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We consider the instantaneous release of a finite volume of fluid in a porous medium
saturated with a second, immiscible fluid of different density. The resulting two-phase
gravity current exhibits a rich array of behaviours due to both the residual trapping
of fluid as the current recedes and the differing effects of surface tension between
advancing and receding regions of the current. We develop a framework for the
evolution of such a current with particular focus on the large-scale implications of
the form of the constitutive relation between residual trapping and initial saturation.
Pore-scale hysteresis within the current is represented by families of scanning curves
relating capillary pressure and relative permeability to saturation. In the resulting
vertically integrated model, all capillary effects are incorporated within specially
defined saturation and flux functions specific to each region. In the long-time limit,
when the height of the current and the saturations within it are low, the saturation
and flux functions can be approximated by mathematically convenient power laws.
If the trapping model is approximately linear at low saturations, the equations admit
a similarity solution for the propagation rate and height profile of the late-time
gravity current. We also solve the governing partial differential equation numerically
for the nonlinear Land’s trapping model, which is commonly used in studies of
two-phase flows. Our investigation suggests that for trapping relations for which the
proportion of trapped to initial fluid saturation increases and tends to unity as the
initial saturation decreases, both of which are properties of Land’s model, a gravity
current slows and eventually stops. This trapping behaviour has important applications,
for example to the ultimate distance contaminants or stored carbon dioxide may travel
in the subsurface.
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Trapping of fixed volume, multiphase gravity currents in porous media 551

1. Introduction
The density-driven spreading of immiscible fluids within a horizontal porous

medium is a rich problem with applications to the modelling of groundwater flows,
contaminant spills (non-aqueous phase liquids) and the long-term storage of carbon
dioxide (CO2) in saline aquifers. Multiphase gravity currents containing a finite
volume of fluid are particularly challenging to model due to hysteresis in the
behaviour of capillary forces between advancing and receding fronts. Yet it is the
macroscopic manifestation of hysteresis between fluids and solids in contact at the
pore scale that ultimately results in fluid being permanently trapped within a porous
media. These processes, which act to trap some fraction of the mobile fluid within
the confines of the small pore space, have large consequences, dictating the distance
over which fluid may migrate under buoyancy forces. For example, in geological
carbon storage an accurate determination of the distance a volume of CO2 input may
travel is critical to the deployment of this technology.

There are three primary manifestations of two-phase flow. Firstly, the interaction
between two immiscible fluids as one displaces the other, along with the geometry of
the porous medium, causes an uneven distribution of fluid saturation. The saturation is
determined by capillary pressure, which is set by the hydrostatic gravitational pressure
gradient in a gravity current, as discussed in detail below. Secondly, variations in
the partial saturation lead to differences in the relative permeability of each fluid
in the current, which affect its overall dynamics. Finally, hysteresis in the action of
capillary forces when one immiscible fluid displaces another leads to trapping of the
displaced fluid. Trapping of the non-wetting fluid in the form of isolated ganglia, or
bubbles, is known as residual trapping. It is well established that the saturation of
residually trapped, non-wetting fluid depends on the historical saturation distribution
and therefore needs to be described by an empirical trapping model (Land 1968;
Pentland et al. 2008).

The spreading and residual trapping of a finite volume of fluid was first investigated
by Kochina, Mikhailov & Filinov (1983), who considered a slumping groundwater
mound. As the mound slumps, wetting fluid is left behind and the saturation of
residually trapped fluid, as well as in the spreading current, is assumed to be constant
and uniform. Kochina et al. (1983) found that the evolving height profile is described
by a similarity solution of the second kind in which the power-law spreading rate
must be solved numerically and is a function only of the ratio of trapped to initial
fluid saturation. The mound spreads ever more slowly as an increasing proportion of
fluid is residually trapped. The initial conditions, such as the horizontal extent and
volume, affect the time scale on which the current spreads but not the power-law
exponent of spreading. Uniform saturation models have also been applied to the
geological storage of CO2, where a constant saturation of fluid is assumed in both
mobile and trapped regions (Bear et al. 1996; MacMinn & Juanes 2009; Juanes,
MacMinn & Szulczewski 2010). These models assume that capillary effects on the
dynamics of the gravity current are negligible, although some attempts have been
made to capture the hysteresis inherent in two-phase flow (Gasda, Nordbotten &
Celia 2009). More recent studies have shown that, particularly for monodisperse
media, capillary hysteresis can ultimately lead to blunting and pinning of immiscible
gravity currents (Zhao et al. 2013, 2014).

Multiphase models that resolve the saturation distribution within two-phase currents
were originally developed for applications to groundwater hydrology and petroleum
engineering (Parker & Lenhard 1989; Bear et al. 1996). They enable the use of
constitutive relations linking capillary pressure and relative permeability to saturation.
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Recently, variable saturation models have been applied to the injection stage of the
geological storage of CO2 (Golding et al. 2011; Nordbotten & Dahle 2011; Golding,
Huppert & Neufeld 2013). Golding et al. (2011) investigated how the spatial sweep
of steady-state, constant-flux gravity currents is affected by the properties of the
porous medium and the relative strength of capillary and gravitational forces. Golding
et al. (2013) demonstrated that the time-dependent propagation of an axisymmetric
gravity current, fed by a constant flux, can be described by a similarity solution,
spreading like t1/2, similar to comparable currents containing only a single phase (for
example miscible currents which we refer to as single-phase currents throughout).
The vertical integration of pore-scale effects in these multiphase models make
numerical computations of gravity current predictions significantly faster, even when
incorporating complex geological or empirical multiphase data.

Given its significant impact on the long-term security of geologically stored CO2,
detailed consideration of residual trapping has received surprisingly little consideration.
In previous studies, we suggested how estimates could be improved by applying a
trapping model to the saturation profile of a current at the end of the injection phase
(Golding et al. 2011, 2013). However, this does not predict the effect of trapped fluid
on the dynamics of the current. Previously, Van Dijke & Van der Zee (1997) and
Bear & Ryzhik (1998) considered residual trapping of an oil lens at an air–water
interface in the long-time limit. They introduced residual trapping into their models
by relating residual trapping to the volume of fluid per unit area of the current, as
an intermediate step towards incorporating a constitutive relationship between initial
and residual saturation. In numerical simulations, in particular petroleum engineering,
Land’s trapping model (Land 1968) has commonly been employed. Land’s nonlinear
trapping model predicts that a higher proportion of fluid is trapped at low initial
saturations than at high initial saturations of the non-wetting fluid. This might be
explained by the non-wetting fluid being more easily isolated from the rest of the flow
when it occupies the pore space at a low saturation. A more recent study by Doster,
Nordbotten & Celia (2013) discusses the incorporation of Land’s trapping model into
variable saturation, or vertical equilibrium, models showing how trapping hysteresis
may be incorporated into the formalism, but without exploring the consequences for
propagation and ultimate trapping.

One of the central results of this paper is that the choice of trapping model is
fundamental in determining the long-term behaviour of a finite-volume, two-phase
gravity current. This means that the choice of trapping model is not trivial and
predictions for the long-time spreading of the current should be interpreted carefully.
In particular, and in contrast to the linear trapping relation, we argue that if the ratio
of trapped to initial fluid saturation increases as saturation decreases, a gravity current
will slow down at a faster rate. Furthermore, if the ratio tends to unity, as is the case
for Land’s model, the results suggest that the gravity current will stop in finite time.

In this paper we develop an original analytical model for a two-phase gravity
current resulting from the release of a finite volume of fluid. In § 2.1 we begin
with a physical description of our model and how it differs from the classic model
of Kochina et al. (1983). The model captures the key two-phase phenomena in
regions of drainage and imbibition, including hysteresis of capillary pressure and
relative permeability, and the use of scanning curves during secondary imbibition.
One of the key strengths of our framework is that it permits the use of any trapping
relation, and we use this flexibility to discover the significant impact the trapping
characteristics have on the long-time behaviour of the gravity current. Throughout
§ 2, we continue to develop the framework for a two-phase gravity current resulting
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FIGURE 1. (a) Sketch of a two-phase gravity current resulting from a finite release of
a non-wetting fluid into a porous medium initially saturated with denser, wetting fluid.
The schematic shows the advancing drainage front, the receding imbibition front and the
region of immobile, residually trapped fluid. The saturation distributions in the drainage
and imbibition zones vary in space and time, while in the trapped region the distribution
is spatially non-uniform although static. (b) Example of two trapping models, relating the
residually trapped saturation, Snr, to the initial non-wetting phase saturation at the onset of
drainage, Sni. Land’s model is a nonlinear relation, where almost all the fluid is trapped
if drainage begins at a low saturation, in contrast to the linear model, where the same
proportion of fluid is trapped at any stage.

from the release of a finite volume of fluid, where all capillary effects, including the
saturation distribution and trapping, discussed in §§ 2.2 and 2.3, are conveniently and
consistently included. The saturation and flux functions are independently defined in
§ 2.4 for each region. We describe our boundary conditions in § 2.5 and formulate the
problem in terms of dimensionless variables in § 2.6, identifying the key dimensionless
parameters which determine the behaviour of the gravity currents. We use the model
to examine how the key factors affect the propagation rate and height profile of
the spreading of non-wetting fluid in § 3. In the long-time limit, under certain
conditions, the finite-volume two-phase gravity current spreads in a self-similar way as
described by a similarity solution of the second kind, derived in § 3.1. More generally,
numerical solution of the full equations using the linear model in § 3.2 verifies the
self-similar spreading in the long-time limit, similar to the constant-saturation model
by Kochina et al. (1983). In striking contrast, numerical solution of the equations
using Land’s model in § 3.3 leads to gravity currents whose spreading stops at a finite
runout distance. Implications of our findings on the efficiency of residual trapping is
discussed in § 4, where we discover that Land’s model predicts a greater efficiency of
trapping within a smaller radial extent. Our conclusions are summarised in § 5 along
with a discussion of the implications for the geological storage of CO2.

2. Theory and model development
We consider the axisymmetric spreading and residual trapping of a finite volume of

buoyant, non-wetting fluid in a porous medium of porosity φ and intrinsic permeability
k (see figure 1a). The initial fluid configuration will, in general, be the end result
of an injection phase during which we imagine a primary drainage process sets
the initial, axisymmetric fluid distribution as a function of both the radial and
vertical coordinates, r and z respectively. For high aspect ratio initial conditions, the
pressure within the current is nearly hydrostatic, and so a balance between gravity
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and capillary forces, so-called gravity–capillary equilibrium, sets the initial, vertical
‘saturation distribution’. The full details of this initial injection phase, including
detailed discussion of the saturation distribution, have been presented previously by
Golding et al. (2011, 2013). Here we utilise the same starting framework as those
earlier studies, but significantly extend the conceptual framework to understand the
large-scale dynamical consequences of capillary, or residual, trapping at the pore scale
and the consequent hysteresis within advancing and receding regions of the current.

The mobile fluid within the gravity current can be separated into two distinct
regions, separated by a moving boundary at r= rb(t). The front of the current (r> rb)
is advancing, with height h increasing with time t, and is undergoing drainage of
wetting fluid, for example water draining from the pore space as CO2 is emplaced.
Towards the middle of the current (r < rb), the height is falling, and the fluids are
undergoing secondary imbibition where, for example, water is re-entering the pore
space occupied by CO2. Where the current is retreating, the fluid in the region
h< z< hmax (r< rb) lies immobile and residually trapped (see figure 1a).

The current spreads radially below a horizontal barrier of infinite extent in an
unconfined aquifer, for which the depth of current h�µaH/µc is much less than the
depth of the aquifer H, where µa is the viscosity of the ambient fluid (for example
water) and µc is the viscosity of the injected fluid (for example CO2) (for details
on the unconfined limit see Pegler, Huppert & Neufeld 2014). In this limit there is
negligible flow of wetting phase far below the current, and since we assume that this
phase is simply connected everywhere in the domain we can deduce that there is no
horizontal pressure gradient in the wetting phase. This means that flow of the wetting
phase can be neglected both within the current and the surrounding aquifer, resulting
in a significant simplification of the model. The physics of the buoyant gravity current
shown in figure 1(a) is equivalent to that of a volume of denser, non-wetting fluid
spreading above an impermeable boundary and so the theory may equally be applied
to the propagation of buoyant CO2 as well as the trapping of dense contaminant
spills, for example.

2.1. Physical interpretation of the model
The model presented here draws together a number of empirical measurements for
permeability and saturation in multiphase flows in porous media into a vertically
integrated framework for gravity currents. In this section we describe the basic
physical basis for our framework and outline the similarities and differences between
our model, which resolves the spatial structure of saturation, and the classic model
of Kochina et al. (1983) for which the saturation is treated as uniform within the
advancing and retreating portions of the current.

We begin with a brief introduction to multiphase flow in this paragraph, and refer
the reader to Golding et al. (2011) for a more detailed description of the physical
and mathematical basis for multiphase flow in porous media. When two immiscible
fluids flow through the narrow confines of the available pore space, they each occupy
only a fraction of the available pore volume. This fraction is the fluid saturation, and
a distinction is typically made between the wetting phase (e.g. water) which is more
attracted to the solid and the non-wetting phase (e.g. CO2). The interfacial tension
acting between the fluids, averaged over many pore spaces, results in a macroscopic
pressure difference commonly referred to as the capillary pressure. Empirical models,
discussed in much greater detail below, then describe measured relationships between
the saturation, the capillary pressure between phases and the relative resistance to

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

23
 D

ec
 2

02
1 

at
 1

4:
20

:0
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
43

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.437


Trapping of fixed volume, multiphase gravity currents in porous media 555

flow of each phase through the partially saturated media, known as the relative
permeability.

Much as the action of surface tension on contact lines of droplets leads to a
hysteresis between advancing and receding contact angles, within the pore space the
combined action of contact lines in the complex pore geometry leads to an observed
hysteresis of the capillary pressure between advancing and receding fluid fronts, as
outlined in § 2.2. Ultimately, this combination of hysteresis and geometry conspire
to leave isolated droplets of the non-wetting fluid which as a result are effectively
trapped or immobilised. In general, it is observed that the magnitude of trapping
is a function of the initial saturation, as shown schematically for two representative
profiles in figure 1(b) and as discussed more fully in § 2.3.

The key finding of this work is that if the relationship between the initial saturation
of a multiphase current and the fraction of non-wetting fluid trapped is nonlinear then
the current propagates out only to finite distance. This is important in the context of
previous work which considered constant and uniform saturations within the advancing
and receding portions of the current and a linear trapping model (Kochina et al. 1983),
and which found that the current propagates in a self-similar manner for all times.
This self-similar spreading is replicated if, in our own model, we assume a linear
trapping model while resolving the distribution of saturation within the current. Thus
in all cases, a linear relationship between initial saturation and trapping fraction results
in a current which propagates indefinitely. In contrast, a nonlinear relationship, which
is more representative of many experimental studies, displaying greater efficiency of
trapping at lower saturations, results in a finite lateral extent. The spreading of such
multiphase currents with nonlinear trapping is explored in § 3.

In the remainder of this section we outline the theory required to develop a two-
phase framework for the height evolution and saturation distribution of a finite-volume
current, highlighting how and where trapping and hysteresis are incorporated.

2.2. The saturation distribution
In this subsection, we derive the distinct saturation distributions in the two regions of
the current using the assumption of gravity–capillary equilibrium to yield the pressure
distribution, along with empirical models relating capillary pressure to saturation.

The long, thin aspect ratio of gravity currents indicates that the flow is mainly
horizontal and that pressure is therefore nearly hydrostatic in the vertical. This
permits the assumption of gravity–capillary equilibrium which resolves the saturation
distribution of non-wetting fluid in the current, Sn(r, t). As in previous studies
(Golding et al. 2011, 2013), we use constitutive laws to relate capillary pressure to
saturation and again choose the Brooks–Corey framework (Brooks & Corey 1964)
for the simplicity of the description. However, in this scenario we require empirical
relationships for secondary imbibition as well as primary drainage.

In the advancing region of the current, the saturation increases according to the
Brooks–Corey capillary pressure curve for primary drainage, given by

pc(s)= pe(1− s)−1/ΛD, (2.1)

where ΛD parameterises the pore-size distribution and pe is the capillary entry
pressure of the porous medium. A narrower pore-size distribution, represented by
a larger value of ΛD, results in weaker capillary forces. A larger capillary entry
pressure, which the non-wetting fluid must overcome to displace wetting fluid from
a pore, results in stronger capillary forces. A more detailed interpretation of these
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parameters is discussed in Golding et al. (2013), below equation (5b). We have
defined the normalised non-wetting phase saturation,

s= Sn/(1− Swi), (2.2)

in terms of the irreducible wetting phase saturation Swi. From now on, a lower case s
denotes a normalised non-wetting phase saturation. For example, smax

r = Smax
nr /(1− Swi)

denotes the normalised maximum possible non-wetting residual saturation at the end
of a primary imbibition process.

At the tail of the current, in the imbibition region, the saturation at any position
decreases from its known maximum at the point of flow reversal, denoted by s′,
along a secondary imbibition scanning curve to its ultimate residual saturation, sr(s′).
To capture such scanning curves, we employ a capillary pressure model adapted by
Gerhard & Kueper (2003) which is based on the Brooks–Corey framework. This uses
just the primary drainage curve (2.1) and the primary imbibition curve given by

pc(s)= pT

(
1−

s− smax
r

1− smax
r

)−1/ΛI

, (2.3)

where ΛI is analogous to ΛD and pT < pe is the terminal pressure defined to be the
pressure at which non-wetting phase is immobile at its residual saturation. For ideal
porous systems ΛI = ΛD, because they both characterise the pore-size distribution.
However, for more realistic porous media these parameters are estimated empirically,
and so ΛI 6=ΛD. Using these parameters, Gerhard & Kueper (2003) defined capillary
pressure scanning curves for imbibition after drainage (secondary imbibition) by

pc = pT

(
1−

s− sr

sa − sr

)−1/ΛI

, (2.4)

where sa acts as an asymptotic saturation, akin to 1 − Swi in primary drainage. It is
defined such that there is a discontinuous drop in capillary pressure equal to pe −

pT when the flow reverses at s = s′, reflecting the underlying physical hysteresis at
the pore scale. This ensures that saturation remains continuous at the boundary r =
rb as the current evolves. Example curves for (2.1), (2.3) and (2.4) are sketched in
figure 2(a) for the case ΛI =ΛD = 1 and with numerical values given in the caption.

Since pressures are nearly hydrostatic within the current, the vertical gradient of
capillary pressure is linear and proportional to the density difference between the two
fluids, 1ρ and the gravitational acceleration, g. The capillary pressure is therefore
given by

pc(h, z) = pe + (h− z)1ρg (r> rb) (2.5a)
pc(h, z) = pT + (h− z)1ρg (r< rb), (2.5b)

where we assume that at the advancing boundary (z=h) the capillary pressure is equal
to the entry pressure, pe and at the boundary in the receding region, where fluid is at
residual saturation, the capillary pressure is equal to the terminal pressure, pT .

By combining the assumption of hydrostatic pressure in each phase with the
definition of the capillary pressure we can define effective saturations for drainage
and imbibition respectively, written as

sj
eff (h, z)= 1− (pc/pj)

−Λj = 1−
(

1+
h− z

hj

)−Λj

( j=D, I) (2.6a,b)
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(a) (b)

Drainage

Drainage

Imbibition Imbibition

Trapped

FIGURE 2. Primary drainage and imbibition bounding curves (solid), with an example
scanning curve (dashed) for (a) capillary pressure and (b) relative permeability. (a) The
capillary pressure parameters for this particular presentation are ΛI=ΛD=1, with pe/pT =

2, Swi = 0.1 and Smax
nr = 0.3. The discontinuous drop in capillary pressure 1p = pe − pT

is seen at the transition from primary drainage to secondary imbibition. (b) The relative
permeability parameters are αD=3, αI=4 and krn0=0.26, with Swi=0.42 and Smax

nr =0.3 to
fit empirical data from a sandstone core sample from Alberta, Canada, plotted for primary
drainage (×) and primary imbibition (+) (Bennion & Bachu 2006).

for notational convenience, where pD≡ pe, pI ≡ pT , the height scale hD≡ he= pe/1ρg
is the characteristic capillary entry height and hI ≡ hT = pT/1ρg is the equivalent
characteristic terminal height during imbibition. The height scales he and hT indicate
the relative strength of capillary forces to gravity during drainage and imbibition.

Thus, we find the drainage saturation distribution by rearranging (2.1) and
substituting (2.6a) to obtain

sD
= sD

eff [h(r, t), z]. (2.7)

Hence the historical maximum saturation distribution everywhere is known to be

s′ = sD
eff [hmax(r), z]. (2.8)

Similarly, we find the imbibition saturation distribution by rearranging (2.4) and
substituting (2.6b). By setting the resultant expression equal to (2.8) when h = hmax,
we find that the asymptote sa = sr + (s′ − sr)/sI

eff and hence the imbibition saturation
distribution is given by

sI
= (1− τ)

sD
eff (hmax, z)

sI
eff (hmax, z)

sI
eff (h, z)+ sr, (2.9)

where the trapping fraction τ is defined by

τ = sr(s′)/s′ (2.10)

and describes the fraction of the fluid initially in a pore at the point of flow reversal
that is ultimately residually trapped.
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1.0

(a) (b)

FIGURE 3. (a) The residual saturation and (b) the corresponding trapping fraction plotted
against initial saturation for two examples of simple trapping models when smax

r = 0.5. In
both graphs, the linear trapping model, defined by (2.11), is indicated by the solid line,
and Land’s model, defined by (2.12) and (2.13), with Ĉ= 1, by the dashed curve.

2.3. Trapping models
Here we give a brief introduction to trapping models and define the two specific
models we use to illustrate our results in this paper.

The trapping model used to capture the empirical relationship between initial and
residual saturation can fundamentally change predictions for the long-term behaviour
of two-phase gravity currents due to its influence on the saturation profile in the
receding region (2.9). Empirical evidence suggests that the residual saturation sr, and
therefore the trapping fraction τ , depends on the historical maximum saturation up
to the time of flow reversal, s′. Pentland et al. (2008) provide a broad overview of
trapping models.

The simplest trapping models are characterised by the irreducible wetting phase
saturation Swi and the maximum residual non-wetting phase saturation Smax

nr , each
determined from primary drainage and imbibition processes respectively. Examples
are indicated on the horizontal saturation axis in figure 2. In this study we use
two models to illustrate the significant effect that the trapping relation has on the
long-term behaviour of the gravity current resulting from a finite release of fluid,
although alternative trapping models for specific fluid–rock systems can be readily
used.

The linear trapping model is defined by

sr = smax
r si, (2.11)

which also depends on the irreducible wetting phase saturation via (2.2), and describes
a relation where the trapping fraction τ remains constant regardless of the initial
saturation. The linear trapping relation and fraction are plotted using a solid line
in figures 3(a) and 3(b) respectively, where smax

r = 0.5. Uniform saturation models,
which incorporate fluid being trapped at a uniform residual saturation, also exhibit
a constant trapping fraction (for example Kochina et al. 1983) and this analogy
becomes important later in this paper.

We also consider the commonly used nonlinear model, introduced by Land (1968).
Land’s model relates the initial saturation to the residual saturation by

sr = si/(1+ Ĉsi), (2.12)
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where the constant
Ĉ= (1− smax

r )/smax
r , (2.13)

also depends on the irreducible wetting phase saturation via (2.2). Land’s model
captures the common characteristics that the residual saturation decreases and notably
the trapping fraction increases with decreasing initial saturation. This is visualised by
the dashed curve plotted in figures 3(a) and 3(b), where smax

r = 0.5, or Ĉ = 1. We
shall see below that this enhanced trapping efficiency at lower maximum saturations
leads to significantly different long-time behaviour of the gravity current.

2.4. Evolution of the height of the current
In this subsection we derive the key components of the governing equation for
a two-phase gravity current resulting from an instantaneous release of fluid, the
so-called saturation and flux functions, which incorporate the pore-scale physics
within the drainage and imbibition regions.

The rate of change of the height of the current, h, at a given radial position is
related to the divergence of the depth-integrated flux. The depth-integrated, two-phase
gravity current model for radial spreading was derived by Golding et al. (2013) and
is given by

ϕR
∂h
∂t
−

ub

r
∂

∂r

(
rFh

∂h
∂r

)
= 0, (2.14)

where ub = kkrn01ρg/µn is the buoyancy velocity, ϕ = φ(1 − Swi) is the saturation
adjusted porosity of the porous medium and R and F are dimensionless functions of
h defined by

R=
∫ h

0

∂s
∂h

dz, F =
1

krn0h

∫ h

0
krn(s) dz. (2.15a,b)

The saturation function R captures how the volume of fluid changes in the current
per unit area as the height changes and the flux function F adjusts the flux term
to account for the reduced permeability of fluid in a two-phase gravity current by
integrating the non-wetting phase relative permeability krn. In contrast to the constant-
flux case studied previously, where there is only an advancing drainage front, the
finite-volume current considered here has two sets of saturation and flux functions
due to the hysteresis between drainage and secondary imbibition in the advancing and
receding regions.

The drainage saturation function in the advancing region of the current is given by

RD(h/he)= [1− (1+ h/he)
−ΛD] = sD

eff (h, 0), (2.16)

which is the non-wetting phase saturation at z= 0 used in Golding et al. (2011, 2013)
and found by substituting (2.7) into (2.15a). In the receding region for secondary
imbibition we find, by substituting (2.9) into (2.15a), that the saturation function is
given by

RI(h/hT, hmax/he)=

∫ h

0

ΛI

hT
(1− τ)

sD
eff (hmax, z)

sI
eff (hmax, z)

[1− sI
eff (h, z)]−

(ΛI+1)
ΛI dz. (2.17)

The relative permeability in each region determines the flux function and, as in
previous studies, we employ a commonly used power-law relation of saturation for
primary drainage, defined by

kD
rn(s)= krn0sαD, (2.18)
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where krn0 is the endpoint relative permeability which occurs at the maximum
non-wetting phase saturation, 1 − Swi, and αD is an empirically determined constant.
During secondary imbibition, as saturation decreases, the path of descent of relative
permeability depends on the maximum saturation at the point of flow reversal, s′, and
similarly to capillary pressure this is represented by scanning curves. It is important to
note that at the end of this process, the relative permeability of the non-wetting phase
is zero at the residual saturation sr(s′), which can range between 0 and smax

r depending
on s′. In this study, we use the history-dependent model for relative permeability
proposed by Killough (1976) for use in petroleum reservoir simulations because
it provides a mathematically simple expression for linking relative permeability as
drainage transitions into imbibition. It was also employed by Juanes et al. (2006) in
their study of relative permeability hysteresis in models for the geological storage of
CO2. However, we note that our framework is not limited to this particular model.
The secondary imbibition relative permeability is defined by

kI
rn(s)= kD

rn(s
′)

(
s− sr

s′ − sr

)αI

, (2.19)

where αI is the constant in the primary imbibition relative permeability curve when
sr= smax

r and s′=1 in (2.19), which is more easily determined experimentally. Example
relative permeability curves for primary drainage and imbibition, measured from a
core sample of sandstone from Alberta, Canada are plotted in figure 2(b). Solid curves
show the model bounding curves using (2.18) and (2.19), where αD = 3 and αI =

4 have been chosen to fit the experimental data. An example secondary imbibition
scanning curve using (2.19) is plotted by the dashed curve for flow reversal at s′= 0.5.

Thus returning to the flux function, we now substitute (2.7), (2.9), (2.18) and (2.19)
into (2.15b) to find that

FD(h/he)=
1
h

∫ h

0
[sD

eff (h, z)]αD dz, (2.20)

and

F I(h/hT, hmax/he, hmax/hT)=
1
h

∫ h

0

[sD
eff (hmax, z)]αD

[sI
eff (hmax, z)]αI

[sI
eff (h, z)]αI dz, (2.21)

in the advancing and retreating regions respectively.

2.5. Boundary and initial conditions
Here we complete the model definition by specifying boundary conditions.

There are five spatial boundary conditions for a gravity current resulting from the
release of a finite volume of fluid. There is a condition of no flux through the nose
of the current, where the height is zero, and no flux input at the origin,

hFD ∂h
∂r
= 0, h= 0 (r= rN), hF I ∂h

∂r
= 0 (r= 0). (2.22a−c)

Continuity of height and flux are also explicitly enforced at the boundary dividing
regions of drainage and imbibition, r= rb, by

h|r−b = h|r+b , hF I ∂h
∂r

∣∣∣∣
r−b

= hFD ∂h
∂r

∣∣∣∣
r+b

, (2.23a,b)
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Trapping of fixed volume, multiphase gravity currents in porous media 561

respectively. Saturation profiles are defined to be equal when h= hmax, i.e. at r = rb,
and therefore the flux functions are continuous here. Thus we deduce from (2.23a,b)
that the gradient of the current height, ∂h/∂r, is continuous at r= rb.

The initial shape of the gravity current must also be supplied to fully define the
problem. If we suppose that the initial volume of fluid, V , is held in an axisymmetric
shape with height profile h0(r), extending between r = 0 and r = r0, then the initial
mass (or volume) may be expressed as

2πϕ

∫ r0

0

∫ h0

0
s0[h0(r), z] dzr dr= V, (2.24)

where s0[h0(r), z] is the initial saturation distribution. In practice, the initial shape
might be that of the slumping groundwater mound, or the shape of the CO2 plume at
the end of injection, for example, in which case s0 = sD(h0, z) defined by (2.7).

2.6. Scaling and non-dimensionalisation
We are able to simplify the model in this subsection by applying scaling analysis.

The solution for the height profile of the two-phase gravity current depends on
the characteristic variables r and t, the buoyancy velocity, ub, the initial volume of
fluid released, V , the initial radius of the volume, r0, the capillary pressure curve
parameters he, hT , ΛD and ΛI , relative permeability curve parameters αD and αI
and the normalised maximum residual saturation, smax

r . All saturations have been
already scaled using the irreducible wetting phase saturation, Swi. The height of the
initial volume of fluid is determined given the initial radius, volume and equilibrium
saturation distribution. Although the number of parameters is large, the complexity of
the problem can be reduced by some sensible scaling.

By applying scaling analysis to (2.14) and (2.24) and rearranging, we find the
following relations between the dimensions of radius, height, time, permeability,
porosity and the constant characteristic parameters

〈r〉4 ∼
V1ρg
µn
〈t〉
〈perm〉
〈poros〉2

and 〈h〉 ∼ V〈poros〉−1
〈r〉−2, (2.25a,b)

where 〈.〉 denotes ‘scales as’, the permeability 〈perm〉 ∼ kkrn0〈F〉 and porosity
〈poros〉 ∼ ϕ〈R〉 ∼ ϕ〈s〉. For comparison, we note that for single-phase gravity currents
〈perm〉 ≡ k and 〈poros〉 ≡ φ. In contrast for two-phase gravity currents, 〈perm〉 and
〈poros〉 are complex, nonlinear functions of h in general. In certain circumstances
in the long-time limit, these functions can be simplified, which leads to self-similar
behaviour of the current, as discussed in § 3.1.

We denote horizontal and vertical length scales by R and H respectively and the
time scale by T , and by ignoring the functional components of (2.25a,b), define
dimensionless variables

r̂= r/R, ẑ= z/H, ĥ= h/H, t̂= t/T, (2.26a−d)

where

R= r0, H =
V
ϕr2

0
, T =

r4
0ϕ

2

Vub
. (2.27a−c)

Thus the radial extent of all currents and the height of the current are scaled by the
initial radius, the fluid volume and the effective porosity, while the time scale is found
in terms of the buoyancy velocity from (2.14).
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The system is now characterised by two key dimensionless parameters. First, the
Bond number

B≡
1ρgH

pe
=

H
he
=

V
ϕr2

0he
, (2.28)

indicates the relative strength of gravity to capillary forces at t=0. We note that as the
fluid spreads and the height of the current decreases with time, the relative strength of
capillary forces increases and therefore a time-dependent Bond number would decrease
with time. Second, capillary hysteresis is characterised by

δ = he/hT, (2.29)

which is the ratio of the entry to terminal capillary pressure. These two pressures are
generally related and Gerhard & Kueper (2003) determined experimentally that δ ≈
5/3, and for most realistic situations δ > 1.

We now use the dimensionless and normalised quantities (2.27)–(2.29) to obtain a
set of equations to solve for ĥ, formulated in terms of variables r̂, t̂, ẑ and the non-
wetting saturation s. The dimensionless parameters are B and δ, which characterise the
physical balance between capillary forces and gravity, along with ΛD, ΛI , αD, αI and
smax

r , which characterise the functional form of the constitutive relations for capillary
pressure, relative permeability and residual trapping. Hereafter we drop the hats on
dimensionless variables for ease of notation.

The dimensionless model of the spreading and trapping of a two-phase current can
therefore be written by substituting (2.26)–(2.29) into (2.14) to find

R
∂h
∂t
−

1
r
∂

∂r

[
rh
∂h
∂r

F
]
= 0. (2.30)

Here (2.16) and (2.17) are rewritten as

R=
{
RD(Bh, ΛD) (r> rb)

RI(δBh, Bhmax, δBhmax, δ, ΛD, ΛI, smax
r ) (r< rb)

(2.31)

and (2.20) and (2.21) are rewritten as

F =
{
FD(Bh, ΛD, αD) (r> rb)

F I(δBh, Bhmax, δBhmax, δ, ΛD, ΛI, αD, αI) (r< rb).
(2.32)

The boundary conditions (2.22) and (2.23) are rewritten here in dimensionless
variables for completeness,

h
∂h
∂r
= 0, h= 0 (r= rN),

∂h
∂r
= 0 (r= 0), (2.33a−c)

and

h|r−b = h|r+b , hF I ∂h
∂r

∣∣∣∣
r−b

= hFD ∂h
∂r

∣∣∣∣
r+b

. (2.34a,b)

Finally, the dimensionless initial mass (or volume) is

2π

∫ 1

0

∫ h0

0
sD
[h0(r), z] dzr dr= 1. (2.35)
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Trapping of fixed volume, multiphase gravity currents in porous media 563

We have thus derived the set of equations (2.30)–(2.32) and boundary conditions
(2.33)–(2.35) which govern the spreading of a two-phase gravity current resulting
from an instantaneous release of fluid. We explore solutions for various scenarios
throughout the following section, paying particular attention to the choice of trapping
model.

3. Spreading of a two-phase finite-release gravity current
We developed in § 2 a very general framework which permits the use of any

empirical constitutive relations for capillary pressure, relative permeability and residual
trapping. In general, the model must be solved numerically due to the nonlinear nature
of the equations and the dependence on historical information through the saturation
distribution. However, in the long-time limit when there is no hysteresis and the
trapping relation is linear, the problem reduces in complexity. The model admits
a similarity solution of the second kind, similar to those derived by Van Dijke
& Van der Zee (1997) and Bear & Ryzhik (1998), and the two-phase analogue
of the groundwater mound model presented by Kochina et al. (1983), which we
summarise in § 3.1. We validate this long-time similarity solution by solving the
full two-phase model numerically with a linear trapping model in § 3.2. Next, we
demonstrate the vital importance of the choice of trapping model in § 3.3 by using
numerical computations with Land’s trapping relation to show how the current slows
down in the long-time limit, in stark contrast to the self-similar spreading with the
linear trapping model. The results of § 3.1 argue that when Land’s trapping model is
used, the model predicts that the two-phase gravity current will eventually stop. The
approach to the steady state is indeed suggested by our long-time numerical results.

3.1. Linear trapping: self-similar spreading in the long-time limit
In this subsection, we investigate the effect of using a linear trapping model, defined
by (2.11), on the spreading of a multiphase gravity current in the long-time limit,
which we find to be self-similar.

Here we consider a scenario where hysteresis in capillary pressure curves is caused
only by the existence of residual trapping, i.e. ΛD = ΛI = Λ and δ = 1. In this
case, the rate of change of imbibition saturation with height (the integrand of the
saturation function (2.15a)) simplifies to ∂sI(h, z)/∂h = (1 − τ)∂sI

eff (h, z)/∂h, yet in
general retains its dependence on historical saturation and therefore height information
through τ . However, when the trapping fraction is constant, there is no dependence
on historical saturation and the saturation function is history independent. Similarly, if
relative permeability curves are parameterised by αD= αI = α in both regions and the
trapping fraction is constant, the flux function too does not depend on history. Thus,
the extra length scale hmax is removed from the problem. Furthermore, as the current
spreads and its height decreases monotonically, ΛBh� 1 in the long-time limit and
the saturation distribution in each region is approximately linear with distance from
the current boundary, sD

≈ΛB(h− z) and sI
≈ (1− τ)ΛB(h− z)+ τΛB(hmax − z) in

the drainage and imbibition regions respectively. Consequently the saturation and flux
functions are approximated by power laws, given by

RD
≈ΛBh, FD

≈
1

1+ α
(ΛBh)α, (3.1a,b)

and
RI
≈ (1− τ)RD, FI

≈ FD. (3.2a,b)
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Thus in the long-time limit when there is no hysteresis the current spreads in a self-
similar fashion. History dependence in the imbibition region can also disappear when
there is hysteresis but an even longer-time limit must be considered where the height
in the drainage region has also decreased such that ΛDBhmax� 1.

In order to perform dimensional analysis in the long-time limit, we substitute
(3.1a,b) and (3.2a,b) into the dimensional governing equation (2.14) to obtain

h
∂h
∂t
= c

ub

ϕ(1+ α)

(
ΛB
H

)α−1 1
r
∂

∂r

[
rhα+1 ∂h

∂r

]
, (3.3)

where H and B are defined by (2.27b) and (2.28) respectively, and

c=

{
cI = 1/(1− smax

r ) (∂h/∂t< 0)
cD = 1 (∂h/∂t> 0).

(3.4)

When there is no trapping, smax
r = 0, which means that cI = cD and so there is only

one equation governing the evolution of the spreading current.
In the manner of Kochina et al. (1983) and Barenblatt (1996), scaling analysis is

used to find three dimensionless combinations of the characteristic parameters,

ξ = rL−1, ξ0 = r0L−1 and cD/cI = 1− smax
r . (3.5a−c)

In this long-time limit, 〈perm〉= kkrn0(ΛB〈h〉/H)α and 〈poros〉=ϕΛB〈h〉/H and hence
the scaling analysis in § 2.6 shows that the length scale L is given by

L= ϕ−1/2

[
Vα/2

0
ubt

(1− smax
r )

(
ΛB
H

)(α−2)/2
]1/(2+α)

, (3.6a)

where the 1 − smax
r factor comes from the imbibition saturation function in the

governing equation and the height profile has the form

h=
[

V0(1− Smax
r )

ubt

]1/(2+α) ( H
ΛB

)α/(2+α)
F(ξ , ξ0, cD/cI, α), (3.6b)

where F is a dimensionless height function.
When trapping occurs, the condition for global conservation of mass cannot be

straightforwardly integrated to give an extra scaling condition and we must therefore
seek a solution assuming incomplete self-similarity (Kochina et al. 1983; Barenblatt
1996). By combining (3.5a,b) and (3.6a,b), and assuming that F has the form
F(ξ , ξ0, cD/cI, α)= ξ

γ

0 f (ξξ−ε0 , cD/cI, α), we find expressions for the similarity variable,
non-dimensional radius and height profiles given, after considerable algebra, by

ζ = r̂t̂′
−β
, r̂N = ζN t̂′

β
, ĥ= ζ 2/α

N (ΛB)−1/2 t̂′
−Γ

f (Υ , cD/cI, α), (3.7a−c)

where the powers of time Γ = (γ + 1)/(α + 2) and β = (1 − ε)/(α + 2), ζN is the
value of ζ at the front of the current, f is a dimensionless function of the normalised
similarity variable Υ = ζ/ζN and the factor ζ 2/α

N in (3.7c) is included for mathematical
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Trapping of fixed volume, multiphase gravity currents in porous media 565

convenience. All the dimensionless variables are defined by (2.26), and we find a new
characteristic dimensionless time

t̂′ =
t̂

(ΛB)(2−α)/2(1− smax
r )

. (3.8)

Hence we see that the combined effect of the Bond number and pore-size distribution,
BΛ, is simply to alter the time and height scales. We see from (3.7c) that stronger
capillary forces (decreasing ΛB) always lead to an increased height scale. When
capillary forces act to increase the height gradient through reduced saturation, but do
not sufficiently reduce the relative permeability (α < 2), we see from (3.8) that the
time scale decreases, whereas if relative permeability is sufficiently hindered (α > 2),
the time scale of spreading increases.

Substituting (3.7a–c) into (3.3), we obtain, after some algebra, the ordinary differen-
tial equation for the similarity profile, f ,

∂

∂Υ

[
f α+1Υ

∂f
∂Υ

]
+ ĉ(α + 1)Υ f

[
Γ f + βΥ

∂f
∂Υ

]
= 0, (3.9)

where

ĉ=

{
1 (∂h/∂t< 0), or (Γ f + βΥ ∂f /∂Υ > 0)
cI/cD (∂h/∂t> 0), or (Γ f + βΥ ∂f /∂Υ < 0)

(3.10)

in the imbibition and drainage regions respectively. For a similarity solution to exist,
the height must fall with a power of time given by

Γ = (1− 2β)/α. (3.11)

Boundary conditions at the front of the current and at the origin are

f = 0 (Υ = 1) and f ′ = 0 (Υ = 0). (3.12a,b)

To find the profile at the front of the current, we seek a solution of the drainage
governing equation (3.9) of the form f (Υ ) = p(1 − Υ )q for 1 − Υ � 1 and obtain

f (Υ )=
[

cIαβ(1+ α)
2cD

]1/α

(1−Υ )1/α (1−Υ � 1). (3.13)

We solve (3.9) numerically by shooting from Υ = 1 using (3.12a) and (3.13) and find
the value of β such that (3.12b) is satisfied to a specified accuracy. In general when
there is trapping, smax

r > 0, the prefactor ζN cannot be predetermined by solving (3.9),
and must instead be matched with the numerical solution of the full equations.

Similar similarity solutions for the long-time limit of a three-phase, non-aqueous
phase liquid lens spreading above the water table and a two-phase dense non-aqueous
phase liquid lens spreading in unsaturated soil were described by Van Dijke &
Van der Zee (1997) and Bear & Ryzhik (1998). Both considered the evolution of
the volume of fluid per unit lateral area, rather than the height profile described
here. These studies related residual trapping to this vertically integrated volume,
whereas we have used a linear initial residual saturation relation to derive the
similarity solution. Bear & Ryzhik (1998) demonstrated how the power of time in
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FIGURE 4. (a) Results of the similarity solution with no trapping, smax
r = 0. The similarity

variable at the current front, ζN , plotted against the relative permeability power α. The
equivalent value for a single-phase current with a constant volume is ζN = 1.502 (Lyle
et al. 2005). (b) With trapping, smax

r > 0. The radial rate of spreading in the solution
described by r∼ tβ in § 3.1 is plotted for α= 1, 1.5, 2, 2.5 and 3 as a function of 1− smax

r .
The equivalent values for a constant-saturation current are plotted by the black dashed
curve (Kochina et al. 1983). Numerical results discussed in § 3.2 are indicated by the ×
markers, for each value of α with smax

r = 0.1 and 0.5.

the self-similar spreading depends on the coefficient of the diffusion term (in our
model 1− smax

r ) and is affected by a combination of the multiphase parameters from
the van Genuchten capillary pressure model, along with the power of saturation in
the relative permeability relation. When using the Brooks–Corey model for capillary
pressure, we have found that the effect of pore-size distribution, parameterised by
Λ, is to alter the time scale, and is thereby removed from the similarity solution.
Nevertheless, the results of Bear & Ryzhik (1998) indicate qualitatively similar
behaviour, that the power of time describing radial spreading decreases as capillary
forces strengthen.

We proceed to use our solution to explore the effect of altering the relative
permeability parameter α, and the trapping fraction smax

r , on the self-similar height
profile and spreading in the long-time limit. We highlight in particular the distinctive
behaviour of the two-phase current depending on whether the relative permeability
parameter α is greater than, less than or equal to 2.

3.1.1. No residual trapping, smax
r = 0

When there is no residual trapping, smax
r = 0, we are able to make some

simplifications. The volume of fluid in the spreading current remains constant and the
scenario is the two-phase analogue of the radial, constant-saturation, constant-volume
case where radius increases as r ∼ t1/4 and the height falls like h∼ t−1/2 (Lyle et al.
2005). Here, the global mass condition (2.35) can be integrated explicitly to give the
similarity variable at the nose of the current

ζN =

[
π

∫ 1

0
f 2Υ dΥ

]−α/2(α+2)

, (3.14)

which is plotted against α in figure 4(a). We see that the value of ζN is not
significantly affected by changing α, with its value less than halving between α = 1
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FIGURE 5. Scaled self-similar height profiles of a two-phase gravity current spreading in
the long-time limit for (a) different values of the trapping fraction smax

r = 0, 0.3, 0.6 and
0.9, with fixed α = 2 and (b) different relative permeability curves for α = 1, 1.5, 2, 2.5
and 3 with fixed smax

r = 0.5. The profile at the nose of all the currents is described by
(3.13). Equivalent results for the uniform-saturation, single-phase model (SP) are plotted
by the black dashed lines (Kochina et al. 1983; Lyle et al. 2005).

and 3. Furthermore, scaling arguments allow us to analytically determine the rate of
spreading and hence the rate of decrease of the current height, which are given by

β = 1/(2+ α), Γ = 1/(2+ α) (3.15a,b)

respectively. We see immediately that the two-phase constant-volume gravity current
spreads at a different rate from its single-phase counterpart unless α = 2, which is
a special case discussed in § 3.1.2. On the other hand, the height of the two-phase
current always decreases more slowly than its single-phase counterpart due to the
reduced relative permeability if we consider only α > 1 for realistic porous media.

The similarity height profile f (Υ ) can be determined explicitly by solving (3.9) with
(3.14) and (3.15), as shown in figure 5(a) for α= 2. The general effect of changing α
is qualitatively similar to the more general case with trapping; and therefore analysis
is deferred until § 3.1.2.

3.1.2. Effect of altering the trapping fraction (smax
r ) and relative permeability

curves (α)
Here we use the similarity solution to explore how certain empirical properties of

the multiple phases and porous medium affect the shape and propagation rate of the
gravity current.

The primary two-phase phenomena that affect the self-similar spreading of the finite-
release gravity current are the trapping fraction, smax

r , which determines the rate at
which fluid is left behind the current, and the relative permeability, characterised by
α, which determines the sensitivity of the flux to variations in saturation. We compare
results in the following analysis to the constant-saturation model by Kochina et al.
(1983), where the constant trapping fraction smax

r also affects the self-similar spreading,
but where the relative permeability, like the saturation, is constant and uniform in both
advancing and receding parts of the current.

The spreading exponent β is plotted as a function of cD/cI = 1 − smax
r in

figure 4(b) for fixed trapping fraction smax
r and for five relative permeability curves
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(α= 1, 1.5, 2, 2.5 and 3). The corresponding propagation rate for a constant-saturation
model found by Kochina et al. (1983) is plotted using a black dashed curve. We see
that the values of β when α = 2 correspond exactly to the constant-saturation case
(Kochina et al. 1983) because at this value in the long-time limit, the permeability and
porosity are balanced in such a way that their coaction is similar to the single-phase
case, as expressed in the scaling (2.25a). In all cases, the value of β is given by
(3.15a) when smax

r = 0 and decreases as the proportion of trapped fluid increases. The
shape of the β(smax

r ) curves for different values of α are similar, indicating that the
effects of trapping and relative permeability are approximately independent.

The height profiles for two-phase gravity currents in the long-time limit are plotted
for a selection of values of smax

r with fixed α = 2 in figure 5(a). The thickening self-
similar profile with increased trapping fraction is qualitatively similar to the constant-
saturation case (Kochina et al. 1983), plotted with dashed curves for smax

r = 0 and
0.9 in figure 5(a), although the nose shape is more rounded. The effect of relative
permeability on the shape of the nose, as expressed by (3.13), is demonstrated in
figure 5(b) for a selection of α with fixed smax

r = 0.5. The profile is linear for α =
1, as for the constant-saturation current plotted with a dashed curve, and becomes
more rounded as α increases. This is due to the need for greater height gradients to
drive the fluid flux at the front where saturations and therefore relative permeabilities
are smaller for higher α, as observed for two-phase, constant-flux gravity currents
(Golding et al. 2011).

3.2. Linear trapping: numerical solutions
In order to verify the self-similar solution in the long-time limit, in this subsection
we numerically solve (2.30)–(2.32), with boundary conditions (2.33)–(2.35), while
continuing to use the linear trapping model. We set ΛD=ΛI =Λ and αD=αI =α, so
that hysteresis in the capillary pressure curves and saturation distributions in the two
regions is introduced wherever either, or both of, δ > 1 and smax

r > 0. We set δ = 1.4
in all our calculations, in order to represent a realistic porous medium (Gerhard &
Kueper 2003). Consequently, the similarity solutions derived in § 3.1 are valid here
only in the very long-time limit ΛBh� ΛBhmax� 1. We specify the initial volume
and profile of fluid between r= [0, 1] to be

h(r, t= 0)= h0(1− r)1/2, (3.16)

where h0 is a constant calculated for a set of parameters to ensure, using (2.35), that
the dimensionless volume of fluid is 1.

In figures 6(a) and 6(b), the radius and height profiles are plotted in terms of the
dimensionless variables defined in § 2.6 for initially moderate capillary forces Λ =
B = 1, for which h0 = 16.04. The radius is plotted for α = 1, 2 and 3, and we see
that for each current, the radius increases according to the self-similar power law
after approximately t̂ ≈ 10. The power of time, β, can be correctly predetermined
by the similarity solution and the values obtained from the numerical solutions in
figure 6(a) are plotted using × markers in figure 4(b) for both the case smax

r = 0.5
here and also smax

r = 0.1. The results indicate strong agreement between the numerical
results and the theoretical similarity solution in the long-time limit. The radius of
a single-phase, constant-saturation current is indicated by the dashed curve, where
the fluid was initially contained within a flat-topped cylindrical volume for numerical
reasons, which explains the slightly different behaviour at early times. The difference
in spreading behaviour of the two-phase current compared to the single-phase current
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FIGURE 6. Numerical solutions of a two-phase gravity current to validate the similarity
solution in the long-time limit with a linear trapping relation, smax

r = 0.5, for initially
moderate capillary forces B = Λ = 1, and hysteresis introduced by δ = 1.4. (a) Radius
plotted against time for a two-phase current (solid curves) with α = 1, 2 and 3, where
the initial residual relation is linear, defined by (2.11). A single-phase radius is plotted
for comparison (dashed curve), and a comparison between the predicted and simulated
power-law behaviour is shown in figure 4(b). (b) Numerical solutions (solid) and similarity
solutions (dashed) for the height profile of the current h against similarity variable ζ ,
where ζN is determined by the numerical simulations, for α = 1.5 and 2.5. A number
of numerical solutions are plotted for each case, corresponding to logarithmically spaced
time horizons, and demonstrate the tendency towards the similarity shape.

separated by α = 2 is clearly visible. When α = 2, the single-phase current spreads
faster due to a larger value of the similarity variable at the nose, ζN , which can only
be determined numerically.

Height profiles obtained numerically are plotted in figure 6(b) for logarithmically
spaced snapshots of time between t̂= 10 and 105, for α = 1.5 and 2.5 (solid curves).
The height and radial extent are scaled according to (3.7a–c), where ζN is determined
from the numerical calculations. The approach to a limiting, self-similar solution
(dashed curves) is evident for both α = 1.5 and 2.5.

The effect of the Bond number and pore-size distribution on the propagation rate
of the current is to adjust the time scale of the spreading, as defined by (3.8), which
depends only on the product BΛ. Figure 7 demonstrates the effectiveness of this
scaling, where the radial extent, plotted for various BΛ, shows an excellent collapse
of the data for both α = 1.5 and α = 2.5. The approach to the late-time self-similar
solution is faster when initial capillary forces are stronger, characterised by smaller
BΛ and also when relative permeability effects are magnified by the larger value
of α.

3.3. Land’s nonlinear trapping model
We now focus our attention on using Land’s nonlinear trapping model and discover
our novel result, that the current no longer spreads in a self-similar manner in the
long-time limit.

The behaviour of the trapping model plays a critical role in the dynamics of
spreading, and the rates of capillary trapping. For linear trapping relationships a
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101

100

10010–2 104102

FIGURE 7. Radius plotted against scaled time, equation (3.8), for δ = 1.4 and linear
trapping with smax

r = 0.5. For each value of α= 1.5 and 2.5, we plot the following curves
as we vary the initial magnitude of capillary forces: (i) initially very strong capillary forces
B=Λ= 0.1 (solid curves); (ii) moderate capillary forces B=Λ= 1 (solid); (iii) initially
weak capillary forces B=Λ= 10 (dashed); (iv) moderate gravity compared to capillarity
but little variation in pore sizes B = 1, Λ = 10 (dotted) and (v) weak gravity compared
to capillarity but larger variation in pore sizes B= 10, Λ= 1 (dash-dotted curves). Many
of the curves are indistinguishable from others with the same α because of the successful
scaling.

constant fraction of the receding current is trapped, leading to power-law spreading
and a predicted, infinite long-time extent. Here we show that the most commonly
used trapping model, Land’s model, which defines an empirical, nonlinear relationship
between initial and residual saturation, leads to the possibility of a finite runout
distance and hence a much more effective mode of trapping. At low initial saturations
the residual saturation behaves approximately quadratically, resulting in a trapping
fraction which changes with time as the saturation decreases. Thus the gravity current
remains dependent on the historical height information and the model must be solved
numerically for all times. As in § 3.2, we set ΛD = ΛI = Λ and αD = αI = α for
simplicity, but incorporate hysteresis with δ > 1 and smax

r > 0.
Figure 8(a) shows the dimensionless radial extent against time for several two-phase

gravity currents using Land’s trapping model, along with an example of the two-phase
radial extent using the linear trapping model. For comparison, the radius of the
single-phase counterpart of these currents is also displayed. Relative permeability and
hysteresis is the same for all curves drawn, characterised by α = 2.5, smax

r = 0.5 and
δ = 1.4. All the two-phase currents spread more slowly than the single-phase current
with constant saturation because when α = 2.5 > 2, the relative permeability effects
slow the current, despite the greater height gradients driving the flow, as discussed
in § 3.1.2. Importantly, comparing the two-phase spreading using different models,
we see that with Land’s trapping model, the currents decelerate over time for all
values of B=Λ= 0.1, 1 and 10. This is in stark contrast to the current with a linear
trapping model (solid, labelled curve) which spreads like t0.18 when α = 2.5.

To further demonstrate the effect of using Land’s model instead of a linear trapping
model, figure 8(b) displays the two-phase radius scaled by the long-time power law for
the linear trapping model, t0.18. We see clearly that the gravity currents using Land’s
trapping model decelerate with time relative to the linear model, because the saturation
in the current decreases and the trapping fraction increases.
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(a) (b)
SP

FIGURE 8. Numerical solution of the radial extent of a two-phase gravity current using
Land’s trapping model with fixed parameters δ= 1.4, α= 2.5 and smax

r = 0.5, where (a) the
radius is plotted against scaled time, t̂′, and (b) the radius is again plotted against t̂′, but
here is scaled by t̂′

0.18
, which is the self-similar power law found in the long-time limit

for linear trapping (with α = 2.5). Results are displayed for strong, moderate and weak
initial strengths of capillary forces, corresponding to B=Λ= 0.1, 1 and 10 respectively,
as labelled next to the non-solid curves. The corresponding radial extent for a two-phase
current with a linear trapping model and B=Λ= 1 is also plotted in both figures (solid,
labelled curve) and tends to the similarity solution derived in § 3.1, which is valid for all
initial strengths of capillary forces when the trapping relation is linear (demonstrated in
figure 7). The radius for an equivalent gravity current modelled using constant saturation
(single phase), plotted in figure 8(a) (solid curve, labelled ‘SP’), also tends to a similarity
solution (Kochina et al. 1983).

An important result is therefore that the propagation rate for all two-phase gravity
currents with Land’s initial residual relation slows with time. This is because as
the height of the current decreases, the initial saturations decrease, which leads
to a higher proportion of fluid being trapped, i.e. a higher trapping fraction. It is
useful to draw comparison with the similarity solution derived in § 3.1 for linear
trapping which predicts the propagation rate in terms of the trapping fraction, in that
case represented by smax

r , summarised in figure 4(b). There, as the trapping fraction
increases, the propagation rate of the gravity current tends to 0. If we draw analogy
to this for the radius of a gravity current with Land’s model, we would conclude that
as the trapping fraction increases, tending to 1, the propagation rate tends to 0, i.e.
the gravity current comes to a halt.

4. Residual trapping in a two-phase gravity current

In this section we consider the region of immobilised fluid left behind once the
gravity current has receded, occupying the region h< z< hmax in figure 1(a), and find
that the proportion of fluid trapped here is always predicted to be greater when using
Land’s model compared to the linear model.

Hitherto we have demonstrated the importance of the residual trapping model in
determining the long-term spreading behaviour and characteristics of a two-phase
gravity current, through both the diminishing volume of fluid in the current and the
hysteresis in capillary pressure and relative permeability induced by trapped fluid.
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We now pay attention to the efficiency of residual trapping in different two-phase
gravity currents and how it is affected by the trapping model, Bond number, pore-size
distribution and relative permeability characteristics of the current and porous medium.
In the case of a two-phase gravity current spreading beneath a caprock during the
geological storage of CO2, an important quantity is the rate at which the released
volume of CO2 is likely to be residually trapped, and hence permanently immobilised.
Another key question, particularly at preliminary stages of a CO2 storage site, for
example when assessing site suitability, is the ultimate extent to which the CO2 may
propagate.

We define an efficiency of trapping, Vr, to be the proportion of the initial volume
of fluid that is residually trapped. The initial volume of fluid in dimensionless terms
is unity, and hence the efficiency of trapping is given by

Vr = 2π

∫ rb

0

∫ hmax

h
sr(hmax, z) dzr dr. (4.1)

This can be compared to the efficiency of storage used to investigate leakage from
a CO2 reservoir (Neufeld, Vella & Huppert 2009), as an estimate of the trade-off
between storage and leakage.

The efficiency of trapping is influenced by three main factors. Firstly, the details
of the trapping relationship, which are determined empirically in practice. We again
illustrate the effects of the trapping relation by comparing results from the simple
linear model and the more representative Land’s model, recalling that the trapping
fraction (2.10) is constant in both the first and, trivially, the constant-saturation model,
but varies in Land’s model. Second, the level of partial saturation of fluid within the
current affects the efficiency of trapping via the trapping relation. The third main
factor is the volume of porous medium which is contacted by the current as it spreads.
This is often referred to in petroleum reservoir engineering as the sweep efficiency.
The greater the sweep, which depends on the radius and height of the gravity current,
the larger the volume of the reservoir that can be utilised for trapping. By definition
of the two-phase saturation distribution, (2.6)–(2.9), fluid exists at lower saturations in
two-phase gravity currents than in single-phase gravity currents, which leads to thicker
currents. However, we have seen that the rate of spreading, and therefore radial and
vertical extent, of the current depends on many two-phase parameters, such as the
Bond number B, pore-size distribution Λ and relative permeability α.

The trapping efficiency as a function of the radius of the gravity current is
plotted for the linear and Land’s models in figure 9 using dashed and solid curves
respectively. Various initial strengths of capillary forces are considered, labelled with
their respective values of B=Λ. The simulations are all run up to t̂ = 104 for fixed
smax

r = 0.5 and δ = 1.4, and a common relative permeability constitutive relation,
α = 1.5. The equivalent trapping efficiency for the constant-saturation (single-phase)
model with the same value of the trapping parameter, smax

r = 0.5, is also plotted for
comparison with a solid line labelled ‘SP’ (Kochina et al. 1983).

We see immediately that the trapping efficiency in two-phase gravity currents when
using Land’s model is always greater than when using the linear model for a given
radial extent. This is because Land’s model predicts a higher trapping fraction for a
given maximum, or initial, saturation, than in the linear trapping model, where the
trapping fraction remains constant as the current spreads and saturations decrease.
Furthermore, the trapping efficiency increases with stronger initial capillary forces
due to the higher trapping fractions at low saturations. It is worth noting that this
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FIGURE 9. The efficiency of trapping as a function of the radius of the current for
numerical simulations up to t̂ = 104, for fixed values of α = 1.5, smax

r = 0.5 and δ = 1.4.
The solid curves indicate the trapping efficiency using Land’s model and the dashed
curve the efficiency using the linear trapping model. Different initial strengths of capillary
forces are considered, as labelled with the value of B=Λ. The equivalent curve for the
constant-saturation (single-phase) model where the constant residual saturation is 0.5 is
also plotted and labelled ‘SP’ (Kochina et al. 1983).

characteristic of Land’s model is shared with many other constitutive initial residual
relations (Pentland et al. 2008).

The trapping efficiency for two-phase currents using the linear model is always
lower than for the constant-saturation model with the same trapping fraction (Kochina
et al. 1983), despite having spread further (for the case displayed here, α = 1.5) and
with a greater vertical sweep due to the partial saturations. This is because in both
models the trapping fraction is equal to smax

r = 0.5, and remains constant as the current
spreads. In the two-phase current however, the decreasing partial saturation leads to
an ever decreasing absolute volume being trapped per unit of porous medium as the
current height recedes. Furthermore, in contrast to Land’s model, this means that the
trapping efficiency decreases with stronger initial capillary forces.

For Land’s model and initially moderate and strong capillary forces, the trapping
efficiency per unit radius is greater than the efficiency predicted by the single-phase
model with its constant residual saturation and trapping fraction. The trapping
efficiency for the Land’s model two-phase current is further enhanced by its increased
vertical sweep, leading to a much higher volume of fluid being trapped in a smaller
radius. In the case of very strong capillary forces when B = Λ = 0.1, nearly 100 %
of the initial fluid is residually trapped by t̂= 104 and r̂N ≈ 3.

When capillary forces are initially weak, B=Λ= 10 in our example, the trapping
efficiency for two-phase currents using either trapping model is similar at early times
to that for the constant-saturation model in which capillary forces remain negligible
for all time. This is because the saturation is approximately unity in much of the two-
phase currents and so both trapping models predict similar trapping fractions, equal
to smax

r . However, for Land’s model, as the two-phase current spreads and the average
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maximum saturation decreases, we would expect the increasing trapping fraction to
manifest in a trapping efficiency per unit radius rising above the single-phase level at
later times.

The relative permeability for all scenarios considered here is parameterised by α=
1.5. We note that for larger values of α, where relative permeability is more greatly
inhibited at partial saturations, the behaviour in each case is characteristically similar.
However, the trapping efficiency per unit radius is greater in all cases, presumably
because of the greater sweep efficiency of these gravity currents.

5. Discussion and conclusions

We have derived a model for the evolution of a finite-volume, two-phase gravity
current, which incorporates the key two-phase phenomena that arise when drainage
and imbibition occur simultaneously in different regions of the current. Residual
trapping of fluid during imbibition in receding regions of the current is described using
an empirical trapping model, which determines the evolving saturation distribution
there as a function of space and time. This is used to capture in a consistent way
the end points in the hysteretic capillary pressure and relative permeability primary
and secondary scanning curves. The resulting model encapsulates the key pore-scale
capillary phenomena within specially defined saturation and flux functions which
differ in the drainage and imbibition regions, whilst still resembling the traditional
framework often used to describe gravity currents (see, for example, Huppert &
Woods 1995). Thus two-phase gravity currents with trapping and hysteresis may
be investigated at much lower computational costs than solving the full equations
numerically.

We explained how the fundamental depth-integrated momentum conservation
equation (2.14), could be combined with the empirical models for multiphase flow to
define the saturation and flux functions (2.15)–(2.21), along with the no-flux boundary
conditions, continuity of height and flux, and global conservation of mass, equations
(2.22)–(2.24).

Using this model, we investigated how the behaviour of the current is affected
by the saturation distribution of spreading fluid, governed by the Bond number and
pore-size distribution, along with the constitutive relation between relative permeability
and saturation and the extent of residual trapping. We paid particular attention to the
importance of residual trapping because it underpins the hysteresis exhibited in
both capillary pressure and relative permeability relations, and consequently the
fundamental behaviour of two-phase gravity currents.

One of the key findings of our analysis is that when residual trapping occurs, the
initial residual relation, or trapping model, is critical in determining the long-time
behaviour of the two-phase gravity current. If the trapping relation is given by the
commonly used Land’s model, the trapping fraction increases as saturation decreases
with time and the gravity currents slow down, which we demonstrated by solving
the full governing equations numerically. Furthermore, at very low saturations the
trapping fraction tends to unity and therefore, if our assumptions remain valid, the
model suggests that the two-phase gravity current will slow down and eventually
stop.

In contrast, when the trapping fraction is constant at low saturations, such as for
the linear model, the gravity current tends to a self-similar solution of the second
kind in the long-time limit, with saturation proportional to the current height. The
gravity current therefore spreads indefinitely, constantly slowing down, akin to the
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uniform-saturation solution derived by Kochina et al. (1983) and two-phase models by
Van Dijke & Van der Zee (1997) and Bear & Ryzhik (1998). In these cases, we found
that the long-term behaviour is determined not only by the trapping fraction, but also
by the balance between the steeper height gradients and reduced permeability caused
by partial saturation. The explicit form of motion is divided by the critical value
α=αc= 2, where α parameterises the empirical relation between relative permeability
and saturation. When α > αc, the relative permeability is significantly reduced at low
saturations and this leads to the two-phase gravity current spreading more slowly
than an equivalent single-phase counterpart. When α < αc the increased gradient of
the height profile drives a larger flux of fluid in the current, and hence the two-phase
gravity current spreads more quickly than a single-phase counterpart. The power law
of time for the radius of the current can be estimated reasonably well from the results
for the simpler, uniform-saturation model, with a simple multiplicative scaling factor
to account for the effects of relative permeability. However, the height profile differs
from the single-phase current by being larger, with a steeper profile at the front, as
has been found for constant-flux two-phase gravity currents (Golding et al. 2011;
Nordbotten & Dahle 2011). The behaviour of the current when capillary forces are
strong depends only on the product of the Bond number and the pore-size distribution,
BΛ. The behaviour of the gravity current in this limit also loses its dependence on the
ratio of terminal to entry capillary pressures, δ, at very late times when Bhmax� 1 for
the majority of the current, i.e. when the maximum saturation profile is proportional
to hmax. These similarity solutions provide useful, easily computable bounds and
tests for more complex scenarios which require numerical solution of the governing
equations.

The effects of residual trapping have been captured consistently and completely
in this model, both in terms of the hysteresis of capillary pressure and relative
permeability relations, and the fluid left behind as the current spreads. We find that
for two-phase currents with linear trapping and a constant trapping fraction, equivalent
to that in a single-phase current, fluid is immobilised by residual trapping at a slower
rate than in a single-phase current because of the partial saturations. However, the
trapping fraction in most realistic initial residual constitutive relations is higher when
the initial saturation is small, compared to when the initial saturation is 1 (Pentland
et al. 2008). In these cases, the trapping efficiency of two-phase gravity currents
is much greater than for the linear trapping model. The efficiency increases with
increasing strength of capillary forces because of the greater vertical sweep and fluid
spreading at lower saturations.

This dependence on the trapping model highlights the importance of resolving
the saturation distribution and its evolution within a two-phase gravity current. In
the context of the geological storage of CO2, the sweep of a two-phase gravity
current is much larger than that of a single-phase current, regardless of the shape
of the initial residual relation. This means that the CO2 has greater contact with
both the brine and the rock, which is beneficial for other trapping processes to take
place such as dissolution or mineral trapping. However, when considered alone the
implications of a vertical saturation distribution and nonlinear trapping model (such
as Land’s) is to impose a finite lateral extent for buoyant CO2 gravity currents.
This prediction, particularly when tested against field trials, would provide a strong
additional constraint on the total possible contact area of sequestered CO2, thereby
enabling geological CO2 storage to be licensed in a wider variety of geological strata
due to the efficacy of capillary trapping in ultimately immobilising buoyant CO2.
Finally, it should be noted that the results of this study strictly apply to unconfined
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aquifers where the vertical extent of the aquifer far exceeds the height of the current
(as is likely the case at Sleipner, for example, Cowton et al. 2016). While previous
work has examined the transitions from confined to unconfined flow (Hesse et al.
2007), and the trapping rates in sloping aquifers (Hesse, Orr Jr & Tchelepi 2008),
further work is necessary to examine the influence of the flow of ambient water on
trapping in multiphase current in more confined settings, as could be the case for
many CO2 injection projects.
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