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A wide range of initial-value problems in fluid mechanics in particular, and in the
physical sciences in general, are described by nonlinear partial differential equations.
Recourse must often be made to numerical solutions, but a powerful, well-established
technique is to solve the problem in terms of similarity variables. A disadvantage
of the similarity solution is that it is almost always independent of any specific
initial conditions, with the solution to the full differential equation approaching the
similarity solution for times t � t∗, for some t∗. But what is t∗? In this paper we
consider the situation of viscous gravity currents and obtain useful formulae for the
time of approach, τ(p), for a number of different initial shapes, where p is the
percentage disagreement between the radius of the current as determined by the full
numerical solution of the governing partial differential equation and the similarity
solution normalised by the similarity solution. We show that for any initial shape of
volume V, τ ∝1/(βV1/3γ

8/3
0 p) (as p↓0), where β=g1ρ/(3µ), with g representing the

acceleration due to gravity, 1ρ the density difference between the gravity current and
the ambient, µ the dynamic viscosity of the fluid that makes up the gravity current
and γ0 the initial aspect ratio. This framework can used in many other situations,
including where it is not an initial condition (in time) that is studied but one valid
for specified values at a special spatial coordinate.

Key words: gravity currents, lubrication theory

1. Introduction
Similarity solutions play a central role in fluid mechanics (Barenblatt 2003). Many

problems in fluid mechanics lead to nonlinear partial differential equations in space
and time for unknown quantities such as velocity components, concentrations, depth
of fluid flow, . . . . Examples include: numerous boundary layer problems; the initial
stages of nuclear explosions; the infiltration of ground water; the relaxation of a
surface-tension dominated volume of carbon dioxide sequestered at depth in a porous
geological sequence; the osmotic flow of solvent across a membrane; and diffusion
of granular media, to name but a few situations.

† Email address for correspondence: heh1@cam.ac.uk
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The resulting equations very rarely have analytical solutions and hence resort to
numerical calculations is essential. Numerical investigation of the influence of each of
the parameters, and possible different initial conditions, would be time consuming and
need quite intricate numerical programming. Very often, at least within the problems
tackled and solved, a similarity form of solution exists whereby the partial differential
equation is transformed into an ordinary differential equation (but still nonlinear), the
solutions to which do not obey the particular initial conditions. It is then confidentially
asserted that all solutions approach this similarity form. But what is the time taken
to do so? This is almost always thought to be a difficult problem and is generally
stated as: the solutions will be valid for t� t∗, where t∗ is some suitable time scale
(but how does it depend on the parameters of the problem?). Of course there are
some problems where the solutions to the initial-value problems do not approach the
similarity solutions (Acton, Huppert & Worster 2001; Johnson et al. 2015) or only for
special values of the physical parameters.

The point of this paper is to present the equilibration time for the particular case
of a viscous gravity current developing from an initially constrained volume of
fluid V . The ideas presented no doubt have much greater applicability; and informal
discussions with fluid-mechanical colleagues have already suggested a number of
different examples.

Gravity currents occur wherever fluid of one density flows primarily horizontally
into fluid of a different density (Simpson 1997; Huppert 2006). Many different
fundamental fluid mechanical cases exist including: axisymmetric and two-dimensional
geometries; constant volume or constant flux releases; and propagation at low or high
Reynolds number. This paper will concentrate initially on the instantaneous release
of a constant volume of viscous fluid over a horizontal surface (Huppert 1982) and
then discusses in the appendix A the implications of the results for other geometries
and situations.

Assuming both that the horizontal scale greatly exceeds the vertical scale, so that
the pressure is hydrostatic, and that the Bond number B=1ρgl2/T� 1, where 1ρ is
the density difference between intruding and intruded fluid, g is gravity, l a horizontal
scale of the current (such as its radius) and T is surface tension, Huppert (1982)
determines that the radial horizontal component of the velocity u(r, t), where r is
radius and t time, is parabolic in the vertical component z, except close to the front
of the current, which for B� 1 plays a negligible role. The height of the unknown
free surface h(r, t) then satisfies

∂h
∂t
−
β

r
∂

∂r

(
rh3 ∂h

∂r

)
= 0, (1.1)

where
β = g1ρ/(3µ) (1.2)

and µ the dynamic viscosity of the intruding fluid, with boundary and global
conditions,

h(rS)= 0 and 2π

∫ rS(t)

0
rh(r, t) dr= V, (1.3a,b)

where rS(t) is the radial extent of the current.
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An appropriate similarity variable, determined by balancing terms in (1.1) and (1.3),
or otherwise, is given by

ξ = (βV3)−1/8rt−1/8, (1.4)

with the form of h(r, t) given by

h(r, t)= ξ 2/3
S (V/β)1/4t−1/4ψ(z≡ ξ/ξS), (1.5)

where ξS is the value of ξ at r= rS(t) given by

rS(t)= ξS(βV3)1/8t1/8. (1.6)

Substituting (1.4) and (1.5) into (1.1) and (1.3), Huppert (1982) finds that ψ(z)
satisfies

(zψ3ψ ′)′ + 1
8 z2ψ ′ + 1

4ψ = 0 (1.7)

and

ξS =

[
2π

∫ 1

0
zψ(z) dz

]−3/8

, (1.8)

the analytical solution to which is (Pattle 1959; Huppert 1982)

ψ(z)= (3/16)1/3(1− z2)1/3 (1.9)

and
ξS = (210/34π3)1/8 = 0.894 . . . . (1.10)

The aspect ratio γ ≡h(0, t)/rS(t), evaluated from (1.5), (1.6), (1.9) and (1.10), is hence
given by

γ = 0.594(β3V)−1/8t−3/8. (1.11)

Laboratory experiments conducted to demonstrate the validity of the approach, in
particular the neglect of contact line effects at the front, showed, for a variety of initial
geometries, including different shaped cylinders and rapidly pouring the fluid on a
horizontal base, that the relationship was very closely observed, over time scales in
the laboratory from 10 s to several weeks. We mention in passing, that the influence
of rapid rotation, small Rossby number, is quite different, leading to thin radially
extending fingers (Dalziel & Huppert 2019).

The question to be addressed here is exactly how quickly does the initial-value
problem approach this similarity solution from an arbitrary initial condition, specifying
some axisymmetric initial distribution of h(r, 0) enclosing a volume V? The result
will clearly depend on the parameters of the problem: 1ρ, g, µ, V and the initial
(supposed axisymmetric) distribution of h(r, 0). Any easy-to-do experiment in the
laboratory illustrating this problem shows that departures from axisymmetry are
quickly eliminated, as suggested by the late-time linear analyses of Grundy &
Rottman (1985). The first three parameters occur together in (1.1) in the variable
β = g1ρ/(3µ), with dimensions of L−1T−1. The volume V has dimensions L3.
Therefore the only variable with dimensions of time is proportional to Γ ≡ 1/(V1/3β).
It thus seems reasonable to assume that the equilibration time is linearly proportional
to Γ , with the constant dependent on the initial configuration of V .

Our numerical results, described in the next section, confirm this result. But
how does this time depend on shape, and also on configuration? Does an initially
cylindrical shape approach the similarity solution faster or slower than say a conical
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initial shape, both of the same volume V? How does an initial condition of an inverted
cone compare? Do the comparisons depend on how close to the similarity solution is
considered? What initial shape approaches the similarity solution fastest/slowest?

We determine a full relationship for the time of equilibration τ as a function of
the initial aspect ratio first for an initially circular cylinder and then compare this to
the time scale for other initial shapes. Possibly surprisingly, taller initial shapes (with
the same volume) approach the (relatively small height and small slope) similarity
solution more rapidly. This result is clearly explained in the next section. It should be
noted, however, that the time scale τ is relevant for the numerical solution of (1.1)
to approach the similarity solution (1.6), and not the collapse of an initial set-up with
non-small slopes.

However, we have not yet defined exactly the equilibration time τ as a function
of p the percentage agreement. We could choose the agreement between the radius
of the similarity solution and the exact nonlinear solution (which we shall do), or
other, possibly equally convenient, definitions, such as based on the (difference of)
values (of height) at the centre, some mean difference along the whole profile, . . . .
Each of these last two spelt-out possibilities have obvious disadvantages: either
the height at the centre may (for all time) not well reflect the form of solution
or the evaluation involves an extra, somewhat tricky, integration to determine mean
differences. A discrepancy based on the radius is simple, direct and easiest to measure
in the laboratory or evaluate numerically.

We expect that τ is infinite for zero p, and a monotonically decreasing function
of p (it should take less time to be less accurate). However, as p approaches 0 does
τ increase: exponentially; like a power law; logarithmically; or . . .? The answer, at
least for this problem, seems to be as the inverse of p. For a completely different
problem in detail, it could be different. For example, Grundy & Rottman (1985)
state that for the equivalent problem of a high Reynolds number gravity current the
corresponding shallow water equations have a similarity solution which is approached
in an oscillatory manner. This different case is discussed fully in a companion paper
by Webber & Huppert (2019).

2. Numerical evaluations

We employed a numerical program to solve (1.1) subject to a variety of initial
conditions, h(r, 0). The program uses a Crank–Nicolson predictor–corrector scheme
where spatial gradients are evaluated by central differences. To reduce computational
cost, the finite difference scheme is combined with adaptive grid size and time
stepping.

Preliminary runs with both a circular cylinder and a hemisphere lead to similarly
smooth results – we were worried that the discontinuities in height associated with a
cylinder might lead to unreliable results – and so we initially opted mainly for the
simpler initial condition of a right cylinder of radius r0 and height h0 (with initial
aspect ratio γ0 = h0/r0 and volume V = πh0r2

0 = πγ0r3
0). The first set of runs was

undertaken with h0 = r0 = 1 for various values of β. Figure 1 shows the resulting
shapes and a comparison between the numerically determined radial extent rN and the
similarity solution rS for β = 1. The numerically evaluated radii as functions of time
normalised by β1/8 (cf. (1.6)) for various values of β are shown in figure 2, which
also displays the similarity solution (1.6). The numerically determined radius, whose
initial value is 1, is always in excess of that for the similarity solution, for which the
initial value is zero. (But see a different interpretation discussed at the end of this
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0.5

r S
,N

0 0.1 0.2 0.3 0.4 0.5 0.6

t = 0

t = 103

0.7 0.8 0.9 1.0

Similarity solution rS

Numerical solution rN

(a)

(b)

t

r

FIGURE 1. (Colour online) (a) The shapes taken up by an initial circular cylinder with
r0 = h0 = 1 and β = 1 for t = 0, 10−4, 10−3, 10−2, . . . , 103 and (b) the curves of the
radial extent as determined by the full numerical calculations (rN(t); solid) and similarity
solutions (rS(t); dashed), respectively.

0 0.05 0.10 0.15

r S
,N

/ı
1/

8

0.20 0.25 0.30 0.35

Similarity solution rS

ı = 0.1
ı = 1/3
ı = 1
ı = 3
ı = 10

t
0.40 0.45 0.50

1.5

1.0

0.5

FIGURE 2. (Colour online) Radius divided by β1/8 as a function of time for an initial
circular cylinder of unit radius and height for β = 1/10, 1/3, 1, 3, 10 and the similarity
solution rS depicted by the black dashed line. The larger the value of β the closer the
collapse is to the similarity solution at a fixed time.

section). The numerical radii approached those given by the similarity solution (1.7)
as t−7/8, the temporal derivative of (1.6), as shown in figure 3 for various values of
β. Figure 4(a) presents the time τ taken for the numerically evaluated radius to be
within 15 %, 10 %, 5 % of the similarity solution as a function of β. This confirms
that, as predicted, τ varies inversely with β (for fixed initial conditions), and acts as a
check of the validity and accuracy of the numerical program. It also indicates that for
a circular cylinder of initial unit height and radius, βV1/3γ

8/3
0 τ = (0.093, 0.18, 0.45)

for approaches of 15 %, 10 %, 5 % respectively.
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t

FIGURE 3. (Colour online) Plot of [rN(t)− rS(t)]/β1/8, where rN and rS are the numerical
and similarity solution radial extents respectively, for an initial circular cylinder with r0=

h0 = 1 for five values of β and two (dashed) curves ∝ t−7/8 to confirm this is the correct
functional form as t→∞.

10-2

100

10-4

p = 15 %
p = 10 %
p = 5 %
ıV1/3©0

8/3(†15%, †10%, †5%) = (0.093, 0.18, 0.45)

†

†

102

10110010-1

10110010-1

ı

V

100

10-1

10-2

1
1

1
3

(a)

(b)

FIGURE 4. (Colour online) The equilibration time τ for an initial circular cylinder of
(a) unit height as a function of β, confirming that τ ∝ β−1; and (b) β = 1 and equal
height and radius, confirming that τ ∝ V−1/3.

We then considered initial conditions of different r0 = h0 (γ0 = 1). Figure 4(b)
presents τ as a function of V; and an inverse relationship was again determined, as
predicted. Numerical integrations were then conducted for r0 = 1 and a variety of h0
and hence γ0. The results, displayed in figure 5, along with previous figures, present
τ as a function of β, V and γ0 to indicate that for any initial circular cylinder

βV1/3γ
8/3
0 τ = 2.76p−1

[1− 0.036p+ 0(p2)] (2.1)
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10110010-1

10-2

100

10-4

102

3

8p = 15 %
p = 10 %
p = 5 %
ıV1/3©0

8/3(†15%,†10%,†5%) = (0.093, 0.18, 0.45)

©0

†

FIGURE 5. (Colour online) The equilibration time τ for an initial circular cylinder of
unit radius and height γ0 as a function of γ0, demonstrating that τ ∝ γ −8/3

0 .

for approaches to within p. This indicates the somewhat surprising and possibly
counter-intuitive result that the larger the initial aspect ratio, and hence the larger
the initial height for fixed initial shape and volume, the more rapidly the solution
approaches the similarity solution, which is based on the assumption of vanishingly
small aspect ratio. The explanation is in the closeness of r0 to the initial value of
the similarity solution (r = 0 at t = 0) and thus larger value of γ0 (for fixed h0) or
alternatively, the closer the initial cylinder is to the delta function initial condition of
the similarity solution.

The appearance −8/3 power of γ0 in (2.1) is explained as follows (somewhat
surprisingly at first sight, for all shapes!). Consider the non-dimensionalisation of
(1.1) for any particular shape in terms of its initial radius r0 and height at the origin
(or maximum?) h0 with γ0 = h0/r0 by

h= h0H r= r0R and t= T/(βV1/3). (2.2a−c)

Then (1.1) becomes in these variables, with unit initial values of both H and R,

∂H
∂T
−
γ

8/3
0

R
∂

∂R

[
RH3

(
∂H
∂R

)]
= 0, (2.3)

indicating that for a given shape – any given shape – the time for adjustment varies
proportional to γ −8/3

0 , as suggested by (1.11).
An alternative explanation of this result is that the only time scale (within a

multiplicative constant), say T , of the nonlinear diffusion equation (1.1) is given by

T = r2
1/(βh3

1), (2.4)

for some r1 and h1. Equating these to r0 and h0 respectively, we write

T = r2
0/(βh3

0)∝ 1/(βV1/3γ
8/3
0 ). (2.5)

However, if we instead equate r1 to rS(t), as given by (1.6) and h1 to h(r, t) as given
by (1.5), we find that T = t, i.e. the time scale varies linearly with the time since
initiation, somewhat suggesting that the real solution and the similarity solution never
have sufficient time to get really close.
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.0

0.8

0.6

0.4

0.2

2

1 Similarity solution rS
Numerical solution rN

t

r

h
r S,

N

t = 0

t = 102

(a)

(b)

FIGURE 6. (Colour online) (a) The shapes taken up by an initial ‘top hat’ profile with
β = 1 for t = 0, 10−4, 10−3, 10−2, . . . , 102 and (b) the curves of the radial extent as
determined by the full numerical calculations (rN(t); solid) and similarity solutions (rS(t);
dashed), respectively.

We also considered three ‘top hat’ initial profiles, denoted by ‘cylinder J : 1’,
where

r0 = J, 0 6 h 6 1/J, (2.6a)
= 1, 1/J 6 h 6 1, (2.6b)

for J = 2, 3 and 5, as sketched in figure 6 for J = 2. The numerical integrations
indicate that

βV1/3γ
8/3
0 τ ≡ τ ′ = 4.90p−1

[1− 0.020p+ 0(p2)] (J = 2), (2.7a)
= 16.3p−1

[1− 0.021p+ 0(p2)] (J = 3), (2.7b)
= 79.6p−1

[1− 0.022p+ 0(p2)] (J = 5), (2.7c)

with the right-hand side to be compared with 2.76p−1
[1− 0.036p+ 0(p2)] for J = 1.

Here, unlike the case for the cylinder there is choice about what values to take for
the aspect ratio. We have taken γ0= 1/2, 1/3 and 1/5 for J= 2, 3 and 5 respectively.

For an inverse cone, τ ′ is given by

τ ′ = 20.4p−1
[1− 0.049p+ 0(p2)], (2.8)

as shown in figure 7.
The values that make up the right-hand side for various shapes is indicated in

table 1 and further illustrated for the extended cosoid in figure 8. The relatively
small values of ε indicate that the variation of τ with p is dominated by τ ∝ 1/p
with the constant of proportionality dependent on the initial shape, and of course
(βV1/3γ

8/3
0 )−1. Thus, to first order, at least, it takes ten times longer to attain 1 %

accuracy than 10 %. Is this mainly 1/p dependence true for all such problems?
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FIGURE 7. (Colour online) Numerically determined solutions as a function of t for an
inverse cone along with the values of rN(t) determined alongside rS(t) given by the
similarity solution.

Initial shape A ε p0

Circular cylinder 1 : 1 2.76 0.036 4.1
Cylinder 2 : 1 4.90 0.020 2.0
Cylinder 3 : 1 16.3 0.021 2.2
Cylinder 5 : 1 79.6 0.022 2.5
Inverse cone 20.4 0.049 8.1
Hemisphere 3.14 0.026 −1.7
Inverted hemisphere 305 0.058 12.4
Ellipsoid 3.10 0.024 −1.7
Extended cosoid 61.2 0.042 11.5

TABLE 1. The constants ε and A in the relationship τ ′≡Ap−1
[1− εp+ 0(p2)] for various

initial shapes and the corresponding maximum percentage divergence if the similarity
solution is started at t= t0 < 0 such that rS(0)= rN(0).

A different style of comparison is to consider the similarity solution initiated at
t = t0 < 0, i.e. starting the similarity solution ‘early’ so the similarity and numerical
solutions obey rS(0) = rN(0). The relative error is then zero (p = 0) initially, and
returns to being proportional to 1/p for large times, t� t0. We thus expect only a
range 0 6 |p| 6 |p0| to be possible using this interpretation, where the sign of p0

defines whether the numerical solution is greater (positive) or smaller (negative) than
the adjusted similarity solution. A negative value of p0 indicates that although they
start together, the radius of the similarity solution always exceeds that of the numerical
solution. Our eight investigated shapes yield p0 values from −1.7 to 11.5 as shown
in table 1.
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FIGURE 8. (Colour online) Numerically determined solutions as a function of t for an
extended cosoid along with the values of rN(t) determined alongside rS(t) given by the
similarity solution.

3. Some numerical values

(i) In the original experiments of Huppert (1982), ν was either 13.2 cm2 s−1 or,
for one experiment, 1110 cm2 s−1, while V lay between 220 and 933 cm3. Thus,
with 1ρ = ρ because the density of the overlying air can be neglected, β = 24.8 or
0.295 cm−1 s−1 and (βV1/3)−1 was between 0.004 s and 0.007 s except for the one
experiment, with a high viscosity fluid, with V = 338 cm3, for which it was 0.5 s,
all very much less than the time taken to initiate the flow, by pouring fluid onto the
surface or raising a container. Thus the approach to the similarity solution is on a
time scale that is very rapid compared to the first reading at 10 s.

(ii) The original idea of Huppert’s work was to understand and analyse the data
of the formation of the lava dome of the Soufrière of St. Vincent in 1979 (Huppert
et al. 1982). They found that over a time of 100 days a volume of 41 m3 of lava
was extruded (and 47 m3 over 150 days). From the data Huppert et al. determined
that the viscosity of the lava was 2× 1012 poise. Thus β = 1.5× 10−7 m−1 s−1 and
V1/3
= 3.45 m (over 100 days), leading to (βV1/3)−1

≈ 106 s∼ 11 days, suggesting that
the lava dome had ample time to adjust to the similarity solution.

Actually, the data suggested that because of the gradual intrusion of magma into
the lava dome V = ct1.36 m3, where c = 0.0248 m3 s−1.36 (and the data were fitted
to a similarity solution for a volume increase like tα, where α was determined from
the data). In general, with V = ctα, β and c have dimensions L−1T−1 and L3T−α
respectively. Thus the only combination of β and c of dimensions T is (cβ3)−1/(3+α)

and so for the lava dome of St. Vincent, τ ∝ (cβ3)−0.230, which becomes 1.20× 105s∼
1.4 days.

(iii) The shape of seven large volcanic lava domes on Venus were accurately
measured during the Magellan expedition (McKenzie 1992). Comparisons of the
observed shape were made with: the Newtonian fluid model of Huppert (1982);

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

23
 D

ec
 2

02
1 

at
 1

5:
55

:5
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
45

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.458


Similarity solutions and viscous gravity current adjustment times 295

a Bingham fluid model incorporating a yield stress (Nye 1952; Fink 1987; Blake
1990); and a model in which the spreading is controlled by the thin, highly viscous
crust of the outer surface of the dome (Fink & Griffiths 1990). The last was proposed
because of numerous complaints about the model of Huppert (1982), applied as
described in the last subsection.

Nevertheless, McKenzie (1992) found clear evidence that Huppert’s model fitted the
data very well; and the other two suggestions lead to poor fits. McKenzie’s results
indicate that the viscosities of the different domes varied between 4.5 × 1014 and
1.0×1017 Pa s and their volumes between 176 and 1046 km3. With ρ=3000 kg m−3,
g= 8.87 m s−2, β varies between 8.9× 10−11 and 2.0× 10−8 km−1 s−1 and (βV1/3)−1

between 0.16 and 63 yr.
Alternatively, one of the very largest studied lava domes is Olympus Mons on Mars

(diameter 625 km, height 25 km) with an area which could cover most of France,
or the state of Arizona, for comparison. The values of the relevant parameters
are g = 3.7 ms−2, µ ∼ 104 Pa s, ρ = 3000 kgm−3 and V = 4 × 106 km3. Thus
β ∼ 0.4 km−1 s−1 and (βV1/3)−1

∼ 10−1 s, suggesting that the extrusion of Olympus
Mons was well approximated by the similarity solution, in part because of its large
volume.

4. The inverse problem

We have so far only considered direct problems – given a question, determine the
answer. However, the analysis initiates a number of interesting inverse problems –
given the answer, determine the initial conditions. The first is: what is the minimum
number of h(r, t) (or the cross-section of the current) to determine all the unknowns
g, 1ρ, ν, V , initial shape, r0 (h0 then follows from V and initial shape). The first
part of the answer is that dynamic parameters g, 1ρ and ν can never be determined
individually; at best only the value of β = g′/3ν. The second is whether h(r, 0+) is
permissible, in which case V , initial shape and r0 are immediately known. Knowing
in addition rN(t1), t1 � 0+, with the help of table 1 (possibly extended), one can
evaluate β. This would be done by evaluating p1= [rN(t1)− rS(t1)]/rS(t1), which with
the appropriate form of (2.1) (for the determined initial shape), and with τ = t1, yields
the value of β.

If, alternatively, one is only given photos (i.e. cross-sections) for longish times t,
one can immediately evaluate V , and the value of βγ 8/3

0 /A, but no more. No matter
how many (long time) profiles one has access to, nothing about the initial shape, or
the value of β, can be determined.

In summary, given photographs of the initial shape and some long time state of an
experiment, one can determine all parameters (up to finding just β). However, given
as many late-time photographs as you desire, nothing can be determined about the
initial shape or the value of β.

5. Summary

We have shown that the time scale for any initial condition of volume V to approach
the similarity solution of (1.1) and (1.3) scales as (βV1/3γ

8/3
0 )−1, where γ0 is the initial

ratio of height at the centre to radius, with variations in the premultiplicative constant
dependent on the exact shape. Further, the time for approach is inversely proportional
to the percentage difference between the radii of the current as determined by the
full (nonlinear) solution and the similarity solution. Numerical calculations show
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that the time scale to equilibrate can vary between milliseconds in the laboratory
to tens of years on Venus. The concepts put forward have several immediate
generalisations, including: two-dimensional viscous gravity currents; axisymmetric
and two-dimensional gravity currents in a porous medium; and high Reynolds
number currents. Of course we have determined the time scales of solutions of (1.1),
derived under the assumption of vanishingly small slopes, and (1.3), for arbitrary
initial conditions. We have not determined the time scale for a real collapse which,
especially for high initial aspect ratios, would lead to a quite different equation than
(1.1). Indeed, the influence of vertical velocities would need to be incorporated and
the governing equation would be more complicated. Nevertheless, we hypothesise
that the time scales to approach the (small aspect ratio) similarity solutions are not
very different.
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Appendix A. Straightforward extensions
The aim of this appendix is to derive rather simple extensions to the results obtained

in the main body of the paper.
(i) Two-dimensional viscous gravity currents.

The governing equations for a two-dimensional gravity current of area A propagating
along the x-axis from x= 0 to x= xN(t) are (Huppert 1982)

ht − β(h3hx)x = 0, (A 1)∫ xN (t)

0
h dx= A. (A 2)

Suitable similarity variables and solutions are given by

y= (βA3)−1/5xt1/5/ηN, (A 3)

h(x, t)= (3/10)1/3η2/3
N (A2/β)1/5t−1/5(1− y2)1/3, (A 4)

xN = ηN(βA3)1/5t1/5, (A 5)

with
ηN = [

1
5

(
3

10

)1/3
π1/2Γ (1/3)/Γ (5/6)]−3/5

= 1.411 . . . . (A 6)
Thus

γ0 ≡ h(0, t)/xN = (3/10)1/3η−1/3
N (β2A2)−1/5, (A 7)

and the only time scale is 1/(βA1/2).
If we now introduce new dimensionless variables via

x= x0X, h= h0H and t= T/(βA1/2), (A 8a−c)

(5.1) becomes
HT − γ

5/2
0 (H3Hx)x = 0. (A 9)
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Thus, we suggest
A1/2βτγ

5/2
0 = p−1fa(p, shape), (A 10)

where fa is a function of p and the shape, but not dimensions, of the initial area of
fluid.

(ii) Two-dimensional gravity currents in a porous medium.
The governing equations for a two-dimensional flow in a porous medium (Phillips

1991) with geometry as in (i) are

ht − α(hhx)x = 0, (A 11)

where
α = k1ργ /(φµ) or 1ρgb2/(12µ), (A 12a,b)

with k representing the permeability of the porous medium and φ the porosity in a
flow often modelled in the laboratory as between two parallel plates apart a small
distance b, along with (A 2). A suitable similarity variable and solution for this
combination are (Huppert & Woods 1995)

ξ = (9αA)−1/3xt−1/3, (A 13)
h(x, t)= (92/3/6)(A2/12)1/3(1− ξ 2)t−1/3, (A 14)

and
xN = (9αAt)1/3. (A 15)

Thus
γ0 ≡ h(l, t)/xN = (91/3/6)(A/α2)1/3t−2/3, (A 16)

and the only time scale is A1/2/α.
With (A 8) and

t= A1/2T/α, (A 17)

equation (A 11) becomes
HT − γ

3/2
0 (HHX)X = 0, (A 18)

and therefore
αA−1/2γ

3/2
0 τ = p−1fb(p, shape). (A 19)

(iii) Axisymmetric gravity currents in a porous medium.
For this situation the governing equations are (Lyle et al. 2005)

ht −
a
r
(rhhr)r = 0, (A 20)

2π

∫ rn(t)

0
rh dr= V/φ ≡W, (A 21)

(correcting an error in Lyle et al. (2005), where φ was inadvertently omitted).
Appropriate similarity variable and solution are

z= (αW)−1/4rt−1/4/zN, (A 22)

h(r, t)=
π

2

−1/2
(W/α)1/2(1− z2)t−1/4, (A 23)

rN = 2(αW/π)1/4t1/4. (A 24)
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Thus
γ0 ≡ h(0, t)/rN =

1
4(W/πα

3)1/4t−3/4, (A 25)

and the only time scale is W1/3/α.
Introducing

r= r0R, h= h0H and t=W1/3T/α (A 26a−c)

into (A 19), we determine that

Hr −
γ0

R

4/3
(RHHR)R = 0, (A 27)

and it hence follows that

τ = (W1/3/α)γ
−4/3
0 p−1fc(p, shape). (A 28)
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