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The interaction of gravitationally driven, free-surface flows of viscous fluid with
topographic features is investigated theoretically. The motion is studied in the regime
where the depth of the flow is much smaller than the streamwise extent of the
topography. A lubrication model of the motion is developed, integrated numerically
and analysed asymptotically. For small mounds, it is shown that the flow surmounts
the obstacles, but for larger mounds the flow is deflected around it and can form
dry zones in its wake into which fluid does not flow, as well as forming deeper
ponded regions upstream. Which of these phenomena prevails is shown to depend
upon the amplitude of the mound height and the thickness of the oncoming flow
relative to the streamwise length scale over which the topography varies. By using
numerical and asymptotic results, we demonstrate that relatively wide mounds lead
to the development of deep ponds of material upstream, which may lead to flow
overtopping if the mound is not sufficiently high. These insights can be used to
inform the design of barriers that defend built infrastructures from lava flows, and it
is shown how this model can also provide an upper bound on the force exerted by
the flow on them.

Key words: magma and lava flow, topographic effects

1. Introduction
The interaction between viscous free-surface flows and topography has received

considerable attention owing to its importance in a wide range of industrial and
environmental contexts. These include the downslope migration of lava flows, which
develop when liquid magma erupts from a volcano (Sparks, Pinkerton & Hulme 1976;
Cashman, Kerr & Griffiths 2006), ice flows over Greenland and Antarctica (Rignot,
Mouginot & Scheuchl 2011) and thin ‘coating’ flows in engine bearings, printing,
painting and other manufacturing processes (Huppert 1982a; Stillwagon & Larson
1988; Kistler & Schweizer 1997; Baxter et al. 2009).

In many of these applications, the fluid flow is influenced by a range of complex
physics and this has engendered much research. As an example, modelling lava is
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Interactions of viscous flow with topography 913

particularly challenging because it is a complex fluid; as it cools, lava becomes
more viscous and subsequently solidifies, and has a yield strength that varies across
time and space (Sparks et al. 1976; Griffiths 2001; Takagi & Huppert 2010). Slow
travelling ice is often modelled as a non-Newtonian viscous fluid using a power-law
model (Glenn 1955; Hutter 1982), whilst in thin coating flows over small obstacles
such as adhered particles, surface tension plays a key role (Hansen 1986; Pozrikidis
& Thoroddsen 1991; Blyth & Pozrikidis 2006). There have also been experiments
to determine the role of inertia in thin flows over topography (Pritchard, Scott
& Tavener 1992). Many researchers simplify the flow physics by applying the
lubrication approximation. Gaskell et al. (2004) demonstrated that this is often a
good approximation even when it does not strictly apply (for example in flow over
steep topographies).

The present study is primarily motivated by how lava flows interact with topography
and how this informs the design of barriers. Lava flows can migrate into populated
areas and cause significant damage to homes and infrastructure, costing millions of
dollars to local economies (Williams & Moore 1983; Barberi & Carapezza 2013).
There have been attempts to construct barriers to divert lava flows, but these have had
limited success (Colombrita 1984; Scifoni et al. 2010). Whilst there have been some
numerical simulations and laboratory studies on controlling and diverting lava flows
(Fujita et al. 2009; Dietterich et al. 2015), there has been little theoretical analysis of
how effective barriers should be designed.

Kerr, Griffiths & Cashman (2006) suggested that the formation of crust at the
lateral edges of a downslope lava flow confines the lava to a channel of constant
width. Over a significant range of temperatures, lava behaves as a viscoplastic fluid,
with internal stresses having a significant influence on its gravity-driven flow (see
Balmforth, Craster & Sassi 2002). A key challenge for creating simplified models
of lava is determining which of its non-Newtonian properties is the most important
physical process in any given situation (Balmforth et al. 2000).

The interaction between a lava flow and topographical variations adds an extra layer
of complexity to the modelling. In order to gain insight into the role of topography,
we consider a simplified model of lava as an isothermal Newtonian fluid and since
lava flows have large length scales relative to the capillary length, we can assume
surface tension is negligible. Such viscous Newtonian flows have been studied in the
absence of undulations on a horizontal plane by Huppert (1982b), and an inclined
plane by Huppert (1982a) and Lister (1992), who showed that flow from a line source
on an inclined plane becomes steady far behind the contact line where it advances
with constant depth. These studies have been central to improving our understanding
of lava flows and they have been used extensively.

We analyse how a steady downslope viscous flow is perturbed by topography and
apply the results to inform optimal barrier construction. Larger topographical mounds
can partition the flow and lead to ‘safe’ zones in their wake in which there is no
fluid. Thus, along with determining the major features of the flow, a key aim of this
paper is to ascertain the dimensions and strength of a barrier necessary to protect a
particular location from a lava flow. An increased understanding of how lava flows
over topography is also critical for our ability to use volcanic deposits for paleoclimate
reconstructions (Edwards et al. 2013). The present work may also be of interest in
other areas, such as the glass industry, coating flows and glacier dynamics.

The paper is structured as follows. In § 2, we adapt Lister’s governing equation
for downslope viscous flows to incorporate the influence of topographical variations.
This introduces dimensionless parameters that quantify the amplitude of the mound
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and the depth of the oncoming flow. We focus on the steady flow from a sustained
source that develops at late times after the front has passed the topography and other
transient effects have diminished. In § 3 we introduce a numerical scheme to simulate
this steady problem. The results demonstrate that dry regions, in which there is no
fluid, can occur for shallow flows past sufficiently large mounds.

To provide insights to the key physics of the problem, we first consider the simpler
case of topography which varies only in the downslope direction in § 4. In this case,
dry regions cannot develop. Ponding, where the flow becomes much deeper than its
steady upstream depth, occurs upstream of any locations at which the gradient of the
topography points upwards relative to the downwards direction of gravity. We find
asymptotic expressions for the depth in the ponded region.

In § 5, we examine flow around topography that varies in both down and
cross-slope directions and extend our asymptotic approach to the flow over and
around an axisymmetric mound. The results show good agreement with our numerical
simulations, providing both a useful validation of the numerical technique and
significant insight into the dynamical controls of these flows. When the topography is
everywhere coated by the fluid, there is mathematically an ‘inner region’ in which the
flow is driven primarily by the topography and the downslope component of gravity,
matched to an ‘outer region’ in which gradients of the hydrostatic pressure associated
with the component of gravity normal to the slope become significant. The ‘inner’
expansion breaks down with the onset of dry regions. By reintroducing the diffusive
slumping terms associated with the hydrostatic pressure gradients, we calculate the
extent of the flow up the mound.

Finally, in order to apply the results to the problem of barrier construction, we
consider a wide elliptical mound in § 6. Our asymptotic analysis can be used to
determine the mound width and height and the upstream flow depth for which lava
is diverted away from a downstream region. We also calculate an upper bound for
the force exerted on the mound by the pond of lava.

2. Model
We consider the flow of a fluid of constant dynamic viscosity µ down a rigid

inclined plane at an angle β to the horizontal. We denote the downslope coordinate by
X, the cross-slope coordinate by Y , the normal distance above the inclined plane by Z
and time by T . A mound of height, Dm(X, Y) (with height scale D), is added to the
plane (figure 1), where the maximum value of m is 1. The thickness of the current is
given by H(X, Y, T). We assume that the fluid is sufficiently viscous that the effects
of both inertia and surface tension can be neglected (i.e. Reynolds and Bond numbers
are sufficiently small). We further assume that the flow is predominantly parallel to
the plane and hence the pressure, P, within the fluid is hydrostatic (Batchelor 1965),

P= P0 +1ρg[H(X, Y)+Dm(X, Y)− Z] cos β, (2.1)

where 1ρ is the density difference between the fluid and the ambient and P0 is the
ambient pressure, assumed constant. The fluid velocity in the X and Y directions is
given by

U =
1ρg
2µ

Z(Z − 2H)
[(
∂H
∂X
+D

∂m
∂X

)
cos β − sin β

]
, (2.2)

V =
1ρg
2µ

Z(Z − 2H)
(
∂H
∂Y
+D

∂m
∂Y

)
cos β, (2.3)
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ı

FIGURE 1. (Colour online) Schematic diagrams showing the steady flow over mounds.
The topography is shown in blue whilst the flow surface is shown in red. (a) An example
slope topography. (bi) Flow over a mound in the case where there is no dry region,
(bii) cross-section in the X direction along the line of symmetry. (ci) Flow around a mound
in the case where there is a dry region at the top, (cii) cross-section in the X direction.

respectively (Lister 1992). Local mass conservation is expressed by

∂H
∂T
+

∂

∂X

(∫ H

0
U dZ

)
+
∂

∂Y

(∫ H

0
V dZ

)
= 0. (2.4)

Then using our expressions for the velocities (2.2) and (2.3), we obtain as the
nonlinear partial differential equation governing the flow

∂H
∂T
+
1ρg sin β

3µ
∂H3

∂X
=
1ρg cos β

3µ
∇ · [H3

∇(H +Dm)]. (2.5)

We consider a line source far upstream of the mound supplying a flux of Q per unit
width. Lister (1992) showed that after an initial transient and away from the contact
line, the flow behind the front becomes steady and advances with constant depth

H∞ =
(

3µQ
1ρg sin β

)1/3

. (2.6)

We consider the interaction between this flow and mounds with length scale L
measured parallel to the inclined plane and we assume that the channel is much
wider than the mound so that it may be considered isolated. We note that the
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assumption of hydrostatic pressure (2.1) requires that the flow is shallow relative to
the streamwise variation (H∞ � L). In terms of the parameters in the problem, the
Reynolds and Bond numbers are

Re=
1ρU2/L
µU/H2

∞

=
H5
∞
1ρ2g

L2µ2
, Bo=

1ρgL2

γ
, (2.7a,b)

where the velocity scale is U ∼1ρgH3
∞
/(µL) (see (2.2)) and γ is the coefficient of

surface tension.
There are three length scales in the model: the mound amplitude, D; the mound’s

streamwise length scale, L; and the depth of the flow far upstream, H∞. We introduce
the following dimensionless variables

x= X/L, y= Y/L, z= Z/H∞, t=QT/LH∞. (2.8a−d)

Using (2.5), we find the following governing equation for the dimensionless depth,
h(x, y, t),

∂h
∂t
+
∂h3

∂x
=∇ · [h3

∇(Fh+Mm)], (2.9)

where

F =
H∞

L tan β
=

[
3µQ

(1ρg sin β)L3 tan3 β

]1/3

(2.10)

is a dimensionless proxy for the upstream flow depth. It quantifies the importance of
the diffusive terms on the right-hand side of (2.9), associated with the gravity-driven
slumping of the fluid, relative to the downslope advective term on the left-hand side
of the same equation, associated with the gravity-driven flow down the plane. Also

M=
D

L tan β
, (2.11)

which is the ratio of the characteristic gradient of the mound, D/L, to the gradient of
the inclined plane, tan β. Because there are three length scales in the problem, it is
fully defined by the two dimensionless parameters, F and M.

To protect towns, barriers must be many hundreds of metres wide whilst the
oncoming lava flows may have a depth of the order of metres. For a typical slope
gradient of 10 to 20 %, we find that F � 1 and we focus our attention on this limit
and investigate the effect of varying the mound height through the parameter M.

We now describe the dimensionless mound topography, m(x, y). We begin our
analysis by assuming that the mound is axisymmetric, m=m(r), where r=

√
x2 + y2.

The peak dimensional height of the mound is D and we take the origin in x, y
coordinates to be at the peak of the mound, i.e. m(0)= 1. The mound height decays
to zero away from the origin (m→ 0 as r→∞). In §§ 3 and 5, we use m= exp(−r2)

but our analysis applies to a more general class of mounds. We generalise this in § 6
to analyse non-axisymmetric mounds with elliptical contours.

Since we are interested, inter alia, in determining the shape of dry regions when
they occur, we can simplify the governing equation by restricting our attention to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.588


Interactions of viscous flow with topography 917

steady flow which occurs after the front of the current has passed the mound. In this
case the governing equation is

∂h3

∂x
=∇ · [h3

∇(Fh+Mm)]. (2.12)

The term on the left-hand side is associated with the component of gravity in the
downslope direction, while the right-hand side represents the motion due to the
gradients of hydrostatic pressure. The right-hand side comprises two terms: the first
is due to gradients of the flow thickness; while the second encodes the force due to
the underlying topography.

To determine the boundary condition as r→∞, we note that sufficiently far away
from the origin, the mound has negligible influence on the current and hence H→H∞
from which we obtain

h→ 1, as r→∞. (2.13a,b)

The dimensionless flow velocity is given by

u= 3z(z/2− h)[∇(Fh+Mm)− ex], (2.14)

where ex is the unit vector in the x direction.

3. Numerical technique

We used MATLAB’s Partial Differential Equation ToolboxTM to solve the steady
governing equation (2.12). The program uses a finite-element method and performs
adaptive mesh generation. We take the first guess to be h = 1 everywhere and then
iterate to determine the steady solution that is influenced by the topography.

The problem is symmetric about the centreline y = 0 so computational effort is
reduced by using a half-domain. We solve the governing equation on the domain
0 < y < c, a < x < b (where a < 0) with boundary conditions described as follows.
The upstream line source supplies constant flux so h(x= a)= 1. We allow ‘free flow’
on the other three boundaries which corresponds to ∂h/∂n= 0. For each pair F , M,
we run our numerical technique on a particular domain and subsequently increase the
domain size until the results become independent of further increases. For example,
with F = 0.1 and M= 0.5, we used a=−6, b= 26 and c= 5. A contour plot of the
thickness of the flow is shown in figure 2(a).

The minimum thickness of the current decreases as the mound height is increased
through the parameter M or as the upstream flow depth is decreased through the
parameter F . For sufficiently large mounds, dry regions in which the flow depth
vanishes (h = 0) can occur (see figure 2b). In the regime of very shallow upstream
flow (F� 1), the critical mound height beyond which dry regions occur is Mc≈ 1.17
for m = exp(−r2). This critical height is derived using asymptotic analysis in § 5,
where we also discuss its physical significance.

The original numerical scheme was not effective when there were dry regions. The
diffusive term in the partial differential equation (2.12) is ∇ · (h3∇h). The nonlinear
diffusion coefficient is h3, which is degenerate as h→ 0. There are large gradients in
h near the dry regions and these are unable to be resolved by the numerical scheme
and can lead to spurious and inadmissible regions of h< 0.
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FIGURE 2. (Colour online) Contour plots of the thickness of the steady flow above the
topography of shape m= exp(−r2) and of different dimensionless magnitudes, M. (a) F =
0.1 and M = 0.5, the red cross marks the maximum thickness (h = 1.183) and the red
triangle marks the minimum thickness (h= 0.519). (b) F = 0.1 and M= 1.5, the red cross
marks the maximum thickness (h= 1.463) and there is a region in which h= 0. As the
mound height is increased, dry regions occur. Note that the mound is centred at the origin
of the (x, y) plane.

We therefore introduced a small source upstream of the mound to provide a ‘virtual’
thin film over the dry region to combat this difficulty. The governing equation is
adjusted to

∂h3

∂x
=∇ · [h3

∇(Fh+Mm)] + ε(x, y), (3.1)

where ε(x, y)= ε0 exp[−(x+1)2− y2
]. The magnitude of the source, ε0, was minimized

subject to the constraint that the thin film coats the dry region. The flow’s thickness is
everywhere h> 0 and the problem can be solved as described above. The edge of the
dry region can be determined by analysing where the flow thickness increases from
its approximately constant value in the thin film. For figure 2(b) with F = 0.1 and
M= 1.5, we used ε0 = 0.008 (smaller ε0 led to regions with h< 0 in the numerical
results). We found that doubling the source magnitude to ε0= 0.016 increased the max
depth by less than 0.1 %, which demonstrates that the results from this virtual source
method are highly accurate.

The ‘dry’ region is coated in fluid owing to the ‘virtual’ source. Within the thin film
of ‘virtual’ fluid, the depth is approximately constant but there are large gradients in
h at the boundary of the film zone. The large gradients provide the location of the
boundary of the ‘dry’ region and we set h= 0 inside this region (see figure 2b).
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X

Line source

ı

FIGURE 3. (Colour online) Schematic diagram showing a ‘one-dimensional’ mound
topography which varies only in the X direction.

We now compute the flow thickness for a wide range of two-dimensional
topographies. Asymptotic analysis can help interpret the results of these computations,
but before launching into this analysis it is helpful to study the one-dimensional case
of flow over a mound which spans the channel in the y direction; m= exp(−x2) (see
figure 3). Although dry zones are not possible in this one-dimensional problem due
to the imposition of a constant volume flus, this problem provides valuable insights
into the important aspects of the problem.

4. Flow over one-dimensional mounds
For flow over a one-dimensional mound (as depicted in figure 3), the steady

governing equation (2.12) simplifies to

dh3

dx
=

d
dx

[
h3

(
F

dh
dx
+M

dm
dx

)]
. (4.1)

Mass conservation demands that the flow must all go over the bump and hence
dry regions cannot occur, in contrast to the two-dimensional problem in which the
flow may be entirely deflected around the topography. Since the flow is steady, the
downstream flux per unit width is constant everywhere and determined by the source
injection. This condition can be written as∫ h

0
u(x, z) dz= h3

(
1−F

dh
dx
−M

dm
dx

)
= 1, (4.2)

where u is the flow velocity, given by the x-component of (2.14). The condition (4.2)
cannot be satisfied if h = 0 and hence requires that h > 0 everywhere in the steady
flow over a one-dimensional mound; that is there are no dry regions possible.

We can integrate (4.1), or use the constant flux condition (4.2), to obtain the
following first-order differential equation for h(x)

h3

[
1−M

dm
dx

]
= 1+Fh3 dh

dx
. (4.3)

The numerical solution of (4.3) depends upon the shape of the mounds, given by m(x).
We solve (4.3) together with the far-field boundary condition h→ 1 as x→ ±∞,
which demands that the flow returns to its unperturbed steady state far from the
mound. In principle, we could impose the depth of the flow at some distant upstream
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FIGURE 4. (Colour online) The profiles of the steady flow over the one-dimensional
mound, m(x)= exp(−x2), as a function of streamwise distance, x. (a) Numerical solutions
to (4.3) for M=0.5 and two shallow oncoming flows, F =0.1 and F =0.02. (b) Solutions
for a larger mound, M= 1.5. The solution is no longer independent of F to leading order.
(c) The flow thickness relative to the height of the topography corresponding to F = 0.02
in (a). The vertical axis has been scaled so that the mound height is unity. (d) The flow
thickness relative to the topography corresponding to F = 0.02 in (b). In both (c) and (d),
the surface of the flow is plotted with a continuous line, while the mound is plotted with
a dotted line. The fluid ‘ponds’ upstream of the mound; the flow surface is horizontal in
coordinates parallel and perpendicular to the direction of gravity (see figure 5).

location, h(−L)= 1, where L is positive and L� 1. However, in this case numerical
integration downstream generates numerical instability and exponential growth in
h(x). Instead, we impose the condition at a downstream location, h(L) = 1, and
then straightforwardly numerically integrate to upstream locations, ensuring that the
computed solution does not depend upon the magnitude of L. In figure 4 we have
plotted our numerical results for some shallow flows (F � 1). The numerical results
exhibit a qualitative change in behaviour as M is increased past a critical value, Mc,
which will be determined below (see figure 4a where M= 0.5 and figure 4b where
M = 1.5). For M >Mc, the flow develops a deep ‘pond’ of fluid upstream of the
mound.

We illustrate the qualitative change in behaviour in figure 5. Increasing the mound
height beyond a critical value, Mc, leads to a region in which the topography is
upslope (between x1 and x0 in figure 5b). The qualitative change in behaviour occurs
at Mc because the current cannot flow up a slope, even with a very shallow gradient,
until sufficient fluid has accumulated in a pond to overtop the highest part of the slope.
This is because the flow is shallow and viscously controlled, with inertia playing only
a negligible role.

The critical mound height, Mc, corresponds to a mound at which the topography
first becomes horizontal at a single point. This can be seen by noting that the gradient
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x2
x1

x0

(a) (b)

FIGURE 5. (Colour online) Cartoons of the two flow regimes: (a) M < Mc and
(b) M >Mc. At the points x1 and x0, the topography is horizontal with an inflection
point in between. The ‘pond’ re-joins the regular expansion at the upstream point x2.

of the topography relative to gravity is given by (cf. (2.2))

(D/L)m′(x)− tan β =−tanβ[1−Mm′(x)]. (4.4)

For the case m = exp(−x2), the expression 1 −Mm′(x) is strictly positive provided
that

M<Mc = (e/2)1/2 ≈ 1.16 . . . (4.5)

and hence there are no regions of upslope topography in this case. For M >Mc,
the expression, 1−Mm′(x), is negative in a region which we label x1 < x< x0 (see
figure 5b).

Figure 4(a) suggests that for sufficiently small mound heights, M, the flow
thickness is of order unity throughout the domain in the regime F � 1, because
the motion is predominantly driven by the downslope component of gravity and the
contribution due to the gradient of hydrostatic pressure is negligible. This motivates
a regular expansion, hR(x), in terms of the small parameter F

h≡ hR(x)= h0(x)+Fh1(x)+ · · · . (4.6)

The governing equation (4.3) together with the far-field boundary condition h→ 1 can
be used to determine

h0 = [1−Mm′(x)]−1/3, h1 =Mm′′(x)[1−Mm′(x)]−8/3/9, (4.7a,b)

and the first two terms in the expansion for h are

h∼ [1−Mm′(x)]−1/3
+FMm′′(x)[1−Mm′(x)]−8/3/9+ · · · . (4.8)

This expansion is plotted as a red dashed line in figure 6(a) for F = 0.1 and M= 0.5.
It shows excellent agreement with the numerical solution, which is plotted as a
continuous black line. Equation (4.8) predicts that the flow thickness at leading order
is independent of F , which agrees with the numerical solutions in figure 4(a).

Figure 6(b) illustrates that for a larger mound (M= 1.5), there is a deep region in
which our expansion (4.8) does not agree with the numerical results; this indicates that
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FIGURE 6. (Colour online) The thickness of the flow as a function of streamwise distance,
showing the comparison between the numerical solutions (continuous black lines) and
asymptotic approximations found in § 4. (a) For the smaller mound regime (M= 0.5), the
O(1) expansion given by (4.8) and plotted as a red dashed line is accurate everywhere.
(b) For a larger mound (M = 1.5), the O(1) expansion is not valid in the large depth
region and is in fact singular here. We plot the O(F−1) expansion (4.18) in red dots,
noting that this is valid only within the ponded region and is matched to the regular
expansion outside of this zone.

a different approach is required. The solution for hR(x) is invalid because it becomes
singular if there is a solution to the equation

1−Mm′(x)= 0. (4.9)

For M>Mc, there are two (negative) solutions to (4.9), which we label x1 < x0 < 0
and (4.8) no longer provides a complete asymptotic solution for the depth of the fluid
layer over the entire domain (see figure 5). Our expansion (4.8) is valid for M<Mc,
and in this case the solution is accurately provided by (4.8), as illustrated by
figure 4(a). However, for larger mounds it is not asymptotic near x0 and x1; the second
term in (4.8) is more singular than the first, and thus a new expansion is required.

To determine the revised asymptotic form of the solution in the regime M>Mc,
we return to the governing equation (4.3). We note that the regular asymptotic series
(4.8) was derived on the basis that the gradient of the flow thickness was negligible.
As the singular points of the regular series are approached (namely, x= x0 and x= x1),
it is no longer the case that the gradients are negligible; instead they play a leading
order role in the form of the solution. This motivates a different asymptotic expansion
in the ‘ponded’ region, close to but upstream of the peak of the mound, within which
the flow is relatively thick. In the ponded region we write

h≡ hp(x)=F−1ĥ−1 + γ (F)ĥ0 + · · · , (4.10)

where γ (F)� F−1 is to be determined. This form of solution is restricted to the
ponded region; far-field boundary conditions may not be applied directly and instead
the solution must be matched to the regular series, hR(x) at ‘transition’ zones close to
x= x0 and x= x2 (< x1), the latter of which is to be determined as part of the solution
(see figure 5).
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Substituting hp(x) into (4.3) and balancing terms of the same asymptotic order, we
find that

ĥ−1 = x−Mm(x)+ c−1, and ĥ0 = c0, (4.11a,b)

where c−1 and c0 are constants to be determined.
First we match to the downstream form of the flow thickness by analysing the

governing equation close to x= x0. We introduce the following rescaled variables

x= x0 + (F 3/X 4)1/7η, and h= (FX )−1/7H(η), (4.12a,b)

where X = −Mm′′(x0). The leading-order terms in the governing equation in the
regime F � 1 are then given by

η=
1

H3
+

dH
dη
. (4.13)

Matching to the downstream regular expansion (4.8), we obtain

H→ η−1/3
+

1
9η
−8/3, as η→∞. (4.14)

We note that the distinguished scalings of (4.12) are deduced by balancing the terms
downstream (4.14). Numerically integrating (4.13), we find that

H→ 1
2η

2
+ 1.611 . . . as η→−∞, (4.15)

and this condition must match the form of the solution in the ponded region. Thus
evaluating (4.10) as x→ x0 by substituting for x in terms of η given by (4.12), we
find that

hp ∼F−1
[x0 −Mm(x0)+ c−1] + (FX )−1/7η2

+ γ (F)c0 + · · · . (4.16)

Matching (4.15) and (4.16), we determine that γ (F)=F−1/7 and that

c−1 =−x0 +Mm(x0), and c0 = 1.611[−Mm′′(x0)]
−1/7. (4.17a,b)

In the ponded region, the asymptotic expansion is given by

hp ∼F−1
[x− x0 +M(m(x0)−m(x))] + 1.611F−1/7

[−Mm′′(x0)]
−1/7
+ · · · . (4.18)

Upstream of the mound, the ponded zone re-joins a region that is modelled accurately
by the regular expansion hR(x) around the location x = x2. We introduce a rescaled
independent variable in this zone to capture the transition in the solution between the
ponded and regular asymptotic series. In this case the distinguished scaling is

x= x2 +Fξ, and h= ĥ(ξ). (4.19a,b)

In terms of these variables the leading-order terms in the governing equation become

1−Mm′(x2)=
1

ĥ3
+

dĥ
dξ
. (4.20)
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FIGURE 7. (Colour online) Maximum flow thickness as a function of the dimensionless
amplitude of the mound for F = 0.02. The numerically calculated thickness is plotted as
a continuous black line; the asymptotic prediction is plotted as a red dashed line.

The matching condition upstream is that the regular series is approached and thus
ĥ→[1−Mm′(x2)]

−1/3 as ξ→−∞. Substituting for x in the ponded expression (4.18)
and evaluating this when ξ � 1, we find that

hp =F−1
[x2 −Mm(x2)+ c−1] + c0F−1/7

+ ξ [1−Mm′(x2)] + · · · . (4.21)

Thus we deduce that

x2 = x0 +M[m(x2)−m(x0)] +F 6/71.611[−Mm′′(x0)]
−1/7
+ · · · . (4.22)

This completes the asymptotic solution for the thickness of the flowing layer in the
regime F � 1. In figure 6(b) we show that it captures accurately the numerically
computed behaviour for a particular parameter value.

We calculate numerically the maximum flow thickness that occurs as the fluid flows
over the mound, hm, as a function of the dimensionless amplitude of the mound, M
(see figure 7), noting its weak dependence on M for values less than the critical value,
Mc, but its much stronger dependence for values in excess of the critical value. This
quantity may also be evaluated directly from our asymptotic expansions for hR and hP.
When M<Mc, the maximum depth occurs at xm(< 0) where m′′(xm)= 0 and hm =

hR(xm); for m(x)= exp(−x2) this means that xm=−1/
√

2 and hm= (1−M/Mc)
−1/3.

When M>Mc, the maximum occurs at x= x1, since this is where dhp/dx vanishes
and so the maximum height is given by

hm =F−1
{x1 − x0 −M[m(x1)−m(x0)]} + c0F−1/7. (4.23)

We have found two regimes for the flow over a one-dimensional mound in the
case of a shallow upstream depth (F� 1). For smaller mounds, the flow thickness is
everywhere comparable to the upstream depth, but for mounds higher than a critical
threshold (M >Mc), there is a region upstream of the mound in which the fluid
‘ponds’ much deeper than the upstream depth.

The critical dependence of the flow behaviour on the mound height will inform our
study of two-dimensional mounds in the next section.
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Interactions of viscous flow with topography 925

5. Flow over two-dimensional mounds
The governing equation for steady flow over a mound is given by (2.12) and in

this section we analyse the motion when the mound varies both laterally and in the
downslope direction. In contrast to one-dimensional mounds (§ 4), the flow in this
scenario need not surmount the obstacle, but rather may be totally deflected around it.
In this section we analyse the motion in the regime F � 1 and M=O(1) in which
the flowing layer is much shallower than both the amplitude and streamwise extent of
the mound.

We follow a similar analysis as for the one-dimensional problem (§ 4) to determine
how the size of the mound controls the steady flow and in particular determine when
the flow does not surmount the mound, leading to a dry region. Motivated by the
numerical results shown in figure 2(a), we seek a regular expansion for the flow
thickness for smaller mounds in the form

h≡ hR = h0 +Fh1 + · · · . (5.1)

Then, at leading order, we find the first-order partial differential equation for h0[
1−M

∂m
∂x

]
∂h3

0

∂x
−M

∂m
∂y
∂h3

0

∂y
=Mh3

0∇
2m. (5.2)

This equation neglects the diffusive slumping terms in the governing equation (2.12).
We use the method of characteristics to find the following solution to (5.2)

dx
ds
= 1−M

∂m
∂x
,

dy
ds
=−M

∂m
∂y
,

d log(h3
0)

ds
=M∇2m, (5.3a−c)

where s parameterises the characteristics. The characteristic projections in the (x, y)
plane and the flow thickness, h0(s), along some of the characteristics are plotted in
figure 8.

We observe that for M<Mc, dx/ds is nowhere 0, where Mc= (e/2)1/2 (see (4.5))
takes the same critical value as found for the one-dimensional mound. It corresponds
to the smallest mound for which there is a point at which the topography is horizontal
relative to the direction of gravity. As in the one-dimensional problem, we anticipate
a qualitative change in behaviour at Mc and begin our analysis by studying smaller
mounds defined by M<Mc.

In the (x, y) plane, the shape of the characteristic curves for (5.2) are given by

dy
dx
=

2Mye−r2

1+ 2Mxe−r2 , (5.4)

where r2
= x2
+ y2 and m= exp(−r2). The characteristics are plotted for M=0.5<Mc

in figure 9(ai).
The depth far upstream of the mound is unity and we can numerically integrate the

system (5.3) to obtain the leading-order thickness, h0. We plot a cross-section through
the line of symmetry (y= 0) of h0 in figure 9(aii).

Far downstream, the characteristic solution converges to a shape which is
independent of x since dy/ds and dh/ds tend to zero; we denote

h∞( y)= lim
x→∞

h0(x, y). (5.5)
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FIGURE 8. The asymptotic solution for flow over a two-dimensional mound, h0(x, y), in
the case that the diffusive slumping terms are neglected. The characteristics for (5.2) are
plotted in the (x, y) plane for M= 0.5 in (ai), for M= 1.25 in (bi) and for M= 1.5 in
(ci) for four upstream cross-flow positions, yu. The characteristics are parameterised by s
(see (5.3)). The leading order flow thickness, h0(s), is plotted along the four characteristics
for M= 0.5, M= 1.25 and M= 1.5 in (aii), (bii) and (cii), respectively.

This far downstream shape is plotted in figure 9(aiii), which illustrates that the
thickness converges to 1 as y→∞ but not as x→∞.

The leading-order thickness h0 cannot be matched with the far-field condition, h→1
as x→∞, which suggests there is again an ‘outer’ region in which the diffusive
slumping terms are important and our current asymptotic expansion, which neglects
this cross-slope spreading, is not valid (see chap. 5 of Hinch 1991). This downstream
region is analysed in § 5.1.

In figure 10, we plot the far downstream thickness on the line of symmetry, h∞(0),
as a function of the dimensionless mound amplitude, M. The flow thickness over
the highest parts of the mound decreases as the mound amplitude increases. However,
there are no dry regions for M<Mc.

Figure 10 suggests that dry regions may occur for M > Mc. For such larger
mounds, dx/ds vanishes along the x axis at x1, the more negative root of (4.9). The
characteristic, which originates from (x1, ε), where ε > 0 is arbitrarily small, is plotted
as a red dashed line in figures 9(bi) and 9(ci). This line bounds a region that is not
accessed by the characteristics. We anticipate that dry regions may occur within the
area not accessed by characteristics and this is corroborated by our numerical results
(see figure 2). Figure 9(bii) shows that the flow thickness along the centreline vanishes.
This vanishing thickness is propagated along the characteristics at the edge of the
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FIGURE 9. (Colour online) The asymptotic solution for flow over a two-dimensional
mound, h0(x, y), in the case that the diffusive slumping terms are neglected (see (5.2)).
The three rows correspond to different mound heights: M = 0.5, 1.25 and 1.5. The
characteristics are shown in the (x, y) plane in the first column. The red dashed lines in
panels (bi) and (ci) show the boundary of the region that is not accessed by characteristics.
The second column presents the thickness along the centreline, y = 0, predicted by
the method of characteristics. Further downstream, the solution depends only on the
cross-slope coordinate and this far downstream shape, h∞( y) is plotted in the third
column.

0 0.2 0.4 0.6 0.8 1.0 1.2

0.5

h ∞
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)

m

m = mc 

1.0

FIGURE 10. Far downstream flow thickness over an axisymmetric mound along the line
of symmetry (y= 0). The thickness is plotted as a function of the dimensionless mound
amplitude, M, according to the leading-order expansion (5.2).

inaccessible region. In figure 9(cii), the behaviour is different; the flow thickness
becomes singular and this singularity is propagated along the bounding characteristics.
We discuss the difference between these regimes later in this section.
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FIGURE 11. (a) Exponent k [of h0 ∼ (x1 − x)k as x → x1] as a function of the
dimensionless mound amplitude, M. (b) Exponent, k/(2 − k), of F in the flow depth
(h∼F k/(2−k), equation (5.17)) in the ponded region upstream of the mound.

We note that the characteristic projections (5.3a) and (5.3b) may be thought of as a
phase plane. For M<Mc, there are no stationary points but for M>Mc, there are
two stationary points at (x1, 0) and (x0, 0), where x1 < x0. The point (x1, 0) is at the
edge of the inaccessible region and is the stationary point of interest. It is a saddle
point with an unstable manifold in the y-direction and a stable manifold along the x
axis, which can be seen in figures 9(bi) and 9(ci). The point (x1, 0) is a saddle for
all M>Mc because mxx is positive here and myy is negative.

To analyse behaviour at the edge of the inaccessible region, we consider the flow
thickness along the line of symmetry y = 0 as the point (x1, 0) is approached. The
characteristics from our asymptotic expansion, equations (5.1) and (5.2), indicate that
the flow thickness along the centreline is given by

d log(h3
0)

dx
=

4M(x2
− 1)e−x2

1+ 2Mxe−x2 . (5.6)

As x → x1 the denominator tends to zero and the gradients in the flow thickness
become very large (see figures 9bii and 9cii). Our asymptotic expansion breaks down
here, similar to the behaviour in the one-dimensional problem (see § 4).

The large x-gradients in the flow thickness, (∂h/∂x) suggest that the downslope
diffusive slumping term F∂2h4/∂x2 needs to be reintroduced near the singularity. We
consider this neighbourhood and approximate (5.6) to leading order by

d log(h3
0)

dx
=

2(x2
1 − 1)

(1− 2x2
1)(x− x1)

. (5.7)

Then, according to (5.6), near x1, the leading-order term, h0 is proportional to (x1− x)k,
where

k=
2(x2

1 − 1)
3(1− 2x2

1)
, (5.8)

which, through x1, is weakly dependent on M. The exponent k is plotted as a function
of M in figure 11(a). The plot demonstrates that k < 2 and that k changes sign as
M is increased. Note that x1 <−1/21/2 and hence k changes sign as x1 crosses −1.
In terms of M this sign change corresponds to

k> 0, for M<Md = e/2≈ 1.36, (5.9a)
k< 0, for M>Md. (5.9b)
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FIGURE 12. The downstream width of the inaccessible region, yb, as a function of
the dimensionless amplitude of the mound, M, for flow over the axisymmetric mound
m= exp(−r2).

Hence there is a change in behaviour at the secondary critical value, M=Md. This
can be observed by comparing figures 9(bii), 9(biii) and 9(cii), 9(ciii); in the former,
M= 1.25<Md, whilst in the latter, M= 1.5>Md. The regime change corresponds
to a change in sign of the gradient of h0 at the stagnation point, (x1, 0). The gradient
is proportional to ∇2m= 4(r2

− 1)e−r2 , which changes sign (for y= 0) as x1 crosses 1.
The regime change also corresponds to the inaccessible region containing the unit

circle. We deduce from (5.3) that the flow thickness, h0 is monotonically increasing
along characteristics that do not pass through the unit circle, which corresponds to the
region in which the amplitude of the topography is greatest. Within the unit circle, the
flow thickness is monotonically decreasing along characteristics (compare the yu=0.01
characteristics in figures 8bii and 8cii).

In figure 12, we demonstrate how the size of the inaccessible region for an
exponential mound increases with M by plotting yb, the far downstream deflection
of the bounding characteristic (i.e. the solution of (5.3) for y(s) as s→ ∞ given
y(0)= ε� 1 and x(0)= x1). For M<Md, some characteristics pass through the unit
circle and hence h0 is not everywhere monotonically increasing along characteristics.
We note that yb vanishes for M<Mc because the mound is sufficiently small that
the flow surmounts it and is not deflected around it.

The flow thickness far downstream of the mound, h∞( y), does not vary monotonically
with y if M<Md, as illustrated, for example, by figures 9(aiii) and 9(biii); instead
it exhibits a maximum, hm, which occurs at location ym (defined by h∞(ym) = hm).
The variation of hm and ym with the dimensionless mound size, M, is plotted in
figure 13, noting that for M > Md the downstream depth has become infinite at
y= yb and that for M<Md both hm and ym increase monotonically with M due to
the increased flow deflection around the mound.

To analyse the downslope diffusive term in a neighbourhood of x1 along the
symmetry axis (y= 0), we introduce the rescalings

x= x1 +Fαξ, h=Fαkh̃, (5.10a,b)

where the scaling for h is motivated by the behaviour of the characteristic solution
(5.7) and (5.8). Using the governing equation (2.12), we find that along the centreline
h̃ satisfies

1
4
∂2h̃4

∂ξ 2
+ AMξ

∂ h̃3

∂ξ
+ BMh̃3

= 0, (5.11)
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FIGURE 13. Cross-slope location, ym, and magnitude, hm, of the maximum downstream
flow thickness h∞( y) as functions of M for flow over the axisymmetric mound,
m= exp(−r2).

where we have chosen

α = (2− k)−1, (5.12)

for a balance and

AM =M
∂2m
∂x2

∣∣∣∣
x=x1,y=0

, BM =M∇2m|x=x1,y=0 (5.13a,b)

are constants. The boundary condition for (5.11) as ξ → −∞ is provided by the
limiting behaviour of the characteristic solution along the centreline, given by (5.7).
Writing this in terms of h̃ and ξ , we find that

h̃=CM(−ξ)
k, (5.14)

where CM is a constant that can be determined from the limit of the numerical
solution to the characteristics as x1 is approached. We solve for h̃ by assuming h̃
has compact support, shooting from h̃(ξ0) = 0 and iterating to find ξ0 by matching
with the boundary condition (5.14) as ξ → −∞. To shoot from h̃ = 0 we need
two boundary conditions. Taking the limit of small h̃ in (5.11), we determine the
behaviour near ξ0 to be

h̃∼ AMξ0(ξ0 − ξ). (5.15)

This provides the two boundary conditions: the values of h and its first derivative at
ξ ≈ ξ0. We plot the solution to (5.11) in figure 14 for M= 1.5 as a red dashed line.
The limiting behaviour, which we match to (given by (5.14)) is plotted as a black
dotted line. Finally, we include a slice along the centreline of the numerical solution
to the full governing equation with F = 0.05 (continuous black line). The solution
to (5.11) shows excellent agreement with the numerical slice in a neighbourhood of
x1. In particular, these results confirm that the downslope diffusive terms are crucial
to the flow near x1 but the cross-slope diffusive slumping which we have neglected
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Numerical solution, h(x, 0)
‘Overlap’ expansion, h~ (≈)
‘Characteristic’ expansion, h0
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FIGURE 14. (Colour online) The rescaled thickness of the fluid layer as a function of
distance along the line of symmetry (y= 0) for F = 0.05 and M= 1.5 for flow over the
axisymmetric mound, m= exp(−r2). We plot the solution to (5.11) with initial condition
(5.15) as a red dotted dashed line. The location of ξ0 is chosen to match with the limit
of the characteristic solution near x1, which is plotted as a dashed black line. We include
a slice along the centreline of the numerical solution from § 3, plotted as a continuous
black line. It agrees well with the solution to (5.11) near x1, the depth does not become
zero at ξ0 in the numerical solution because of the small virtual source.

is unimportant because the streamwise gradients are much larger than the lateral
gradients.

Note that our analysis relies on the contact point where the depth is first zero
occurring upstream of x0 because the topography becomes downslope at x0 in our
simple mound. This corresponds to

x1 +F 1/(2−k)ξ0 < x0, (5.16)

which is satisfied for sufficiently small F . If the contact point extends beyond x0
then there is no dry region because fluid has flowed over the ‘steepest’ slope of the
topography. In this case the analysis above is rendered invalid because shooting from
h= 0 at ξ0 is incorrect. The inequality (5.16) can be used to determine the largest F
for which dry regions occur for a given M. We investigate this result for elliptical
mounds in § 6.

In the one-dimensional problem (§ 4) we found that beyond the critical mound
height, Mc, ponding occurs and the flow thickness increases in proportion to the
mound height. A regime change also occurs at this point in two dimensions because
the topography becomes upslope and for the two-dimensional mound, this first occurs
along the centreline, y= 0, where the mound slope is steepest. For a two-dimensional
mound above the critical height, Mc, the depth in a neighbourhood of x1 is given by
the scaling in (5.10),

h∼F k/(2−k). (5.17)

The exponent of F changes sign as k changes sign. It is plotted as a function of M
in figure 11(b). For M <Md, the exponent is positive and the depth of the flow
is at most order 1. For a larger mound (M >Md), the depth along the centreline
near x1 is of order F k/(2−k), which grows as F becomes smaller. This corresponds
to ponding upstream of the mound. The maximum flow thickness then occurs along
y= 0, upstream of the mound, owing to this ponding. This is in contrast to the case
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of M <Md (see figure 13 and compare the two panels in figure 2). The ponding
is much weaker than in the one-dimensional case and the mound height threshold at
which it occurs is higher (for example, the exponent of F is k/(2 − k) ≈ 0.04 for
M= 1.5). This difference occurs because fluid is diverted away from the centreline
and around the mound by the topography in the cross-slope direction, whereas in the
one-dimensional problem, the pond has to grow until it overcomes the mound.

The flow thickness near (x1, 0) tends to zero and we anticipate that this dry edge
is propagated by the characteristics as indicated in figure 9. Further downstream, the
characteristics become parallel to the x axis and we anticipate that the y gradients are
non-negligible here. Thus cross-slope diffusive slumping becomes important and this
acts to ‘close’ the dry region downstream, which we investigate below.

5.1. Downstream ‘outer’ region
To leading order, the regular asymptotic expansion described above converges to a
fixed shape in y far downstream, i.e. h → h∞( y) as x → ∞ (see figure 9, right-
hand column). Cross-channel diffusive slumping, which was neglected at leading order,
smooths this shape so that the depth converges to unity everywhere distant from the
mound. This motivates an ‘outer’ region, in which we rescale only the downstream
coordinate x to incorporate the second-order derivative in y

x= x̂/F . (5.18)

Then the leading-order terms in (2.12) are

∂h3

∂ x̂
=

1
4
∂2h4

∂y2
, (5.19)

which represents a balance between downslope advection and cross-channel diffusive
slumping. We use the far downstream shape of our ‘inner’ asymptotic solution, h∞( y),
(see figure 9aiii) as the ‘initial’ condition at x̂ = 0 to solve the nonlinear diffusion
equation (5.19) numerically. The cross-slope shape converges to h = 1 everywhere,
satisfying the far-field boundary condition.

In figure 15(a), we compare this outer ‘downstream’ expansion (blue dotted-dashed
line) to the numerical results from § 3 (black continuous line) along the centreline,
y = 0 for M = 0.5. The inner ‘characteristic’ asymptotic expansion is included (red
dashed line) to illustrate how it is accurate only upstream of the mound peak. In
figure 15(b), we compare the ‘downstream’ expansion with the numerical results in the
cross-slope direction at two locations, demonstrating how the flow thickness returns to
unity downstream.

For larger mounds in the domain M >Mc, the same technique can be applied
to determine the downstream shape, but care must be taken in selecting the correct
‘initial’ condition for (5.19). The downstream limit of the characteristic solution
for M > Mc (figures 9biii and 9ciii) has large gradients and is not an accurate
approximation to the true depth near x = 0 because the neglected diffusive terms
are significant. The shapes in figures 9(biii) and 9(ciii) do not provide good initial
conditions. Instead, we take a y cross-section of the numerical solution at x = 0 as
the initial condition.

In figure 16, we compare the shape of the dry region predicted by the limiting
characteristic and the shape of the dry region from the numerical results for M= 1.5
and three values of F . The importance of diffusive slumping is proportional to F and
hence the closing of the dry region is faster for larger F .
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FIGURE 15. (Colour online) (a) Flow thickness along the centreline, h(x, 0), as a function
of streamwise distance. The cross-section of our numerical solution from § 3 for F = 0.08,
M= 0.5 is plotted as a continuous black line. The asymptotic ‘characteristic’ expansion
that neglected the diffusive slumping terms (5.2) is plotted as a red dashed line and
the ‘downstream’ expansion which balances the cross-slope slumping with the downslope
advective term (see § 5.1) is plotted as a blue dashed-dotted line. (b) Flow thickness
along cross-sections, h(xc, y), as a function of the cross-slope direction at various locations
downslope from the mound, plotting the numerical solution (solid line) and the asymptotic
solution (dot-dashed line).
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FIGURE 16. (Colour online) Shape of the edge of the ‘dry’ region predicted by the
characteristics (red dashed line) and the shape found from our numerical simulations for
three values of F , with M= 1.5.

5.2. Summary

We have found three regimes for a shallow oncoming flow (F � 1) over an
axisymmetric mound. For small mounds in which the slope is nowhere uphill
(M<Mc), the flow goes over and around the mound and there are no dry regions.
Mounds in the second regime, for which Mc <M <Md, give rise to dry regions.
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The flow thickness is order 1 with respect to F because sufficient flux of the fluid
flows around the mound. For the larger mound regime, M > Md, there is a dry
region and the depth upstream of the mound increases as F k/(2−k), with k < 0 (see
(5.10)). This weak dependence of the depth on F corresponds to the signature of
ponding in two dimensions. We note that our analysis applies to any axisymmetric
mound, although Mc and Md may take different values. In the next section, we
consider a more general class of mound.

6. Implications for barrier design

In this section we apply our analysis to inform efforts at designing barriers to
protect towns and infrastructure from lava flows. To maximise the region downstream
that is protected whilst minimising the overall size, barriers should be wider in
the cross-flow direction than they are in the along-flow direction. This motivates
considering mounds with elliptical contours; we suppose that the mound has cross-flow
length scale W and along-flow length scale L. We use the same non-dimensionalisation
as in § 2 and consider an elliptical Gaussian mound of profile

m(x, y)= exp[−(x2
+ (y/w)2)], (6.1)

where w=W/L is the aspect ratio of the elliptical contours of the mound. Note from
(5.3) and (5.7) we deduce that this adjusts k to

k=
2x2

1 − 1−w−2

3(1− 2x2
1)

. (6.2)

The asymptotic analysis for an axisymmetric mound from § 5 can be repeated for
an elliptical mound. We can use the inequality (5.16) to determine how shallow the
upstream flow must be for dry regions to occur. We plot the critical value of F at
which a dry region first occurs, Fc, in figure 17 for an axisymmetric mound (w= 1)
and three elliptical mounds. In the limit w→∞, the critical line tends to Fc = 0.
Thus, in this limit, the mound is overcome by the flow, and we recover the results of
§ 4 for flow over a one-dimensional mound.

Figure 17 demonstrates that if a mound is widened but not heightened (i.e. w is
increased and M held fixed), then the depths of flows which it defends against is
reduced. In figure 18, contours of the flow thickness are plotted for F = 0.05 and
M = 1.4 for different mound widths, w. In figure 18(a), w = 2 and there is a dry
region, whilst in figure 18(b) w= 4 and there is no dry region. The difference arises
because the ponding upstream is stronger for a wider mound. The increased ponding
can overtop the mound. This effect is crucial for informing barrier construction (for
example in the Mt. Etna 1991–93 eruption, see Barberi & Carapezza (2013)).

We illustrate the importance of ponding by considering the necessary dimensions for
an example Gaussian barrier which is 200 metres wide and has a streamwise length
scale of 50 metres, on a slope with a gradient of 20 %. To defend against a one metre
high flow, the barrier would need to be 15 metres high. If instead the barrier was only
50 metres wide, then it would need to be about 13 metres high to provide a safe, dry
region. These results approximately agree with the simulations of Chirico et al. (2009),
who suggested that barriers ought to be five to ten times the height of the average lava
flow thickness.
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FIGURE 17. The dimensionless upstream depth, Fc at which dry regions first occur as a
function of dimensionless mound size, M. For M>Mc dry regions occur as the upstream
flow depth (F) tends to zero. We plot how small the flow depth must be for dry regions
to occur for different non-dimensional mound widths, w. The results are obtained from the
inequality (5.16). Wider mounds should be built taller to defend against the same depth
flow because the upstream ponding, which can overtop the mound, is enhanced.
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FIGURE 18. (Colour online) Contour plots of the steady flow thickness above the
topography in the case of an ‘elliptical’ mound with F = 0.05 and M= 1.4: (a) w= 2;
there is a dry region with boundary given by the contour of least thickness, (b) w = 4;
for a wider mound, the ponding effect is stronger and the flow overcomes the mound
(cf. figure 17). Note the different scales for the thickness.

6.1. Stress on mounds

We have used our results to suggest barrier dimensions but we can also calculate
estimates of the force that barriers must withstand. A major engineering concern is
that the lava pond which can develop upstream of a barrier exerts a large force and
can even rupture the barrier (Moore 1982).

To obtain an upper bound on the force exerted by the pond, we consider a very
wide mound (w� 1) which is on the verge of being overtopped by the oncoming
flow. This situation is well approximated by the flow over a one-dimensional mound
in which the flow thickness is much greater upstream of the mound than over the
mound. Recall (see (4.18)) that in the ponding region

hp ∼F−1
{x− x0 +M[m(x0)−m(x)]} + · · · (6.3)
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the flow surface is horizontal (perpendicular to the direction of gravity) and hence the
velocity is approximately zero (cf. (2.14)). Therefore, the leading-order contribution
to the stress comes from the weight of the fluid in the pond. This can be calculated
by integrating the depth between x2 and x0 (where x2 is calculated from (4.22) by
assuming F = 0). The dimensional force per unit length in the downslope direction is
given by

ρgLH∞ sin β
∫ x0

x2

hp dx= ρgL2f (M) tan β sin β, (6.4)

where

f (M)=M2
[m(x0)

2
−m(x2)

2
]/2−M

∫ x0

x2

m(x) dx. (6.5)

This upper bound is independent of the upstream flow depth, H∞, because it quantifies
the stress exerted in the case of the deepest flow which does not overtop the mound.

Consider a mound barrier with L= 50 m and M= 1.5 for which f (M)≈ 0.83. We
suppose the oncoming lava is two and a half times as dense as water and the slope
is of gradient 0.25. With these parameters, equation (6.4) predicts that the maximum
force per unit width exerted on the mound is 1.2× 107 N m−1.

7. Conclusion
In this study we have investigated theoretically the interaction between a fully

developed, free-surface flow of viscous fluid down an inclined plane with topographic
features. Our results were derived on the basis that the flow is shallow, which in the
context of this study requires that the flow thickness is much less than the downslope
extent of the topographic feature. In this regime, the pressure is hydrostatic to leading
order and we computed the steady flow around and over isolated mounds. Our study
was in part motivated by the need to inform the design and dimensioning of barriers
that deflect lava flows away from built infrastructure. Our results were computed
numerically and very often we employed asymptotic analysis to examine some of
their key features.

A particular feature of our study has been the ways in which the mound causes a
significant perturbation to the oncoming flow through deflecting its passage around
the barrier, the development of ‘dry’ zones in the downslope wake of the barrier
or by the establishment of upstream, ponded regions within which the thickness of
the flow is enhanced. We showed that a key discriminant of when the flow became
significantly affected by the topography was when its gradient points upwards (i.e.
∇h ·g<0, where g is gravitational acceleration). In such circumstances we showed for
one-dimensional obstacles, namely those that do not vary with the lateral coordinate,
that the flow develops a pond upstream as it deepens to overtop the barrier. However,
for axisymmetric mounds, the flow may be deflected around the obstacle rather than
just overtopping it, potentially leading to downslope dry zones into which the fluid
does not flow. The existence and dimensions of the dry zones are controlled by the
amplitude of the mound. Flow around non-axisymmetric mounds featured the same
phenomena, although as the mound became wider, the deflection of the flow was
reduced, ponding was enhanced, and the dry zone was potentially eradicated.

In future studies, it would be interesting to analyse further controls on the
interactions with topography that emerge if the flowing material exhibit some of
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the non-Newtonian rheology associated with lava flows. Additionally, it would be
interesting to analyse the motion around tall, surface-piercing obstacles and to carry
out analogue laboratory experiments to complement our theoretical work; this work
is currently underway (Hinton, Hogg & Huppert 2019). The application of our results
to field data from real lava flows is another area of our concern. A key challenge is
determining how the crust formation at the front of a lava flow influences the shape
of the ‘safe’ zone downstream of an obstruction.
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