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Abstract. The consequences of lava flowing downhill around and over topogra-8 
phy and interacting with human-made constructions is modelled by considering 9 
the flow of a Newtonian fluid. Small obstacles can be overtopped by the flow, but 10 
topography of sufficient height will deflect the flow around it and form dry regions 11 
in the wake. Both numerical solutions and the results of laboratory experiments 12 
are discussed. We provide numerous pictures of flow patterns and evaluate the 13 
force they exert. The experimental results, focusing on flows past circular cylin-14 
ders, are in good agreement with our numerical evaluations. Flows over depres-15 
sions, which act to concentrate the flow, are also discussed.  16 

Keywords: lava flows, topographic forcings, gravity currents, flow-structure 17 
 interactions 18 

1 Introduction  19 

Volcanic eruptions and the subsequent flow of lava lead to deaths of both humans and 20 

animals, as well as resulting in destruction of many properties and dire financial prob-21 

lems. Approximately 2000 people have been killed by lava flows in the last 20 years. On 22 

average, tens of millions of cubic meters of lava are erupted each year onto the Earth’s 23 

surface, either into the atmosphere or under the oceans, travelling along the ground at 24 

speeds of up to 100km/hr. Can we predict how lava flows are diverted by natural topog-25 

raphy and by buildings? Where and in what orientation should constructions be placed 26 

to maximise the ‘dry spots’, free from lava? What is the anticipated force on a defending 27 

wall and to what height and length need it be built to play a useful role? These are some 28 

of the questions addressed in this review-like paper, which summarises material spelt 29 

out in greater detail in Hinton et al. [1,2,3].   30 

 31 
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2 The model  32 

Consider a time independent two-dimensional flow of flux 𝑄 per unit width of thin, vis-33 

cous, Newtonian liquid, of kinematic viscosity ν, to model a lava flow down an inclined 34 

plane at angle β to the horizontal. The thickness of the flow is then given by [4] 35 

 𝐻∞ = (3ν 𝑄 𝑔⁄ sin 𝛽)
1

3. (2.1) 36 

To this (vertical) lengthscale can be added horizontal and vertical lengthscales 𝐿 and 𝐷 37 

dependent on the topography or building on the slope encountered by the lava flow. 38 

Introducing downslope and cross-slope dimensionless variables 𝑥 and 𝑦, and a dimen-39 

sionless axis perpendicular to the slope 𝑧 by  40 

 (𝑥, 𝑦) = (𝑋, 𝑌) 𝐿⁄ ,       𝑧 = 𝑍 𝐻∞⁄ , (2.2) 41 

we find that the dimensionless depth ℎ(𝑥, 𝑦) of the lava satistfies [1] 42 

 (𝜕ℎ3)/𝜕𝑥 = 𝛻[ℎ3𝛻
~

(ℱ(ℎ + ℳ𝑚)], (2.3) 43 

where 𝑚(𝑥, 𝑦) is a dimensionless expression for the underlying topography, along with 44 

the governing non-dimensional parameters  45 

 ℱ = 𝐻∞/𝐿 tan 𝛽  =  (3𝜈𝑄/𝑔 sin 𝛽)1/3/(𝐿 tan 𝛽).      (2.4) 46 

and           ℳ = 𝐷 𝐿 tan 𝛽⁄ .                    (2.5) 47 

3 Flow patterns  48 

3.1 One-dimensional mounds  49 

Consider, to start and to illustrate some of the fundamental aspects of the flows, a one-50 

dimensional situation (independent of the cross-flows co-ordinate, 𝑦), with the mound 51 

given by 𝑚(𝑥). (2.3) can then be integrated once, using the boundary condition ℎ → 1 52 

as 𝑥 → −∞, to obtain  53 

 ℎ3(1 − ℳ
𝑑𝑚

𝑑𝑥
) =  1 +  ℱℎ3  

𝑑ℎ

𝑑𝑥
. (3.1) 54 

Because it is one-dimensional, all the flow must go over the mound. The most important 55 

consequence, determined from numerical solution of (3.1) for a variety of 𝑚(𝑥), ℱ and  56 

ℳ is that for small ℳ, ℳ< ℳ𝑐, where ℳ𝑐 is a critical value, dependent on the details 57 

of 𝑚(𝑥) and the value of ℱ, the flow progresses uniformly over the mound, with a down-58 

ward sloping upper surface everywhere. However, for  ℳ > ℳ𝑐 a pond develops up-59 

stream of the obstacle, the surface of which is horizontal. The value ℳ𝑐 is the smallest 60 

value of ℳ so that 1 −  ℳ𝑚′(𝑥) is somewhere negative. As an example, for 𝑚 =61 

exp(−𝑥2), ℳ𝑐 = (𝑒/2)1/2 ≈1.16.  62 

 63 
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3.2 Two-dimensional mounds  64 

For mounds described by 𝑚(𝑥, 𝑦), the flow can: go over the mound; around the mound; 65 

not reach the top of the mound (if higher than some critical value); not completely cover 66 

the ground, that is, develop ‘dry patches’ - relatively safe places to be during a lava flow. 67 

Figure 1-4 display numerically determined flow fields for a variety of ℱ, ℳ and 𝑚(𝑥, 𝑦). 68 

An interesting series of examples is provided by an elliptical mound given by  69 

 𝑚(𝑥, 𝑦) = exp{−[𝑥2 + (𝑦 𝑏⁄ )2]}, (3.2) 70 

which tends to a long barrier as 𝑏 → ∞. Figure 5 shows the expected flow thickness for 71 

two values of 𝑏. What is the force exerted on such a topographic feature, envisaged as a 72 

defending wall to an oncoming lava flow? In the limit 𝑏 → ∞, for a barrier just suffi-73 

ciently high to stop the oncoming flow (which climbs up the barrier) the maximum force 74 

~𝜌𝑔(𝐿 tan 𝛽)2, which for the illustrative values 𝐿 = 50𝑚 and tan 𝛽 = 0.25, leads to a 75 

maximum force of the order 107𝑁𝑚−1. 76 

 77 

 78 

Figure 1: Contour plots of the thickness of flow over topography specified by 𝑚 =79 

𝑒𝑥𝑝(−𝑟2) for ℱ = 0.1. a) ℳ = 0.5 and b) ℳ = 1.5. Red crosses mark the points of 80 

maximum thickness. Note the dry zone in b) 81 

 82 

 83 
Figure 2: Contour plots of the thickness of flow past a circular cylinder under the 84 

condition of no normal flow at the boundry, for ℱ = 20, 1 and 0.025.  85 

 86 
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87 
Figure 3: Contour plots of the thickness of flow around a square-on square obstacle for 88 

ℱ = 10 and 0.25. Note that the flow remains attached to the square in both cases and 89 

there is no dry region for these values of ℱ.  90 

 91 

 92 
Figure 4: Contour plot of the thickness of flow around a square rotated 45° to the 93 

oncoming flow for ℱ = 0.25.  94 

 95 

 96 
Figure 5: Contour plots of the thickness of flow over an elliptical mound with ℱ = 0.05 97 

and ℳ = 1.4 for a) 𝑏 = 0.2 and b) 𝑏 = 4.  98 

 99 
Figure 6: Calculated and experimental results for the maximum and minimum flow 100 

thickness as a function of ℱfor flow past a cylinder. A zero flow thickness indicates the 101 

existence of a dry zone downstream of the cylinder. 102 
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3.3 Experimental verification  104 

We carried out a series of experiments on a slope of width 30cm, length 120cm inclined 105 

at angles between 3.5 and 23 degrees on which we affixed (tall) cylinders of radius be-106 

tween 2.4 and 4.8cm [2]. The upstream flow thickness varied between 0.5 and 1.5cm, 107 

leading to values of ℱ between 0.5 and 7.1 (the cylinders were all tall and so ℳ is not a 108 

relevant parameter.) Figure 6 displays a compendium of the results for the maximum 109 

and minimum flow thickness, with good agreement between theoretical predictions, ob-110 

tained by numerically solving (2.3), and the experimental results.  111 

 112 

3.4 Depressions 113 

Real topography includes not only mounds and hills, but also depressions; and both 114 

together. An initial analysis of some effects due solely to depressions is contained in [3] 115 

and the flow thickness for two cases make up figure 7. For smallish depressions the flow 116 

thickness is but slightly perturbed. For deeper depressions large ponds of fluid accumu-117 

late and have a significant effect on the flow downstream.  118 

 119 

 120 

Figure 7: Flow thickness over a circular Gaussian depression for ℱ = 0.1 and a) ℳ =121 

−0.8 and b) ℳ = −1.6. 122 

 123 

Depressions are significantly different from hills because a sufficiently high hill, not 124 

touched by the flow at its higher points, does not come into contact with the flow; and 125 

hence the higher parts of the hill don’t influence the flow. No matter how deep the de-126 

pression it will influence the flow and there will be some flow (though maybe small) 127 

right to the bottom. In principle this resembles the influence of Moffatt eddies, slow 128 

motions in a sharp corner, well away from the forcing flow [5]. 129 

 130 

Of considerable interest and novelty are flows over topography containing both hills 131 

and depressions. We plan to publish on this topic in the future.  132 

 133 

3.5 Field observations 134 

Here is not the best place to compare our model results with real data taken in the 135 

field. However, numerous opportunities present themselves as outlined on Hawaii [6], 136 

Santorini [7] and elsewhere. This, too, will be reported elsewhere (Hinton et al. 2022).  137 
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 138 

4 Conclusions   139 

Lava flows are frequent on the Earth and can cause much damage. Defending people 140 

and property in such situations is a very worthwhile endeavor. Our work has begun to 141 

lay down some of the foundations and principles that might be employed.  Many further 142 

questions remain, including what shape of cross-sectional area 𝐴 (of a building) maxim-143 

ises the area of the dry zone. How sensitive is the result to the input parameters? How 144 

will the concepts we have developed be used in any way usefully during forthcoming 145 

volcanic eruptions?  146 
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