hi(0) = H∗, (i = 0, 1, . . . , n − 1), (2.10a)

P0 (0, T) = 0, (2.10b)

Pi (1, T) = Pi+1(0, T), (i = 0, 1, . . . , n − 2), (2.10c)

H3
i
∂Pi

∂X

∣∣∣∣
(1,T)

= 2H3
i+1

∂Pi+1

∂X

∣∣∣∣
(0,T)

, (i = 0, 1, . . . , n − 2), (2.10d)

∂Pn−1

∂X

∣∣∣∣
(1,T)

= 0, (2.10e)

where H∗ = h∗/(12k̂L2)1/3 is the non-dimensional initial aperture, and is the only
non-dimensional parameter of the system in addition to the generation number n. The
parameter H∗ signifies the ratio between the initial channel-parallel flow and the cross-wall
flow. When the permeability of the foundation is very low relative to the initial aperture, we
expect the channel flow to dominate at early times, H � 1. However, at late times when
the aperture becomes small enough, i.e. H � 1, we expect the cross-flow to dominate
the drainage dynamics. The limit in which cross-flow dominates is still consistent with
the lubrication requirement that the cross-channel velocity vi is small compared with the
along-channel velocity ui, since h � L.

3. Solution for a single channel

In this section, we provide an analysis for a single fracture, n = 1. With the removal of
the index i = 0 from the notation for convenience, the aperture and pressure distribution
become H(T) and P(X, T).
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3.1. Reduction to an ordinary differential equation
We solve (2.9a) for P(X, T) subject to boundary conditions (2.10b,e) to obtain

P(X, T) = dH
dT

⎡
⎢⎢⎣

cosh
(

1 − X
H3/2

)

cosh
(

1
H3/2

) − 1

⎤
⎥⎥⎦ . (3.1)

Substituting (3.1) into (2.9b), we obtain a separable, ordinary differential equation (ODE)
for H(T) and hence an implicit integral expression for the solution,

dH
dT

= H
H3/2 tanh

(
H−3/2

)− 1
⇒ T =

∫ H∗

H

1 − Z3/2 tanh
(
Z−3/2)

Z
dZ. (3.2a,b)

Since the integral cannot be evaluated analytically, we seek insight by performing
numerical calculations and exploring the asymptotic limits of the problem. The
impermeable case is recovered provided that the tanh on the right-hand side of (3.2a)
is expanded for small arguments, i.e. large apertures, H � 1.

3.2. Comparison with the impermeable case
To provide a comparison to the impermeable case, we utilize an additional set of
dimensionless variables (denoted using tildes) analogous to the sets used by Dana et al.
(2018, 2019). The new variables are related to the old ones via

Hi/H̃i = β−1/3, Pi/P̃i = β−1/3 and T/T̃ = β, (3.3a–c)

where, as in Ramon et al. (2013), β = (12k̂L2)/h∗3 = H∗−3 is the non-dimensional
permeability. The case where β = 0 was presented by Dana et al. (2018). The
non-dimensional equations (2.9b) and (2.10b–e) remain of the same form, while the
hydrodynamic equations (2.9a) become

dH̃i(T)

dT̃
= H̃3

i (T)
∂2P̃i(X, T)

∂X2 − βP̃i(X, T), (i = 0, 1, . . . , n − 1) (3.4)

and the initial conditions (2.10a) then become

H̃i(0) = 1. (3.5)

3.3. Numerical results
To obtain the time evolution of the fracture aperture H(T), we solve a dimensionless
ODE, e.g. (3.2a), in both scaling forms specified in §§ 2.2 and 3.2, with the respective
dimensionless initial condition (2.10a) or (3.5).

The numerical solutions for the aperture H(T) are presented in figure 3(a) for different
values of β. The solid line shows the analytical solution for the impermeable case (β = 0
or H∗ → ∞) obtained by Dana et al. (2018). For β � 1 the solution initially tends to
the T−1/3 late-time behaviour similar to the impermeable case. However, at later times
the solution departs from this behaviour and rapidly decreases, with larger values of β

departing earlier. We also notice that the solutions appear to depart in a similar way
regardless of the value of β. Different solutions for the aperture, H(T), presented in
figure 3(b), show that given a suitable time translation, �T , all curves collapse onto a
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Figure 3. Aperture of a single fracture (n = 1) as a function of time for different values of β = H∗−3. (a)
Numerical solutions (dashed lines) using the rescaled aperture and time variables. Solutions are presented for
seven different values in the range β = [10−3, 103] (i.e. H∗ = [0.1, 10]). The solid line is the analytic solution
of the impermeable case (β = 0). (b) Time translated numerical solutions. The round markers signify the initial
point of each translated solution. The curves were translated so that H(T) = 1 at T = 0 for the ones that did
achieve that value, and the others were placed to overlap. At late time the constant slope is the time exponent
in the semi-logarithmic plot. (c) Numerical solution of the pressure field at different times (dashed lines), for
H∗ = 10. The solutions are scaled by the instantaneous value of the aperture. The solid line (blue) is again the
analytic solution of the impermeable case and the thick (red) dot-dashed line is the asymptotic solution for the
pressure at late times (3.9).

single curve, as expected from the solution of the first-order autonomous ODE (3.2b).
Furthermore, at late times, the solutions tend to a constant slope in the semi-logarithmic
plot.

3.4. Asymptotic investigation
We non-dimensionalized equation (2.9a) such that the two terms on the right-hand side,
representing channel-parallel backflow and cross-channel leakage through the permeable
wall, respectively, are in balance when H(T) = O(1).

When H(T) � 1, the permeability is relatively small, flow through the permeable wall
is negligible, and the channel-parallel flow dominates. Expanding the tanh function to the
fifth order for large H and substituting it back into the ODE (3.2a), we obtain, at leading
order with an O(H−3) relative error,

dH
dT

= − 3
H2 ⇒ H(T) = 1(

H∗−3 + 9T
)1/3 . (3.6a,b)

This result is the solution for the impermeable case found by Dana et al. (2018) after
integration subject to the initial condition (2.10a). The solution (3.6) holds while H � 1,
i.e. for initial times 0 � T � 1 in the case H∗ � 1. When H∗−3 � T � 1 it can be further
simplified to the power law H(T) ∼ (9T)−1/3.

When H(T) � 1, i.e. late times, or small initial aperture values, the cross-flow
dominates the drainage and the channel-parallel flow becomes negligible. The ODE (3.2a)
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simplifies to
dH
dT

= −H, ⇒ H(T) = C exp (−T), (3.7a,b)

where C is an arbitrary constant. If H∗ � 1, then this solution is valid for all T and the
initial condition (2.10a) yields C = H∗. However, if H∗ � 1, then (3.7) is valid for late
times T � 1, and does not have to satisfy the initial condition. Instead, C depends on the
detailed behaviour during the transition when H = O(1).

The solution of the case H = O(1) is the full solution of the problem, where we cannot
further simplify the ODE. However, we can use the full implicit solution (3.2b) to express
the coefficient C in the late-time asymptotic result (3.7b) in terms of the initial condition
H∗. Equating the solutions (3.2b) and (3.7b), and taking the limit H → 0, we obtain

ln(C) = ln(H∗) −
∫ H∗

0
H1/2 tanh(H−3/2) dH. (3.8)

Furthermore, in the limit H∗ � 1, we obtain C ≈ exp(−0.527) ≈ 0.5904. (In the limit
H∗ � 1, we recover C = H∗.) This shows, more generally, that if a solution is known
to have the asymptotic behaviour H ∼ 9−1/3(T + A)−1/3 for H � 1, where A is some
constant, then after the transition during which H = O(1) and T + A = O(1), the
asymptotic behaviour is H ∼ C exp(−T − A) for H � 1, with C given above.

3.4.1. Pressure distribution
The time evolution of the pressure profile is plotted in figure 3(c), scaled by the
instantaneous aperture value. When H(T) is large, both the pressure distribution and
aperture behave as in the impermeable case (the blue solid line). Dana et al. (2018, 2019)
provided complete solutions for such systems. When H(T) is small, permeation is the
main drainage mechanism. Neglecting the channel-flow term on the right-hand side of the
hydrodynamic equation (2.9a) and combining with (3.7a), we obtain P(X, T) ∼ H(T) as
evident by the scaled value approaching unity at late times. However, to satisfy the outlet
boundary condition (2.10b), a boundary layer must form near the outlet. We can obtain the
boundary layer solution by expanding the full profile (3.1a) to find

P(X, T) = dH
dT

[
exp

(
− X

H3/2

)
− 1

]
, (3.9)

where H(T) is given by (3.7b). The size of the boundary layer thus obeys H3/2 � 1. This
result is shown with a thick (red) dot-dashed line in figure 3(c) and is in good agreement
with the late-time numerical results.

4. Solution for a fracture network

Advancing to the general case for a network of n generations, we discretized and reduced
the equations to ODEs (see appendix A) as previously performed for the impermeable case
by Dana et al. (2019). Numerical calculations were performed using the Matlab subroutine
ODE23s.

In this section, we will show that the asymptotic dependence of the solution for a
channel in a fracture network on the parameter H∗ is similar to that displayed in previous
sections for a single channel. Since a thorough analysis of the network behaviour in the
impermeable case was conducted by Dana et al. (2018, 2019), in this section we only
remark on the effects of substantial permeation on the general behaviour.
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Figure 4. Non-dimensional numerical solutions of pressure P(X, T)/Pmax (dashed lines) and aperture
H(X)/Pmax (solid lines) for a network (n = 4) with two different magnitudes of initial condition: (a) H∗ = 100;
(b) H∗ = 0.1. The results are scaled using the instantaneous maximum pressure Pmax.

Two numerical solutions were obtained for the case of a bifurcated network with
n = 4, for large and small values of H∗. Figures 4(ai) and 4(aii), showing the pressure
distributions (dashed curves) for a large initial condition, exhibit an initial profile in which
the bulk of the gradient is concentrated in the outlet channel, as found for the impermeable
case. However, at late times, i.e. figure 4(aiii), the pressure profile tends to the profile of the
apertures (solid curves). For small values of the initial condition, figure 4(b), the pressure
profile immediately behaves like the aperture profile without going through the behaviour
attributed to the impermeable regime. The shape of the pressure profile indicates that the
driving force for the parallel flow is diminishing due to the increased leakage through the
channel wall.

Figure 5(a) shows the time evolution of the channel apertures for the two cases from
figure 4, and confirms that the impermeable T−1/3 behaviour is obtained when the
apertures are large, i.e. H(T) � 1, while the permeation-dominated exponential decay
is obtained when the apertures are small, i.e. H(T) � 1. For the case with initial aperture
H∗ = 100, the transition from T−1/3 to exp(−T) coincides with the change in pressure
profile from having a significant gradient driving the fluid along the outlet channel
(figure 4aii) to being nearly spatially uniform within each channel (figure 4aiii). This
transition means that each of the generations in the network now drains individually,
independently of its neighbours (as parallel flow becomes negligible). However, since
all channels drain exponentially with the same rate in the permeation-dominated regime,
the aperture profile remains ‘frozen’ and is similar to that displayed in the impermeable
regime, cf. figure 5(b,c). Conversely, when the initial aperture is small, a dominant
cross-flow drainage immediately begins and the initial (uniform) aperture profile becomes
‘frozen in’ (figure 4b), rather than the aperture profile from the impermeable regime.

5. Discussion

5.1. Comparison with constant-force models
To date, many studies have tackled the problem of squeeze flow with a constant force,
the solution for which produces an asymptotic late-time dependence of a t−1/2 power
law for channels with zero-curvature surfaces, e.g. Stone (2005). Others, e.g. Knox et al.
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Figure 5. Non-dimensional numerical solutions for a network of four generations (n = 4) for two different
magnitudes of H∗ = 0.1, 100 compared with asymptotic solutions. (a) Numerical solution for both small (in
x-marked lines) and large (in solid lines) values of H∗ in time. The curves correspond with the curves in (b,c),
under the appropriate rescaling. (b) Late-time numerical results for large H∗ scaled by the −1/3 power law. (c)
Very-late-time numerical results for large H∗ scaled by the exponential of time.

(2015) and Venerus (2018), have considered the addition of a porous boundary. Figure 6
shows the difference between our model and one considering a constant force on the
boundary rather then the relaxation of a linear elastic one. For a constant force, the problem
formulation remains exactly as defined in § 2.1, but the right-hand side in (2.9b) is set
to a constant value equal to the force initially obtained in our elastic model, i.e. Êh∗L.
One of the most interesting results it produces is that, for zero-curvature (i.e. flatter than
parabolic) boundaries, contact between the two surfaces (i.e. H(T) = 0) can be reached in
finite time, because the aperture in the late-time permeable regime decreases linearly
with time and the boundary velocity is constant (Ramon et al. 2013; Knox et al. 2015).
This finite closing time is denoted by the dashed vertical line in figure 6. However, our
elastic model produces a t−1/3 power law for the impermeable regime and an exponential
behaviour for the permeable one, in which a constant velocity cannot be reached. The
differences between the two models arise from (2.9b), where the pressure on the boundary
scales like H (and thus decreases to zero with H), instead of some constant as in the case
of a constant force. Although the exponential behaviour does not provide the same finite
contact-time effect, this rapid decay accelerates the process and we can consider the idea
of contact time using some finite aperture scale that can be attributed, for example, to
surface roughness.

5.2. Contact time
If we consider the walls of the channel to reach contact when the aperture has shrunk to
a fraction ε � 1 of its initial value, then we can define the contact time Tε by H(Tε) =
εH∗. For example, figure 7 shows results for ε = 0.0001, using the alternative scaling
(3.3) based on the impermeable system. We observe that increasing the non-dimensional
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Figure 6. Comparison for a single channel between our model (with H∗ = 100) and a similar model with a
constant force of non-dimensional value H∗ = 100, so that at T = 0 the applied force in both models is the
same. The dashed vertical line denotes the contact time, i.e. H(T) = 0, in the constant-force model.
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Figure 7. Effect of permeability on volume and contact time for a single channel. (a) Retrieved volume relative
to its initial value for a single channel for different values of the non-dimensional permeability β. The values
correspond to the times presented in (b) for the same value of β. (b) Rescaled contact time, T̃ε as a function of β,
calculated for ε = 0.0001. The dashed lines are asymptotic approximations corresponding with each regime
(purely impermeable, transition and permeation dominated).

permeability β drastically reduces the (rescaled) contact time T̃ε = Tεβ
−1, as is to be

expected due to the exponential decay in the permeation-dominated regime.
We can estimate the contact time asymptotically by substituting our assumed contact

scale H(Tε) = εH∗ into the solutions obtained in § 3.4 and solving for Tε = T̃εβ. As
can be seen in figure 7, there are three asymptotic regimes corresponding to different
physics. For very small non-dimensional permeability β � ε3, the system remains in the
impermeable regime until contact occurs, and so the contact time is given by T̃ε ∼ 1/9ε3
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from (3.6b), which is naturally independent of β. For large β � 1, the system is always in
the permeation-dominated regime, so the contact time is given by T̃ε ∼ ln(1/ε)/β from
(3.7b). For the intermediate values, ε3 � β � 1, the system undergoes the transition (3.8)
between regimes, which yields T̃ε ∼ ln(0.5904β1/3/ε)/β.

5.3. Optimal outflow direction
Here, we give an example of how our model can be used to derive physical principles
that can guide the analysis of more complicated systems. We consider a non-branching
network with a rigidity gradient, i.e. a sequence of channels with increasing rigidity from
‘left’ (index i = 0) to ‘right’ (index i = n − 1), and ask whether it is better to drain the
network from the softer left end or from the more rigid right end, if the goal is to retrieve
as much fluid volume from the outlet as possible.

We first focus on a case with n = 4 generations where the rigidity of each successive
channel increases by a factor η = 1.5, and following Dana et al. (2019), we take the initial
aperture profile to correspond to a spatially uniform static pressure of non-dimensional
value H∗ = 10. This results in the non-dimensional equations (2.9b) and (2.10a) being
replaced by ∫ 1

0
Pi dX = ηiHi and Hi(0) = H∗η−i. (5.1a,b)

Also, due to the lack of branching in the network, the factor 2 in (2.10d) is removed (cf.
Dana et al. 2019). For draining from the left end, the remaining equations are unchanged,
but for draining from the right end, the locations of the zero-pressure and zero-flux
boundary conditions (2.10b) and (2.10e) are interchanged.

Figure 8(a) shows the time evolution of the aperture of each channel, draining either
from the softer left end (solid curves) or from the more rigid right end (dashed curves).
We find that the drainage towards the softer, left end is much more rapid because any fluid
that leaves through the outlet needs to pass the outlet channel, and a softer outlet channel
has a larger aperture and hence a significantly decreased flow resistance. When draining
towards the right end, the more rigid outlet channel closes rapidly and traps the fluid
in the more open channels upstream, resulting in a slower drainage of the fluid.
(The early-time temporary increase in upstream channel thickness occurs in response to
the abruptly imposed outlet boundary condition (2.10b) and the requirement to satisfy the
initially applied force on the boundary according to (2.9b).)

The consequence of the slower drainage is readily seen in figure 8(b), which shows the
evolution of the volumes of fluid retrieved through the outlet, lost through permeation into
the foundation and remaining in the system. The permeated volume initially increases at
the same rate for the two cases, as it only depends on the pressure distribution which is
initially similar. However, there is an immediate difference in retrieved volume, due to
the differing outlet apertures. As the softer outlet system rapidly drains through the outlet
(solid curves), the pressure in the network decreases and less fluid is lost by permeation.
For the opposite case (dashed curves), the more rigid outlet traps a large amount of fluid
inside the network at high pressure, resulting in the volume lost by permeation increasing
and overtaking the volume retrieved via the outlet.

We conclude that in a system with a spatially varying rigidity, placing the outlet at
the softer end rather than the more rigid end increases the outflow and reduces the volume
lost by permeation. Figure 9(a) confirms that this also holds true for a more moderate
rigidity factor η = 1.1, over a range of network sizes (2 � n � 8) and values of the
non-dimensional permeability β. We also expect this principle to be insensitive to the
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Figure 8. Results for a non-branching network with n = 4 generations, initial outlet aperture H∗ = 10, and
rigidity factor η = 1.5, comparing drainage from either the left softer (solid lines) or right more rigid (dashed
lines) ends. (a) Evolution of the aperture. (b) Evolution of the volumes of fluid remaining in the network,
retrieved via the outlet, and lost via permeation through the channel walls.

details of the model employed, so that the conclusion also applies to more realistic systems.
This expectation is also applicable to other results, such as the one depicted by figure 9(b),
discussed below.

In a similar fashion, one can also consider a network with a permeability gradient
(and, for simplicity, no branches and no variation in rigidity). Figure 10(a) shows the
time evolution of the aperture of each channel, draining either from the less permeable
outlet (solid curves, i.e. draining from left end) or from the more permeable outlet (dashed
curves, i.e. draining from right end). The permeability of the leaking wall increases by
a factor κ = 5 with each successive channel from left to right. In this case, we find
two competing effects. Initially, the network with a less permeable outlet loses fluid
to permeation faster, because the pressure is higher near the tip (i.e. its opposite end).
However, when permeation becomes significant, the walls of the more permeable channel
also close faster, so that when located at the outlet this channel traps the fluid upstream
and reduces the retrieved volume. For almost all parameter values studied, we found that
the second effect is dominant, so that more volume is retrieved when draining from the
lower-permeability end. Exceptions were found when n, κ and the overall permeability
were all small, for which draining from the higher-permeability end was more efficient,
but only by a negligibly small amount.

Figure 9(b) shows the volume retrieved from networks with a more moderate
permeability factor, κ = 2. We observe that, where there is a significant difference,
draining from the left, less permeable, end of the network yields a larger retrieved volume
compared with draining from the right, more permeable, end. This indicates that out of the
two mechanisms discussed in the previous paragraph, trapping is typically the dominant
one. This is because the more permeable outlet tends to close at a faster rate, trapping the

911 A42-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
51

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1051


A. Dana and others

1.0

0.8

0.6

0.4

0.2

0
10–5 100 105

1.0

0.8

0.6

0.4

0.2

0
10–5 100 105

N
o
rm

al
iz

ed
 r

et
ri

ev
ed

 v
o
lu

m
e

n n

β β

(a) (b)

Figure 9. Comparison of drainage from either the left (solid curves) or right (dashed curves) ends of
non-branching networks of various size (n = 2, 4, 6, 8), showing the relative fraction of initial fluid volume
retrieved at varying non-dimensional permeability β = H∗−3. (a) Rigidity factor η = 1.1 and uniform
permeability, i.e. κ = 1. (b) Permeability factor κ = 2 and uniform rigidity, i.e. η = 1.
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fluids contained in the upstream of the network. This effect is further enhanced for larger
network sizes, in which more fluid volume is contained upstream, taking longer durations
to reach the outlet (Dana et al. 2018).

6. Summary

The present study extends the model of a fracture network introduced by Dana et al. (2018)
to account for the effects of permeable boundaries on the dynamics of its elastic relaxation.
The permeation was modelled as linearly proportional to the local pressure, assuming
negligible formation pressure.

For a single fracture, a solution is found (figure 3b) to which every solution is related
by time translation (3.2b). When the aperture is sufficiently large, the parallel flow is
dominant and the solution tends to a T−1/3 time dependence as in the impermeable
case solved asymptotically by Lai et al. (2016) and Dana et al. (2018, 2019). However,
when the aperture is sufficiently small, the cross-flow is dominant and the solution decays
exponentially in time. In this exponential regime, the pressure profile tends to the aperture,
i.e. P(X, T) ∼ H(T), with a boundary layer forming near the outlet of the channel to satisfy
the zero-pressure boundary condition.

The model is then extended to consider drainage from a network of channels,
considering spatially varying rigidity and permeability. Networks were shown to be
dominated by the impermeable regime (Dana et al. 2018) when the apertures are large
enough. However, when the cross-flow is dominant, the channels behave independently
and the inter-channel flow becomes negligible. Thus, when the system has sufficient time
to tend to the asymptotic impermeable regime, we find the exponential behaviour to exhibit
a ‘frozen’ profile of the same aperture ratios. Conversely, when the initial condition is very
small, and the channels immediately behave independently, the ‘frozen’ profile is given by
the initial condition rather than by a universal late-time profile.

While the details of the numerical and asymptotic results obtained in this paper are
specific to our model, the physical principles identified can be expected to apply also to
more realistic and complex fracture networks with different (and even partially unknown)
elasticity and permeability characteristics. Initially and for large apertures, the flow
towards the outlet is dominant and the network behaves as if impermeable, but as the
apertures shrink, permeability becomes significant, which accelerates the closure of the
apertures. If the elasticity and permeability are such that pressure scales linearly with
both aperture and leakage, then an exponential decay can be expected at late times when
permeability is dominant. The permeation results in fluid being lost into the foundation
rather than being retrieved via the outlet.

If the network has a gradient in rigidity, e.g. figure 8(b), then draining the network from
the softer end results in a larger volume of fluid being retrieved. For a spatially varying
wall permeability, e.g. figure 10(b), results mainly indicated that the retrieved volume is
maximized when draining from the less permeable end when the overall contribution of
permeation is large.

We have presented an investigation of the effects attributed to leakage from channel
walls on the elastic relaxation process of model network structures. This work was
motivated, in part, in an attempt to develop a framework that may inform design of
fluid waste management from hydraulic fracture networks. These may even, in the
future, assist in the analysis of flow data from wells to gain insight into the fractured
formation, as well as decision making in the fracturing process. Additionally, the obtained
concepts may be relevant to various systems that include squeezing of viscous fluids by a
permeable surface, e.g. in the modelling of diarthrodial joints, soft robotics and various
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microfluidic applications. Further advances towards such implementations should include
validation against experimental and field observations.
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Appendix A

To numerically solve the system formulated in § 2.2, we evolve the system forward using
an explicit method. That means that at each time step we know the present Hi and need to
calculate dHi/dT by first solving an algebraic system of equations for the discrete pressure
and flux variables, p̂i = Pi(0) and q̂i = αiH3

i ∂Pi/∂X|(0,T).
Following the discretized method described by Dana et al. (2019), we obtain the set of

linear algebraic equations

αiH3
i
β̃i

2

⎡
⎢⎢⎢⎢⎣coth

(
β̃i

2

)
+ 1

coth

(
β̃i

2

)
− 2

β̃i

⎤
⎥⎥⎥⎥⎦ p̂i + q̂i (A1a)

+ αiH3
i
β̃i

2

⎡
⎢⎢⎢⎢⎣− coth

(
β̃i

2

)
+ 1

coth

(
β̃i

2

)
− 2

β̃i

⎤
⎥⎥⎥⎥⎦ p̂i+1 = αiηiβ̃iH4

i

coth

(
β̃i

2

)
− 2

β̃i

⎡
⎣ 1

sinh
(
β̃i

) − 1

β̃i

⎤
⎦ q̂i + αiβ̃iH3

i p̂i+1 −
[

coth
(
β̃i

)
− 1

β̃i

]
q̂i+1 = αiηiβ̃iH4

i , (A1b)

where β̃i = H−3/2
i . Equations (A1) contain four discrete variables, and combined with

boundary conditions p̂0 = 0, q̂n = 0, we obtain a tridiagonal matrix.
After solution using a traditional tridiagonal matrix algorithm in each time step, the

temporal evolution is given by

dHi(T)

dT
= β̃i

2
α−i (q̂i+1 − q̂i

)
coth

(
β̃i

2

)
− 1

2

(
p̂i + p̂i+1

)
. (A2)
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