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The behaviour of a viscous drop squeezed between two horizontal planes (a squeezed
Hele-Shaw cell) is treated by both theory and experiment. When the squeezing force F
is constant and surface tension is neglected, the theory predicts ultimate growth of the
radius a ∼ t1/8 with time t. This theory is first reviewed and found to be in excellent
agreement with experiment. Surface tension at the drop boundary reduces the interior
pressure, and this effect is included in the analysis, although it is negligibly small in the
squeezing experiments. An initially elliptic drop tends to become circular as t increases.
More generally, the circular evolution is found to be stable under small perturbations.
If, on the other hand, the force is reversed (F < 0), so that the plates are drawn apart
(the ‘contraction’, or ‘lifting plate’, problem), the boundary of the drop is subject to a
fingering instability on a scale determined by surface tension. The effect of a trapped air
bubble at the centre of the drop is then considered. The annular evolution of the drop under
constant squeezing is still found to follow a ‘one-eighth’ power law, but this is unstable,
the instability originating at the boundary of the air bubble, i.e. the inner boundary of the
annulus. The air bubble is realised experimentally in two ways: first by simply starting with
the drop in the form of an annulus, as nearly circular as possible; and second by forcing
four initially separate drops to expand and merge, a process that involves the resolution
of ‘contact singularities’ by surface tension. If the plates are drawn apart, the evolution is
still subject to the fingering instability driven from the outer boundary of the annulus. This
instability is realised experimentally by levering the plates apart at one corner: fingering
develops at the outer boundary and spreads rapidly to the interior as the levering is slowly
increased. At a later stage, before ultimate rupture of the film and complete separation of
the plates, fingering spreads also from the boundary of any interior trapped air bubble,
and small cavitation bubbles appear in the very low-pressure region, far from the point
of leverage. This exotic behaviour is discussed in the light of the foregoing theoretical
analysis.
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1. Introduction

The behaviour of a drop or film of viscous liquid trapped between two horizontal plates
(a Hele-Shaw cell), when the plates are squeezed together by a force F(t), presents a
problem of great practical importance in the adhesion industry Ward 2011. In this context,
investigations date back to Stefan (1874), who derived the relation between F(t) and
the separation of the plates h(t) when the upper plate is a circular disc that is impelled
downwards towards a fixed substrate, and the film extends to the disc boundary; the same
situation was treated in the more accessible review by Bikerman (1947).

When the drop does not extend to the plate boundaries, and when the squeezing force F
is positive and constant (as is the case in figure 1; see also supplementary movie 1 available
at https://doi.org/10.1017/jfm.2021.668), it is known on the basis of lubrication theory that,
when surface tension is neglected, the separation h(t) ∼ t−1/4 (Moffatt 1977), and the
corresponding drop radius a(t) increases like a(t) ∼ t1/8 (while the gap contracts, the drop
radius expands). This ‘one-eighth’ power law also applies to the gravitational spread of
a viscous liquid on a horizontal plane due to the gradient of the free surface (Huppert
1982), with important implications for the spread of lava from volcanic eruptions (Huppert
et al. 1982). For the squeezing problem, the effect of surface tension, which provides a
pressure jump across the air–liquid interface, has been considered by Ward (2006) (see
§ 2.1 below, and also § 4 where stability of the basic state is considered). Surface tension
is of critical importance when the drop is considered as forming a ‘liquid bridge’ between
the two plates (see, for example, Gaudet, McKinley & Stone 1996; Brulin, Roisman &
Tropea 2020).

When the force F is negative, i.e. when the plates are pulled apart with initial
conditions a(0) = a0, h(0) = h0 � a0, then (see § 2.2) lubrication theory leads to the
results h(t) = h0(1 − t/|t0|)−1/4 and a(t) = a0(1 − t/|t0|)1/8, where |t0| is a characteristic
time proportional to |F|/μ and μ is the dynamic viscosity of the fluid. This indicates
an incipient ‘finite-time singularity’ at time t = |t0| when, in effect, the plates separate
completely; but lubrication theory ceases to be valid when the critical time is approached,
specifically when 1 − t/|t0| ∼ (h0/a0)

8/3.
There are additional complications when F < 0, which have been reviewed by Gay

(2002). First, there is an instability due to the suction of air into the region occupied
by the more viscous liquid as its area decreases (see figure 2, which shows the effect of
levering the plates apart at one corner). This is a fingering instability, as first described by
Saffman & Taylor (1958), and as encountered in the Hele-Shaw experiments of Paterson
(1981), Paterson (1985) and Rabaut, Couder & Gerard (1988), different only in that
in their experiments air was injected at high pressure into the lower-pressure viscous
layer. Following the computational investigation of Kelly & Hinch (1997) and the related
analytical work of Shelley, Tiany & Wlodarski (1997), it was shown by Tanveer (2000) that
the stability problem is ill-posed in this sort of situation, but that the potential development
of singularities can be controlled by surface tension; this is consistent with the analysis of
the fingering instability that we present in § 5. Fractal patterns generated by fingering in a
separating-plate experiment have been compared with the results of statistical simulations
by La Roche et al. (1991). We note that fingering can be controlled to some extent, not
only by surface tension, but also through replacement of the plates by elastic membranes,
a situation of potential importance in biological contexts (Pihler-Puzović et al. 2012).
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Spreading or contraction of viscous drops between plates

(a) (b) (c)

Figure 1. Photographs of an expanding viscous drop placed between two horizontal glass plates, the upper
plate being allowed to descend under its own weight; the drop is illuminated from below and viewed from
above, and the shots were taken at the dimensionless times τ = t/t0 indicated (here t0 = 2.15 s, defined by
(2.11)). The background grid (which may be seen by zooming to expand the figure) covers a 130 mm square in
each panel, and allows measurement of the radius a(τ ) to within ±0.1 mm. Note how the opacity decreases as
the layer thickness h(τ ) decreases; (a) τ = 60, (b) τ = 172, (c) τ = 321.

Secondly, cavitation bubbles may appear in the course of plate separation, presumably
wherever the pressure would otherwise fall below the vapour pressure of the viscous
liquid; cavitation bubbles may be detected in figure 2(e), a phenomenon studied in
detail by Lakrout, Sergot & Creton (1999) using a ‘probe-tack apparatus’ and acrylic
pressure-sensitive adhesives. When varying the traction velocity, there is a transition from
a fingering regime to a cavitation regime, which has been investigated by Poivet et al.
(2004). Again, the effect of surface tension, which can counteract the traction force when
the gap is sufficiently small and is therefore crucial for effective adhesion, has been treated
by Ward (2011). This also will be reviewed in § 2.2, and again in the stability analysis of
§ 5.

There have been a number of investigations of the behaviour when the initial shape
of the drop is non-circular. This problem has been previously treated by Savina &
Nepomnyashchy (2015) (see also Savina 2021) by means of conformal mapping, and using
the Schwarz function (Davis 1974; Gustafsson & Vasiliev 2006) as earlier proposed for the
two-phase (Muskat) problem by Howison (2000). In this way, they found a solution for
the case of an initially elliptic drop (see § 4.1 for a simpler treatment of this particular
problem). Savina & Nepomnyashchy (2015) also treated the problem of a nearly circular
hypotrochoid of threefold symmetry, and came to the surprising conclusion that, under
squeezing and neglecting surface tension, the drop shape ‘evolves towards a deltoid’, a
curve with three cusps. This goes against physical intuition, and our stability analysis in
§ 4.2 comes to the opposite conclusion, namely, that quite generally, under squeezing with
a constant force, any perturbation from the circular shape is eliminated as the area of the
drop increases. This behaviour is consistent with the experiments described in § 7.

Deliberate anisotropy in the point source situation was introduced by Ben-Jacob et al.
(1985), who controlled the growth of the fingers by scribing a lattice on one of the plates.
In this way, these authors were able to identify two distinct mechanisms of finger growth,
side-branching from very regular parabolic fingers, and tip-splitting leading to dendritic
patterns. They also adopted the ‘lifting-plate’ strategy (F < 0 in our situation), by levering
the plates apart from the side, thus forcing the intrusion of air fingers into the viscous fluid,
just as in our figure 2. The stability of this situation was investigated by Zhang et al. (1998).

When an air bubble is trapped, either accidentally or deliberately, inside the viscous
drop, new problems arise. When the viscous liquid has the form of an annulus trapping a
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(e) ( f )

(b)(a) (c)

(d )

Figure 2. Continuation of figure 1, with levering at lower right-hand corner, in order to gradually open the gap
between the plates; the leverage here was increased slowly for approximately 1 min, before ultimate rupture
of the film; (a) early stage of fingering instability which starts from the ‘south–east’ sector of the boundary;
(b) tip-splitting and side-branching begins as fingers grow; (c–e) the process continues, and in (e) cavitation
bubbles can be detected in the ‘north–west’ area of the drop; ( f ) fingering fills the fluid domain, and a ‘ridge’ is
evident where fingers emanating from the north–west sector of the boundary impact those from the south–east.

circular air bubble, the ‘basic-state’ evolution can be easily determined and still follows
a one-eighth power law evolution (§ 3); but we shall find that this basic state, even under
squeezing, is unstable, the instability being driven (in a sense that will be quantified) from
the bubble boundary (§ 6). For the case of contraction (F < 0), we shall find that the
fingering instability persists and is driven primarily from the outer boundary.

The annular problem is related to the ‘three-layer problem’ involving the radial spread of
one fluid followed by another of different viscosity in a Hele-Shaw cell (Cardoso & Woods
1995; Beeson-Jones & Woods 2015). Work in this area has been much motivated by the
problem of enhanced oil recovery through a porous medium. The linear stability problem
for the radial spread resulting from successive injection of two fluids at a constant rate into
the cell has been investigated in a series of papers by Daripa (2008a, b), Daripa & Ding
(2012) and Gin & Daripa (2015). A weakly nonlinear treatment of this three-layer situation
has been recently presented by Anjos & Li (2020) and further developed numerically in
the nonlinear regime by Zhao et al. (2020).

An interesting variant on the three-layer lifting problem has been explored by Kanhurkar
et al. (2019), who introduced a small hole in the upper plate, which could be opened during
the lifting phase; this must have caused a bubble to expand from air passing through the
hole from the atmosphere during the subsequent evolution. The pressure in this bubble is
equal to the atmospheric pressure; this makes this situation very different from that studied
in the present paper, for which the pressure in the bubble is less than atmospheric during
the lifting phase by an amount given by (3.2) below; this has a strong effect on the stability
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Spreading or contraction of viscous drops between plates

characteristics, for reasons that will be evident in the sketch of figure 10(b). We comment
further on this situation in § 6.1.

The details of the experiments providing the photographs (and associated movies)
of figures 1–5 will be described in § 7. These home experiments, conducted under
the lockdown conditions of the current coronavirus epidemic, replicate lecture-room
demonstrations that we have used over many years to illustrate the one-eighth expansion
law when F > 0 and the fingering instability when F < 0. We used Lyle’s black treacle
as the working fluid, which allows for good colour contrast. When a single drop of
this fluid is placed on a fixed horizontal glass plate, and a second glass plate is placed
on the drop and allowed to descend under its own weight, the drop expands and soon
adopts an accurately circular form; the slow expansion can be allowed to continue
for several hours. The situation F < 0 can then be achieved by gently levering the
plates apart at one corner. The separation h(x, t) then varies linearly in x = (x, y), but
the fingering instability, non-uniform around the drop boundary, is nevertheless well
illustrated (figure 2). Furthermore, cavitation bubbles can be observed where the pressure
is minimal, and explained at least qualitatively in terms of the ‘hinged plate’ problem
described in § 2 of Moffatt (1964).

The trapping of a large air bubble was achieved experimentally in two quite different
ways, first by starting with a drop in the form of a circular annulus (see figure 3 and
supplementary movie 2), and second, by starting with four disjoint drops (figures 4 and 5,
and supplementary movie 3), and forcing these to expand under the weight of the upper
plate so that they merge, trapping an air bubble that is very non-circular from the outset.
In both cases, the instability that is predicted theoretically manifests itself through the
ejection of a secondary bubble from the primary bubble, allowing some air to escape. The
subsequent evolution is extremely slow, but the boundary of the air bubble remains very
non-circular throughout. When the plates are levered apart from one corner, the fingering
instability appears first from the external boundary, and later from the internal bubble
boundary, and a ridge develops, separating these two fingering ‘cohorts’.

2. The basic state

2.1. The squeezing problem (F > 0)

Consider what happens when a drop of viscous liquid of volume V and dynamic viscosity
μ is placed between two horizontal plates z = 0 and z = h(t) > 0, the upper plate being
impelled towards the fixed lower plate by a constant force F. It is observed in this situation
that, when viewed from above, the drop tends to become of circular form of expanding
radius r = a(t), where, with h(0) = h0, a(0) = a0, by conservation of volume,

π a2(t) h(t) = π a2
0 h0 = V = const. (2.1)

We shall describe this evolving circular situation, shown in figure 1, as the basic state. In
this state, provided h(t) � a(t), standard lubrication theory implies that (i) the pressure
p(r, t) is effectively independent of z and (ii) the radial velocity component u(r, z, t)
satisfies |∂u/∂z| � |∂u/∂r| and is driven by the pressure gradient according to the
equation

∂p
∂r

= μ
∂2u
∂ z 2 , (2.2)

with boundary conditions u(r, 0, t) = u[r, h(t), t]= 0. Hence

u(r, z, t) = 1
2μ

∂p
∂r

z (z − h), (2.3)
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 3. Evolution of an annular drop; stills from movie (supplementary movie 2) at time t (s) as indicated for
panels (a–f ). Panel (a): the initial, nearly circular, annular drop; (b) eruption of a secondary bubble from where
the internal curvature is maximal; the outer boundary is only weakly perturbed; (c) tip-splitting of the secondary
bubble, which has just penetrated the outer boundary; note that the colour shows that a very thin ‘wetting’ layer
of treacle has been left on both plates where the secondary bubble has evolved; (d) eruption of the secondary
bubble to the exterior as it detaches from the primary bubble; (e) eruption nearly complete; ( f ) eruption of
tertiary bubbles from the primary bubble; (g) levering at south–east corner of the plates is introduced, showing
early development of fingering instability from the outer boundary; (h) the fingers advance showing significant
tip-splitting and side-branching; puncturing is imminent; (i) a finger punctures the tertiary bubble (at the point
marked by the arrow) allowing equalisation of pressure with the exterior; ( j) no further puncturing occurs,
but a ridge is established, separating the ‘invading’ and ‘defending’ cohorts of fingers; (k) fingering spreads
right round the outer boundary and cavitation bubbles appear ahead of the advancing front; (l) the fingering
pattern is now fully established, and the ridge remains prominent, with a small gap only at the puncture point;
(a) t = 0, (b) t = 33 s, (c) t = 68 s, (d) t = 88 s, (e) t = 111 s, ( f ) t = 2654 s, (i) puncture.
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Spreading or contraction of viscous drops between plates

(e)

(b)(a) (c)

(d ) ( f )

(h)(g) (i)

Figure 4. Expansion and merging of four drops of treacle between two horizontal plates; time t in seconds
as indicated. An air bubble is trapped, but does not relax to circular form; the volume of air in the bubble (or
bubbles) is constant for so long as they remain trapped. Panel (a): initial configuration; (b) the four drops have
expanded, and a first contact is imminent; (c) first two contacts have occurred almost simultaneously, forming
cusps which immediately resolve themselves through the effect of surface tension; a third contact is imminent;
(d) the air bubble is now trapped, and its volume remains constant; (e) the fourth cusp is resolved by air
pushing into the surrounding treacle forming a secondary bubble, while the combined volume of primary and
secondary bubbles remains constant; ( f ) the secondary bubble expands and (g) penetrates the outer boundary;
(h) the secondary bubble drains to the exterior, and a tertiary bubble begins to form from the residual cusp on
the primary bubble; (i) the secondary bubble has escaped and the tertiary bubble grows very slowly; (a) t = 0,
(b) t = 3 s, (c) t = 5 s, (d) t = 8 s, (e) t = 17 s, ( f ) t = 142 s, (g) t = 182 s, (h) t = 252 s, (i) t = 272 s.

and, averaging over z,

ū(r, t) ≡ 1
h

∫ h

0
u(r, z, t) dz = − h2

12μ

∂p
∂r

. (2.4)

Mass conservation and incompressibility indicate that the radial flux Q(r, t) =
2πr h ū(r, t) at each radius r is equal to the flux −πr2 dh/dt driven downwards by the
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(e)

(b)(a) (c)

(d ) ( f )

(h)(g) (i)

Figure 5. Continuation of figure 4. Panels (a–c) show that the tertiary bubble grows extremely slowly for
over three hours and appears to attain a quasi-equilibrium. Panels (d–i) show the development of fingering
instability induced by levering the plates apart with a knife inserted at the lower right-hand corner; the levering
was gradually increased for about one minute before final rupture; (d) early stage of fingering instability at the
nearly circular outer boundary of the drop; (e) early stage of tip-splitting; ( f ) early stage of side-branching and
growth of ‘defending’ fingers from the bubble boundary; (g) advanced stage of fingering while the defending
fingers retreat and one of the ‘invading’ fingers punctures a defending finger providing a pressure-equalising
path from the bubble to the exterior; (g) invading fingers advance round the boundary, and cavitation bubbles
appear ahead of the advancing front; (i) ultimate stage of fingering, when the treacle is confined to the narrow
tree-branches and twigs that now separate the fingers. Note here the near-pentagonal ridge that separates the
invading fingers from the defending fingers, with again a single breach in the south–east sector of the ridge;
(a) t = 742 s, (b) t = 3742 s, (c) t = 11 742 s.

upper plate. It follows that

∂p
∂r

= 6 μ r
h3

dh
dt

(2.5)

and we note that

∇2p = 1
r

∂

∂r
r

∂p
∂r

= 12μ

h3
dh
dt

. (2.6)
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Spreading or contraction of viscous drops between plates

This is the particular form of ‘Reynolds’ equation’ applicable to this problem (see for
example § 3.6 of Moffatt 1977).

Let γ denote the surface tension at the liquid/air boundary. Assuming a circular
meniscus with zero contact angle, the radius of curvature is h(t)/2, so that there is a jump
of pressure 2γ /h(t) with corresponding suction across this boundary. (If the contact angle
is greater than zero, then the radius of curvature is increased, and the surface tension effect
correspondingly reduced. Note also that, for the moment, we neglect the relatively small
curvature a(t)−1 of the boundary of the drop in the {x, y} plane; this is, however, retained
in the stability calculation of § 5 below.) Under these conditions, the boundary condition
on r = a(t) is

p = pa − 2γ /h(t), at r = a(t), (2.7)

where pa is the atmospheric pressure. With this boundary condition the pressure in the
drop is then given by

p(r, t) − pa = 3μ

h3(t)
dh
dt

[
r2 − a2(t)

]
− 2γ

h(t)
= p0(r, t), say. (2.8)

The total vertical force exerted by the fluid on the upper plate is then

Fp = 2π

∫ a

0
p0(r, t) r dr = −3π μ

2h3
dh
dt

a4 − 2πγ

h(t)
a2. (2.9)

Using (2.1) and neglecting plate inertia, the force balance F = Fp gives

F = 3μV2

8π

d
dt

(
1
h4

)
− 2γ V

h2 . (2.10)

With dimensionless variables

X = h2
0/h2(t) = a4(t)/a4

0 and τ = t/t0, where t0 = 3
8π

μ

F
V2

h4
0

= 3π3

8
μ

F
a8

0
V2 ,

(2.11)
(2.10) takes the convenient dimensionless form

dX2/dτ ≡ 2X dX/dτ = 1 + λX with X(0) = 1, (2.12)

where

λ = (2γ /F)
(

V/h2
0

)
= (2γ /F)

(
π2a4

0/V
)

. (2.13)

Here, λ is the relevant dimensionless measure of surface tension. It is small (∼ 0.006)

in the experiments described in § 7, but surface tension effects can evidently still become
important as and when X increases to O(λ−1), i.e. when a/a0 increases to O(λ−1/4).

Equation (2.12) integrates to give

τ = 2
λ2

(
(X − 1)λ− log

1 + λX
1 + λ

)
, (2.14)

thus determining X implicitly as a function of τ and λ (cf. Ward 2006). For λ� 1, this
gives

τ = X2 − 1 − 2
3

(
X3 − 1

)
λ+ O

(
λ2

)
. (2.15)
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λ = 0.01

|λ| = 0.001

|λ| = 0.6

|λ| = 0.9

|λ| = 1

|λ| = 1.1

|λ| = 1.2

λ = 0.001

ττ

Figure 6. (a) Plot of X2(τ ; λ) = a8(t)/a8
0, with τ ≡ t/t0, as determined by (2.11) and (2.14), for λ =

0.001, 0.01, 0.02; note that X2 ∼ 1 + τ as λ→ 0; (b) plot of X2(τ ; |λ|), with τ = t/|t0|, for the case of
contraction F < 0 (as given by (2.19)); here X2 ∼ 1 − τ as λ→ 0.

2.0
(a) (b)

300

250

200
Slope = 1

150

100

50

1.5

1.0

0.5

50 100 150
τ

â(τ)

â8
(τ

)

200 250 300 50 100 150

τ
200 250 300

Figure 7. (a) Plot of â(τ ) ≡ a(t)/a0 for a squeezed drop; the red curve shows the function defined by (2.16a,b);
the dotted lines correspond to the three images shown in figure 1; (b) plot of â8(τ ), showing clearly the
one-eighth power law over the full range of τ .

Figure 6(a) shows X2(τ ) as determined by (2.14) for three small values of λ; as expected
from (2.15), the curves all asymptote to X2 ∼ 1 + τ as λ→ 0.

If surface tension is neglected (i.e. λ = 0), then (2.15) gives X(τ ) = (1 + τ)1/2 or
equivalently

h(τ ) = h0(1 + τ)−1/4 , a(τ ) = a0(1 + τ)1/8. (2.16a,b)

The result for a(τ ) is the ‘one-eighth power law’ (as indicated in the introduction).
Figures 1 and 7 show the results of a simple experiment (details in § 7); the one-eighth
power law shows up quite accurately in this experiment, for which t0 ≈ 2.15 s and
λ ≈ 3 × 10−3. The time taken to approach this one-eighth power law is evidently very
short in this experiment. This ‘adjustment time’ has been recently investigated by Ball &
Huppert (2019) and Webber & Huppert (2020) for the case of gravitational spread of a
viscous fluid (Huppert 1982). They found that this time, somewhat independent of initial
conditions, can be just fractions of a second in laboratory experiments, but many days in
geological situations, where the extremely viscous lava domes from volcanic eruptions can
eventually spread horizontally to hundreds of kilometres.

2.2. The contraction problem F < 0
If F < 0 (i.e. if the upper plate is pulled away from the lower plate with a constant traction
force |F|) leading to contraction of the area of the drop, then t0 < 0, and it is natural
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Spreading or contraction of viscous drops between plates

therefore to redefine τ as τ = t/|t0|; with this modification, (2.12) becomes

dX2/dτ ≡ 2X dX/dτ = −1 + |λ| X with again X(0) = 1. (2.17)

Now, a steady state with X = 1 is possible if |λ| = 1; but, if |λ| /= 1,∣∣∣dX2/dτ

∣∣∣
τ=0

= −1 + |λ|, (2.18)

so that X2 increases or decreases from 1 according as |λ| > or < 1. If |λ| > 1, the reduction
in pressure in the drop due to surface tension is sufficient to overcome the traction force,
thus decreasing h(τ ) and increasing a(τ ), ensuring good adhesion.

Equation (2.18) now integrates to give

τ = 2
|λ|2

(
(X − 1)|λ| + log

1 − |λ|X
1 − |λ|

)
, (2.19)

again determining X implicitly as a function of τ . Figure 6(b) shows X2(τ ) as determined
by (2.19) for several values of |λ|, both less than and greater than 1. For |λ| < 1, X2 goes
to zero at a time τ ∗(|λ|), indicating a finite-time singularity [h(τ ) = ∞] at this time. If
|λ| = 0, the solution is

X = (1 − τ)1/2 so h(τ ) = h0 (1 − τ)−1/4 , a(τ ) = a0(1 − τ)1/8, (2.20)

indicating the finite-time singularity at τ = 1 anticipated in the introduction. These results
hold only for so long as h(τ ) � a(τ ), and cease to apply as τ = t/|t0| approaches the
singularity time, specifically when 1 − τ ∼ (h0/a0)

8/3. At this stage, it is to be expected
that the two plates will rapidly separate; however, as will be shown in § 4 below, the
evolution for τ > 0 is subject to a fingering instability.

More generally, if F = F(t) is time dependent, then (2.10) still holds, giving

1
h4 =

(
8π

3μ V2

) ∫ t

0
F(t′) dt′ + 1

h4
0
. (2.21)

For prescribed F(t), e.g. F(t) ∼ t α , it is then a trivial matter to obtain results analogous to
(2.16a,b); however, we shall not pursue these possibilities here.

3. Effect of a trapped air bubble

Suppose now that a bubble of air is trapped so that the viscous liquid now occupies the
annular region b(t) < r < a(t). The volume of the bubble is Vb = πb2h, and treating the
air as incompressible (see § 3.1 below), this is constant, so that

db
dt

= − b
2h

dh
dt

. (3.1)

The volume of the viscous liquid is now V = π(a2 − b2)h, and this is also constant.
This leads to only minor changes in the above analysis. Equation (2.4) obviously remains
unchanged. Also the flux balance 2πr/h = −πr2ū(r, t) dh/dt still holds, since the air
as well as the viscous liquid is assumed incompressible. Hence (2.5) remains valid also
and the pressure is still given by (2.8) for b < r < a. Noting that, as r decreases, the
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pressure jumps across the outer boundary of the annulus by −2γ /h(t) and across the inner
boundary by +2γ /h(t), the pressure pb(t) in the air bubble is given by

pb(t) = p(b, t) + 2γ /h = pa − 3μ

h3
dh
dt

(
a2 − b2

)
, (3.2)

the net result being independent of γ .
The force F = Fp is now given by

F =
∫ a

b
( p(r, t) − pa) 2πr dr + ( pb − pa)πb2. (3.3)

Using (2.8) and (3.2), we evaluate this as

F = −3πμ

2h3
dh
dt

(
a2 − b2

) (
a2 + b2

)
− 2πγ

h2

(
a2 − b2

)

= 3μV(V + 2Vb)

8π

d
dt

(
1
h4

)
− 2γ V

h2 , (3.4)

which reduces, as expected, to (2.10) when Vb = 0.
Thus again, with t0 now given by

t0 = 3μ

8πFh4
0

V(V + 2Vb), (3.5)

we arrive at the following trivial modifications of (2.16a,b) and (2.19), if surface tension is
neglected:

h(τ ) = h0(1+τ)−1/4, a(τ )=a0(1 + τ)1/8, b(τ )=b0(1 + τ)1/8, if F > 0 with τ = t/t0,
(3.6)

h(τ ) = h0(1−τ)−1/4, a(τ )=a0(1 − τ)1/8, b(τ )=b0(1 −τ)1/8, if F < 0 with τ = t/|t0|.
(3.7)

Thus the presence of the bubble merely affects the time scale of this evolution, and the
one-eighth power law still applies [now to both a(τ ) and b(τ )]. We shall find, however, that
the stability of these evolving states is seriously affected by the presence of the bubble.

3.1. Neglect of compressibility of air in the bubble
Note that, from (3.2), when dh/dt < 0, pb(t) > pa, i.e. the pressure in the bubble is greater
than atmospheric (this is essentially because ūr > 0, so that, according to (2.4), p(r, t) is
monotonic decreasing in r); the air in the bubble is therefore slightly compressed. This
effect is, however, small in the experiments described in § 7 below; for, using (3.5) and
(3.6), from (3.2) we obtain

pb(τ ) = pa + 2F h0

(V + Vb) (1 + τ)9/4 . (3.8)

With the estimates F ∼ 10 kg m s−2, V + Vb ∼ 10−5 m3 and h0 ∼ 2 × 10−3 m, we find
that 2Fh0/(V + Vb) ∼ 4 × 103 kg m−1 s−2, small compared with atmospheric pressure
pa ∼ 105 kg m−1 s−2. Thus at time τ , [pb(τ ) − pa]/pa ∼ 0.04(1 + τ)−9/4 and Boyle’s law
implies a correspondingly small reduction in the volume of the bubble due to compression.
The compressibility of the air in the bubble is therefore negligible in the conditions of
our experiment, although other circumstances can be imagined (much larger force F and
correspondingly much shorter time scale t0 as given by (2.11)) when the effect might
become significant.
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Spreading or contraction of viscous drops between plates

4. Stability of the basic state

In this section, we suppose F > 0, and for simplicity we neglect the effect of surface
tension. We suppose first that the viscous liquid covers a simply connected domain S(t)
in the {x, y}-plane, bounded by the curve C(t) : r = R(θ, t), where x = r cos θ, y = r sin θ ,
and R(θ, t) is single-valued and periodic in θ , with period 2π. The area of S(t) is

A(t) =
∫∫

S
dx dy =

∫ 2π

0

[∫ R(θ,t)

0
r dr

]
dθ = 1

2

∫ 2π

0
R2(θ, t) dθ, (4.1)

and the volume of the drop is V = h(t)A(t). With origin r = 0 at the centre-of-mass of the
drop, ∫∫

S(t)
{x, y} dx dy = 1

3

∫ 2π

0
R3(θ, t){cos θ, sin θ} dθ = 0. (4.2)

The pressure p = p(r, θ) still satisfies Reynolds’ equation (2.6), so that

∇2p = 12 μ

h3
dh
dt

, p = 0 on C(t). (4.3)

If C(t) is known at any instant t, this Dirichlet problem may be solved numerically; this
provides the basis for a step-by-step determination of the evolution of C(t) from an initial
condition C(0) = C0, say.

4.1. Elliptic drop
The situation is well illustrated by the case of an elliptic drop, for which C(t) has the form

x2

a2(t)
+ y2

b2(t)
= 1, with a(0) = a0, b(0) = b0, (4.4)

with
π a(t)b(t)h(t) = V = const. = π a0b0h0. (4.5)

We may assume b0 ≤ a0. The pressure is given by

p(x, y, t) − pa = p̂(t)
(

x2

a2(t)
+ y2

b2(t)
− 1

)
, (4.6)

so that, using (4.3),

∇2p = 2p̂(t)
(

1
a2(t)

+ 1
b2(t)

)
= 12 μ

h3
dh
dt

. (4.7)

Hence

p̂(t) = 6 μ

h3
dh
dt

a2b2

a2 + b2 = 6 μ V2

π2h5
dh
dt

1
a2 + b2 . (4.8)

The downward force F applied to the upper plate is now

F =
∫∫

S(t)
p̂(t)

(
x2

a2(t)
+ y2

b2(t)
− 1

)
dx dy = −(1/2)p̂(t)πab = −(V/2)p̂(t)/h(t).

(4.9)

The pressure contours p = const. are shown in figure 8. The pressure gradient at the
boundary, as shown by the arrows, is greater where these contours are close together;
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the rate of expansion in the y−direction is therefore greater than in the x-direction. We can
calculate these rates as follows. The x-component of velocity at the point (a, 0) is

da
dt

= ū(x, 0) = − h2

12μ

∂p
∂x

∣∣∣∣
x=a, y=0

= − h2

6μa
p̂(t) = −1

a
V2

π2h3
dh
dt

1
(a2 + b2)

, (4.10)

and hence
da2

dt
= V2

π2
d
dt

(
1
h2

)
1(

a2 + b2
) . (4.11)

Similarly,

db2

dt
= V2

π2
d
dt

(
1
h2

)
1(

a2 + b2
) , (4.12)

and it follows that a2(t) − b2(t) = constant = a2
0 − b2

0. We then have from (4.11)

d
dt

[
a4 −

(
a2

0 − b2
0

)
a2

]
= V2

π2
d
dt

(
1
h2

)
, (4.13)

so that, with the initial condition a(0) = a0, a2 satisfies the quadratic equation

a4 − (a2
0 − b2

0)a
2 = V2/π2h2, (4.14)

with relevant root

a2(t) = 1
2

(
a2

0 − b2
0

)
+ 1

2

[(
a2

0 − b2
0

)2 + 4V2/π2h2
]1/2

. (4.15)

The corresponding expression for b2(t) is

b2(t) = a2(t) −
(

a2
0 − b2

0

)
= −1

2

(
a2

0 − b2
0

)
+ 1

2

[(
a2

0 − b2
0

)2 + 4V2/π2h2
]1/2

, (4.16)

so that

a2(t) + b2(t) =
[(

a2
0 − b2

0

)2 + 4V2/π2h2
]1/2

. (4.17)

From (4.8) we then have

p̂(t) = −6 μ V2

πh4
dh
dt

[(
a2

0 − b2
0

)2
π2h2 + 4V2

]−1/2

. (4.18)

and from (4.19),

F = 3 μ V2

8π

d
dt

(
1
h4

)[
1 +

{(
a2

0 − b2
0

)
πh/2V

}2
]−1/2

, (4.19)

in agreement with (2.10) when a0 = b0.
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Spreading or contraction of viscous drops between plates

Figure 8. Plan view of the elliptic drop in the {x, y} plane: pressure contours p = const. for the particular initial
condition a0/b0 = 3, as given by (4.6); the magnitude of the pressure gradient at the boundary is indicated by
the length of the arrows.

In dimensionless form, with τ = t/t0 [where t0 is still defined by (2.11)] and ĥ(τ ) =
h(t)/h0, (4.19) becomes

d
dτ

(
1

ĥ4

)
=

[
1 + κ2ĥ2

]1/2
, (4.20)

where

κ =
(

a2
0 − b2

0

)
/2a0b0. (4.21)

Here, κ ≥ 0 is a measure of the initial eccentricity of the ellipse. With this notation, (4.15)
and (4.16) become

a2(τ )/a0b0 = κ +
[
κ2 + ĥ−2(τ )

]1/2
, b2(τ )/a0b0 = −κ +

[
κ2 + ĥ−2(τ )

]1/2
.

(4.22a,b)

The evolution is shown in figure 9 for initial conditions a0 = 1, b0 = 0.5 (so κ = 0.75). In
(a), F > 0, and the drop expands, becoming gradually more circular in form. In (b), F < 0,
and the drop contracts with increasing ellipticity [as ĥ(τ ) increases], becoming singular as
τ → τc = 0.71672 . . . , when b(τ ) → 0 and a(t) → √

3/2 = 0.8660 . . . . However, this
behaviour persists only for so long as b(τ ) � h0 ĥ(τ ), and it is moreover subject to a
‘fingering instability’. Surface tension must also become important where the curvature
of the boundary becomes large. These effects will be considered in § 5 below.

4.2. Linearised stability analysis
We here consider a circular drop with perturbed boundary

R(θ, 0) = a0 + εα0 cos nθ (4.23)

at the initial instant, where n is a positive integer, and εα0 an arbitrary initial amplitude
with 0 < ε � 1. When n = 1, the circle is merely displaced in the x-direction without
distortion; we may therefore suppose that n ≥ 2, so that (4.2) is automatically satisfied.
(When n = 2, the circle is perturbed to an ellipse.) With the choice (4.23), A(0) = πa2

0 +
1
2π ε2α2

0.
With 0 < ε � 1, the problem may be linearised. Then for t > 0, R(θ, t) = a(t) +

ε α(t) cos nθ , where a(t) is given by (2.16a,b) and A(t) = πa2(t) + O(ε2). Thus, let
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Figure 9. Evolution of an elliptic drop, with initial condition a0 = 1, b0 = 0.5, κ = 0.75 (plan views in the
{x, y} plane:); (a) expanding drop when F > 0, shown at times τ = 0, 1, 10, 102, 103 and 104; the shape
becomes gradually more circular in form; (b) contracting drop when F < 0; the minor axis of the ellipse
b(τ ) decreases to zero at the singularity time τ = 0.71672356 . . .; the contracting boundary, shown at times
τ = 0, 0.6, 0.7, 0.7166, 0.71672356, is subject to smaller-scale instabilities.

p(r, θ, t) = p0(r, t) + ε p1(r, t) cos nθ , where p0(r, t) is given by (2.8). At this level of
approximation, h(t) is still given by (2.16a,b), and since ∇2p0 = 12 μ h−3dh/dt, (2.6) gives

1
r

∂

∂r
r
∂p1

∂r
− n2

r2 p1 = 0. (4.24)

The solution, finite at r = 0, is p1(r, t) = k(t)rn, so that now p(r, θ, t) = p0(r, t) +
ε k(t)rn cos nθ .

The pressure boundary condition is now p(r, θ, t) − pa = 0 on r = a(t) + ε α cos nθ ,
and, noting that

p0(a(t) + ε α(t) cos nθ, t) − pa = p0(a) − pa

+ ε α(t) cos nθ
∂p0

∂r

∣∣∣∣
r=a

= ε a(t) α(t) cos nθ
6μ

h3
dh
dt

, (4.25)

and that
ε p1(a(t) + ε α(t) cos nθ, t) = ε k(t)an + O(ε2), (4.26)

this boundary condition (at order ε) determines k(t), leading finally to

p(r, θ, t) − pa =
[
(r2 − a2) − 2ε a (r/a)n α(t) cos nθ

] 3μ

h3
dh
dt

+ O(ε2), (4.27)

and so
∂p
∂r

=
[
r − ε n α(t)(r/a)n−1 cos nθ

] 6μ

h3
dh
dt

+ O(ε2). (4.28)

On r = R(θ, t) = a + ε α cos nθ , this therefore gives

∂p
∂r

= [a − ε (n − 1) α cos nθ ]
6μ

h3
dh
dt

+ O(ε2). (4.29)
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Spreading or contraction of viscous drops between plates

Now the curve C(t) moves according to the equation

∂R
∂t

= da
dt

+ ε
dα

dt
cos nθ = ūr(R, t) + O(ε2), (4.30)

and ūr still satisfies (2.4), i.e.

ūr = − h2

12μ

∂p
∂r

∣∣∣∣
r=a(t)+ε α(t) cos nθ

. (4.31)

At leading order, (4.30) merely confirms that a2(t) h(t) = const. At order ε, with h(t) given
by (2.16a,b), we obtain the equation for α(t),

dα

dt
= (n − 1)

2h
dh
dt

α = −(n − 1) α

8(t + t0)
, (4.32)

which integrates to give

α(t) = α0(1 + t/t0)−(n−1)/8. (4.33)

Since n > 1, this ensures that, when F > 0 and so t0 > 0, the perturbation decays to zero
as t → ∞; and in fact the higher the value of n, the more rapid is this decay.

The stability can be best understood from consideration of the sketch of figure 10(a)
which shows the particular situation when n = 5 (a fivefold hypotrochoid). Just as for the
case of an elliptic drop (figure 8), the restoring force is greater where the isobars are closer,
thus tending to restore a circular shape. Figure 10(c) shows the resulting evolution of the
drop boundary in which the slow return to a circular shape is very evident. It is here that
our conclusion differs from that of Savina & Nepomnyashchy (2015), as mentioned in the
introduction.

We note that, for general h(t), the first equality in (4.32) integrates to give

α(t)
α(0)

=
[

h(t)
h(0)

](n−1)/2

=
[

a(t)
a(0)

]−(n−1)/4

. (4.34)

Thus the perturbation amplitude α(t) increases or decreases, implying instability or
stability, according as h(t) increases or decreases (or equivalently, according as a(t)
decreases or increases) respectively.

5. Fingering instability when F < 0

When F < 0, the basic state is given by (2.19), so that, for 0 < t � |t0|,
1
h

dh
dt

= 1
4(|t0| − t)

, (5.1)

and (4.32) becomes
dα

dt
= (n − 1) α

8(|t0| − t)
, (5.2)

which integrates to give

α(t) = α0(1 − t/|t0|)−(n−1)/8. (5.3)

This shows the beginning of a ‘fingering instability’ of a type first identified by Saffman
& Taylor (1958), resulting here from the radial contraction of the region occupied by the
viscous liquid and the resulting suction of air into this region. The instability is stronger as
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Figure 10. (a) Sketch of isobars p = const., indicating the stabilising mechanism for a squeezed drop; the drop
expands more rapidly where the isobars are closer together, thus tending to restore a circular shape; (b) similar
sketch indicating the destabilising mechanism at the boundary of an air bubble, in which the pressure pb is
greater than atmospheric pressure pa (as given by (3.2)); the expansion is again more rapid where the isobars
are closer together, leading now to growth of the perturbation amplitude; (c) boundary of squeezed drop,
corresponding to the situation in (a); n = 5, ε = 0.3; times τ = t/t0 = 0, 2, 4, 8, . . . , 128; (d) destabilising
effect of air bubble, corresponding to the situation in (b); the outer boundary (blue) still spreads under
squeezing, but the inner boundary (brown) is unstable; n = 5, ε = 0.0003, η = 0.5, β(0)/α(0) = 64; τ =
0, 2, 4, 6, 8, 10, 12, 14, 16.

n increases, apparently without limit as n → ∞. In reality, as recognised by Shelley et al.
(1997), surface tension must play a role in determining the most unstable mode, an effect
that may be simply treated as follows.

Let γ be the surface tension acting at the boundary r = R(θ, t) = a + ε α cos nθ . As we
have seen in § 2, this leads to a jump in pressure 2γ /h(t) across the air/liquid interface;
this jump, independent of θ , is irrelevant for the stability of the circular shape and can be
ignored here. There is also, however, a contribution to the pressure jump from the variation
of curvature around the drop boundary. We assume that the effect of surface tension is
relatively weak for perturbation modes ∼ cos nθ for which n = O(1), and significant only
for modes for which n � 1. Then the pressure condition p(r, t) − pa = 0 on r = R should
be replaced by

p(r, t) − pa ≈ −γ
1
a2

∂2R
∂θ2 = γ n2 α

a2 cos nθ on r = a + ε α cos nθ. (5.4)
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Figure 11. Plot of α̂(τ ) = α(τ)/α0 as a function of τ = t/|t0|, for σ |t0| = 0.01 and n = 2, 8, 12, 15.

This modified boundary condition leads to a corresponding modification in (5.2), which
now becomes, after some simplification,

dα

dt
= (n − 1) α

8|t0|(1 − t/|t0|) − σ n3α

8(1 − t/|t0|)7/8 where σ =
(

2γ

3μ

)
h2

0

a3
0
. (5.5)

With τ = t/|t0|, this integrates to give

α(τ) = α0(1 − τ)−(n−1)/8 exp
[
−n3σ |t0|

{
1 − (1 − τ)1/8

}]
. (5.6)

By way of example, the function α(τ)/α0 is shown in figure 11, for the parameter
values σ |t0| = 0.01 and n = 2, 8, 12 and 15, and for the interval 0 < τ < 0.99. The modes
become increasingly unstable as n increases from 2 to 8, but by n = 12, the stabilising
effect of surface tension is evident, and the modes are rapidly damped for n � 15. More
generally, surface tension has a strong stabilising effect for modes for which (using (2.11)
and (5.5))

n � nc = (σ |t0|)−1/3 = (|F|/γ a0)
1/3. (5.7)

This leads to an estimate for the dominant mode of instability evident in figure 2 (for
details, see § 7.2 below).

6. Destabilising effect of trapped air bubble

We here follow the procedure described in § 4.2 above, to examine the stability of the
evolving state with a trapped air bubble, as described in § 3. For simplicity in this section,
we ignore surface tension and assume first that F > 0 so that dh/dt < 0. In the undisturbed
state, the viscous liquid is contained in the region a(t) > r > b(t). We suppose that the
liquid boundaries are perturbed to

r = R1(θ, t) = a(t) + ε α(t) cos nθ, r = R2(θ, t) = b(t) + ε β(t) cos nθ, (6.1a,b)

and linearise in ε. The pressure field in the region R1(θ, t) > r > R2(θ, t) still takes the
form p(r, θ, t) = pa + p0(r, t) + εp1(r, θ, t) , where ∇2p1 = 0, but now

p1(r, θ, t) = −6μ

h3
dh
dt

[
k̂(t)rn + m̂(t)r−n

]
cos nθ, (6.2)
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where k̂(t) and m̂(t) are to be determined. As before, the condition p(r, θ, t) = pa on r =
R1(θ, t) leads, at order ε, to

k̂(t) an(t) + m̂(t) a−n(t) = α(t) a(t) (6.3)

and similarly the condition p(r, θ, t) − pa = pb on r = R2(θ, t) leads, at order ε, to

k̂(t) bn(t) + m̂(t) b−n(t) = β(t) b(t). (6.4)

Solving (6.3) and (6.4) for k̂(t) and m̂(t), we obtain

k̂(t) = α an+1 − β bn+1

a2n − b2n and m̂(t) = anbn (β b an − α a bn)

a2n − b2n . (6.5a,b)

We now have
∂p
∂r

= 6μ

h3
dh
dt

r + ε
[
n k̂ rn−1 − n m̂ r−n−1

]
cos nθ, (6.6)

so that, on r = R2 = b + ε β cos nθ ,

∂p
∂r

∣∣∣∣
r=R2

= 6μ

h3
dh
dt

(b + ε β cos nθ) + ε
[
n k̂ bn−1 − n m̂ b−n−1

]
cos nθ + O(ε2). (6.7)

Hence, recalling (2.4), we have

ūr|r=R2 = ūr|0 − 1
2h

dh
dt

[
β + n

(
k̂ bn−1 − m̂ b−n−1

)]
ε cos nθ, (6.8)

where ūr|0 is the velocity in the unperturbed state. At order ε, ∂R2/∂t = ūr|r=R2 now leads
to

dβ

dt
= − 1

2h
dh
dt

{
β − n

[
2an+1bn−1α − (

a2n + b2n) β

a2n − b2n

]}
. (6.9)

Similarly, ∂R1/∂t = ūr|r=R1 leads at order ε to

dα

dt
= − 1

2h
dh
dt

{
α − n

[(
a2n + b2n)α − 2an−1bn+1β

a2n − b2n

]}
. (6.10)

With dimensionless time τ = t/t0, noting from (3.6) that

− 1
2h

dh
dt

= 1
8(1 + τ)

and
b(τ )

a(τ )
= const. = η, say, where 0 < η < 1, (6.11)

these equations may be written in the form

dα

dτ
= 1

8(1 + τ)
(A α + B β),

dβ

dτ
= 1

8(1 + τ)
(C α + D β), (6.12a,b)

where

A = 1 − n
(

1 + η2n

1 − η2n

)
, B = 2n ηn+1

1 − η2n , C = −2n ηn−1

1 − η2n , D = 1 + n
(

1 + η2n

1 − η2n

)
.

(6.13a–d)
Note that

A + D = 2, and AD − BC = 1 − n2. (6.14a,b)
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150
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β(τ)/α(τ)

β(τ)

α(τ)
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0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 12. Solution of (6.12a,b) for α(τ) and β(τ) with initial conditions α(0) = β(0) = 1 and with η =
1/2, n = 5, as in the sketch of figure 10(b); both α(τ) and β(τ) ultimately increase at the same rate, the
ratio β(τ)/α(τ) tending to a constant for large τ . This behaviour is typical of the behaviour for arbitrary
η (0 < η < 1) and arbitrary n ≥ 2.

Equations (6.12a,b) admit solutions of the form (α, β) = (α̂, β̂) (1 + τ)ω, provided

8ω α̂ = A α̂ + B β̂, 8ω β̂ = C α̂ + D β̂. (6.15a,b)

The determinant condition for a non-trivial solution reduces to

8ω = 1
2(A + D) ±

√
1 − (AD − BC) = 1 ± n, (6.16)

using the results (6.14a,b). The modes for which ω = ω1 = (1 + n)/8 and ω = ω2 =
(1 − n)/8 are respectively unstable and stable, and the corresponding ratios α̂/β̂ for these
modes simplify to [

α̂/β̂
]

1
= ηn+1 and

[
α̂/β̂

]
2

= η1−n. (6.17a,b)

For example, if η = 1/2 and n = 5, then [α̂/β̂]1 = 1/64 and [α̂/β̂]2 = 16. Thus, the
unstable mode has much larger amplitude at the bubble boundary r = b, whereas the
stable mode has much larger amplitude at the outer boundary r = a; we may think of
the instability as being ‘driven’ from the bubble boundary. These properties become more
pronounced as η decreases and/or n increases.

The general solution corresponding to arbitrary initial conditions α(0) = α0, β(0) =
β0 is of course a superposition of these modal solutions, but the unstable mode rapidly
dominates. The mechanism of this instability is indicated in the sketch of figure 10(b): the
air bubble is expanding in the mean, but the expansion is more rapid where the pressure
contours (isobars) are closer together; this obviously leads to increase of the perturbation
amplitude, as clearly evident in figure 10(d), which shows the corresponding evolution of
the inner and outer boundaries of the fluid annulus, for the choice of parameters shown in
the figure caption.

Figure 12 shows the behaviour when α(0) = β(0) = 1, η = b/a = 1/2 and n = 5.
Here, the unstable mode, for which β(τ)/α(τ) = 64, dominates for τ � 1.4. The growth
rate of this type of instability increases with n, and is controlled for large n by surface
tension, just as in § 5; we need not labour the details here.

6.1. The situation when F < 0
When F < 0, with the basic state given by (3.7) there are still two perturbation modes, one
stable and one unstable, but the unstable mode is now ‘driven’ by the fingering instability
at the outer boundary r = a(t), where the amplitude is much greater.
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We note that, as already indicated in the introduction, the situation here is very
different from that considered by Kanhurkar et al. (2019), who conducted the plate-lifting
experiment with a small hole in the upper plate, allowing for equalisation of pressure in the
air bubble with atmospheric pressure. Air can flow through the hole, so the volume of the
bubble is no longer constant as the lifting proceeds; this affects the pressure distribution
throughout the viscous fluid annulus. Our situation is different in that the volume of the
bubble is constant, and the pressure in the bubble is time dependent. This has an important
effect on the stability problem in that, for either squeezing or lifting, there are two modes of
perturbation of the basic time-dependent state, one stable and one unstable. In both cases,
the unstable mode involves growth of the perturbation at both inner and outer boundaries
of the viscous annulus.

7. Simple experimental demonstrations

7.1. Single expanding drop
As already mentioned, our ‘home experiments’ were carried out under the lockdown
conditions of the current coronavirus epidemic. The first experiment was designed to
verify the one-eighth power law (2.16a,b). The plates, of toughened glass, measured
420 mm × 280 mm × 4 mm and weighed approximately 1.127 kg. They were certainly
strong enough to resist any deformation resulting from pressure variations in the fluid.
For fluid we used Lyle’s black treacle (http://fiches.ranson.be/00006253nl-be.pdf) (density
1.41 g ml−1, viscosity μ ≈ 64.3 kg s−1m−1 at 22 ◦C). A drop of volume V = 5 ml was
placed on one horizontal plate and the second plate was placed on this and allowed to
settle, so that the downward force was F = Mg = 11.04 kg m s−2; thus μ/F = 5.82 m−2 s.
The plates were illuminated from below, and a camera was set to take shots from above
at 10 second intervals. the initial time t = 0 was set when the drop radius was a0 = 30.72
mm; thus h0 = V/πa2

0 = 1.69 mm and h0/a0 = 0.055. From (2.11), the time scale t0 for
this run was thus

t0 = 3π3 (5.82)(0.03072)8

8(5 × 10−6)2 = 2.15 s. (7.1)

Figure 1 shows photos of the expanding drop at three times τ = t/t0 = 60, 172
and 321. The background grid allowed measurement of the diameter in each case.
Figure 7(a) shows the growth of the drop radius for 0 ≤ τ ≤ 321. The measurements
agree well with the result (2.16a,b) as shown by the red curve; and figure 7(b)
shows that the one-eighth power law is remarkably well satisfied over this full time
range.

7.2. Contraction of drop by leverage
Figure 2 shows the effect of gently levering the plates open at the lower right-hand corner
some time after the stage of figure 1(c) was reached. The fingering instability immediately
develops and the fingers grow as the levering is gradually increased. The duration of
course depends on the speed at which the angle between the plates is increased, and
as the levering was applied by hand, exact repetition was not possible. This particular
sequence was taken over a period of approximately one minute, and is quite typical. The
characteristic tip-splitting and side-branching of fingers is evident, and cavitation bubbles
can be detected in the very low-pressure region in panel (e). The reason for this cavitation
may be understood with reference to the ‘hinged-plate’ problem briefly considered in § 2
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of Moffatt (1964); if two plates θ = ±α(t) are hinged at r = 0 with viscous fluid in the
gap −α(t) < θ < α(t), and if α(t) is slowly increased from a very small value, then the
pressure p(r, t) behaves like μ α̇(t) log r which becomes negative as r decreases towards
zero, so that cavitation is inevitable in this region. This is of course a two-dimensional
idealisation, but the same physical mechanism is presumably responsible for the cavitation
bubbles appearing in the present experiment.

Note that, with F ∼ 11 kg m s−2 and taking γ ∼ 0.07 kg s−2 and a0 ∼ 0.06 m (as
at the start of the leverage), the critical value nc defined in (5.7) evaluates to nc =
(|F|/γ a0)

1/3 ∼ 14. Thus we might expect of the order of 14 crests to emerge as the
instability develops; given that this is simply an order of magnitude estimate and that
the development soon becomes nonlinear, this is not inconsistent with what is evident
in figure 2.

Note further that, as a consequence of the no-slip condition, a thin residual film is left
on both plates in the regions invaded by the fingers. The thickness s of these residual
films is presumably given by s/h ∼ μU/γ , the result obtained by Bretherton (1961) for
a bubble rising in a capillary tube containing viscous liquid. In our present situation,
with μ ∼ 70 kg s−1m−1, γ ∼ 0.07 kg s−2 and the observed creeping velocity U in the
range 10−4–10−5 m s−1, this gives s/h ∼ 10−1–10−2. When h ∼ 0.1mm, the residual film
thickness s is therefore in the range 1–10 μm.

7.3. Evolution of an annular drop
Figure 3 shows an evolution sequence when the initial shape of the drop (panel a) is
as near to a uniform circular annulus as could be achieved by hand. The curvature of
the inner boundary of the annulus was inevitably not quite uniform, and where it was
maximal a perturbation immediately developed, as anticipated by the stability analysis of
§ 6. This perturbation evolves into a secondary bubble (panel b) which is ejected, leaving
the primary bubble (panel c) which deforms slowly to a distinctly non-circular shape
(panel d); the outer boundary was only weakly perturbed from a circle, The secondary
bubble detaches from the primary bubble, involving the breaking of a thin thread of
fluid, and erupts through the outer boundary (panels d,e) while a new (tertiary) bubble
grows very slowly from the residual cusp on the primary bubble; (thread breaking and
cusp formation were possibilities anticipated by Shelley et al. 1997). After approximately
45 min, the situation (panel f ) appears to be quasi-static, and very small wrinkles appear
on the outer boundary, possibly associated with slight roughness of the two plates. After a
further hour, leverage was introduced at the lower right-hand corner, and fingering rapidly
developed (panels g–i) over about one minute. A growing finger punctures the tertiary
bubble (panel g) at the point marked by the arrow, providing a connected path from the
primary bubble to the exterior. Fingers also erupt from the bubble (panel j) and encounter
the ‘invading’ fingers, forming a defensive ridge. The pattern continues to evolve round the
outer boundary (panel k), and cavitation bubbles may be detected in the ‘north–western’
sector ahead of the advancing fronts. Panel (l) shows the ultimate fingering pattern just
before rupture of the film when the plates separate completely; the ridge, which remains
a prominent feature of this pattern, is breached only at the location of the puncture
point.

7.4. Merging of four drops
We then carried out an experiment starting with four drops placed as near to the corners of
a square as could be achieved, as shown in figure 4 (panel a). As the upper plate descends,
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these drops expand and ultimately merge, trapping an air bubble (panel e). The initial
drop contact (panel c) involves an instantaneous geometrical singularity at a time τ = τc,
which is subsequently (i.e. for τ > τc) resolved by surface tension. (We should distinguish
such a singularity from the more familiar finite-time singularities, as treated for example
by Eggers & Fontelos (2015), for which a singularity develops as τ → τc and is resolved
by surface tension or some other mechanism just before the singularity occurs, i.e. for
τ < τc.) After the bubble is trapped, it shows no tendency to become circular; on the
contrary, where the curvature on the air bubble is maximal, a secondary bubble begins to
pinch off (panel g), again leaving the very thin residual films of treacle on both plates.

The formation of the secondary bubble is consistent with the qualitative description of
the bubble instability in § 6 above: the pressure contours are compressed where the bubble
curvature is large, leading to amplification of the perturbation in this region. The secondary
bubble slowly propagates towards the outer boundary, separates from the primary bubble
(a singular process analogous to the breaking of a viscous thread), and ultimately erupts
through this boundary (panel i) – again a singular process. Up to this point, the total
volume of trapped air is constant, but this falls very rapidly at the moment of eruption.
At the same time, a tertiary bubble begins to form under the continuing influence of the
pressure gradient; this suggests an iterative process, although much slower at each stage.

7.5. Contraction by levering
Figure 5 shows a continuation of the sequence of figure 4, showing first (panels a–c) the
eruption of the secondary bubble and the very slow separation of the tertiary bubble from
the primary bubble which is now much reduced in size. Note that the outer boundary
remains relatively smooth but does not become circular; this is because the internal
instability has a persistent weak disturbing effect on the outer boundary (see the comment
following (6.17a,b)). In panel (d), levering has just commenced at the lower right-hand
corner of the plates, and the first signs of the fingering instability are visible. In panel
(e), fingers erupting from the outer boundary of the drop are evident, and tip-splitting and
side-branching of the invading fingers are well developed; in panel ( f ) a ridge develops
between the invading and defending cohorts of fingers. In panel (g) the defending cohort,
now in retreat, is punctured by an invading finger; the pressure is now atmospheric
(pa) throughout the fingers and the bubbles, but less than atmospheric in the remaining
bulk of treacle; in panel (h) the invading front of fingers advances round the boundary
and cavitation bubbles appear ahead of the front. Finally, panel (i) shows that fingering
has again extended throughout the drop, to the extent that the treacle is almost entirely
contained in the narrow ‘tree branches and twigs’ that separate the fingers. The ultimate
pattern retains an imprint of the original trapped bubbles, in the pronounced pentagonal
‘ridge’, still breached at only one point in the south–east sector.

8. Conclusions

The main conclusions of this investigation may be summarised as follows.

(i) A single drop of viscous fluid subject to squeezing under a constant force F > 0 in
a Hele-Shaw cell tends to adopt a circular form, with radius a(t) increasing like t1/8

(the ‘one-eighth power law’); this is confirmed experimentally.
(ii) An initially elliptic drop subject to similar squeezing tends to circular form;

more generally, any perturbation of an expanding drop of circular form decreases
algebraically in time, i.e. the circular form is stable.
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(iii) If the same drop is subject to contraction (F < 0), then it is unstable to a fingering
disturbance whose scale is determined by surface tension; this fingering establishes
a fractal lattice that ultimately extends throughout the fluid domain, before rupture
of the film and complete separation of the plates.

(iv) Sufficiently large surface tension can lead to growth of a(t) and decrease of h(t) even
when F < 0, an important aspect of adhesion dynamics.

(v) An annular drop subject to squeezing can also follow a one-eighth power law
expansion of both inner and outer boundaries; but this expansion is unstable,
the instability growing predominantly from the inner boundary which shows no
tendency to remain circular.

(vi) The instability manifests itself through ejection of a secondary bubble from the
primary bubble leaving a residual layer on both plates whose thickness is determined
by surface tension; this secondary bubble erupts through the outer boundary of the
annular drop, and a tertiary bubble emerges from the residual cusp on the primary
bubble; this process is extremely slow.

(vii) When levering is applied to separate the plates, the fingering instability occurs at
the outer boundary of the annulus, and rapidly spreads towards the inner boundary
where much weaker fingers emerge; the bubble is punctured at a single point by an
invading finger, leading to equalisation of the pressure in the bubble with the external
atmosphere. It is like the puncturing of an inflated balloon.

(viii) As fingering continues to spread round the outer boundary, cavitation bubbles appear
in the sector opposite the point of leverage, where the pressure would otherwise fall
below the vapour pressure of the treacle; fingering ultimately extends over the whole
fluid domain just before the final sudden rupture of the film. A ridge is formed where
the invading cohort of fingers from the outer boundary impacts the defending cohort
of fingers that emerge from the bubble.

(ix) A similar sequence of events occurs when the air bubble is trapped by the expansion
of four initially disjoint drops placed at the corners of a square; in this case the
cusp singularities that occur when the drops make contact are resolved by surface
tension as the drops continue to expand. Under subsequent leverage, the processes
of fingering, puncturing, ridge formation and cavitation occur in similar manner in
this case also.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.668.
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