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ABSTRACT

We consider the penetration of meridional currents from the radiative envelope of a rotating
star into a core with a stable gradient of molecular weight (). While the model used is idealized and
leaves out a number of effects, it incorporates the main forces and determines the characteristic
length and time scales of the motion. In particular, the depth of penetration into a u-barrier is

found.

The results suggest that in spite of a u-barrier in the core, mixing into the envelope may occur
at a nonnegligible rate. The model cannot predict this rate, and instead we propose a recipe to be
used in stellar evolution calculations to correct for the mixing.

Subject headings: stars: evolution — stars: interiors — stars: rotation

I. INTRODUCTION

The influence of meridional circulation of the
Eddington-Sweet type on the evolution of rotating
stars is not generally allowed for in stellar evolution
calculations. One reason for this is that nuclear
transformations (typically of hydrogen into helium)
produce gradients of molecular weight which, as
Mestel (1953, 1957) argued, will tend to inhibit the
circulation and protect the evolving core from rota-

tional mixing. If the mixing were fast enough, the"

molecular weight or u-barrier might not be formed,
but this question depends on details of the model, such
as shrinking convective cores, and has not yet been
fully treated. To discuss these problems, even in
particular cases, we need to know when a p-barrier
can actually shield a nuclear burning core from rota-
tional mixing.

That meridional currents can penetrate to some
extent into cores with u-barriers is clear. Indeed,
Kippenhahn (1974) has recently discussed an estimate
of the circulation speeds in the presence of u-gradients,
and he has also outlined the possible role of such
effects in stellar evolution. We compare our results
with his in Appendix B.

An analogous problem arises in the theory of solar
spin-down. Laminar spin-down currents on a large
scale in a stably stratified medium resemble Eddington-
Sweet (or, as Kippenhahn calls them, Eddington-
Vogt) currents, and have the same time scale. The
difference lies in the forcing mechanisms—spin-down
currents are driven by solar-wind torques while E-S
currents are driven by baroclinity, that is, by horizontal
pressure gradients. Here the problem of inhibition of
the spin-down currents by p-gradients must be con-
fronted.

In these problems we need an estimate of the circula-
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tion time in the presence of u-gradients in order to
gauge the efficacy of mixing. We also need to know
the penetration depth of the motions into the region
with stabilizing u-gradients. To calculate these we use
here a simple model, described in § II, which permits
us to isolate the most important features of the flow.
In § IIT we give the results derived from the model.
Then in § IV we discuss how such results may bear on
stellar evolution calculations.

II. THE MODEL

All calculations of meridional circulation of which
we are aware implicitly or explicitly make approxi-
mations which are equivalent to the Boussinesq
approximation. That is, they presume that the density
is nearly constant and take account of compressibility
by introducing the adiabatic gradient where it is
appropriate. Once results are so derived, the local
density is used in their interpretation. Similarly, the
neglect of the effects of curvature is common. Here, we
make these approximations explicitly at the outset.
We assume that the motions are slow with respect to
the rotating frame, in which case the governing equa-
tions are linear.

Consider a plane-parallel layer of fluid rotating
about the vertical z-axis with (constant) gravity in the
negative z-direction. The vertical density gradient is
taken to be stable and sufficiently large that the
vertical balance of forces is hydrostatic. With these
approximations, the horizontal force balance is between
the Coriolis force and the pressure gradient, except
where horizontal accelerations are important. We
neglect viscosity in the interior of the fluid.

In this plane-parallel model we interpret x as lati-
tude, y as longitude, and z as the radial coordinate.
The (x, y, z) components of velocity are (, v, w). We
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have in mind an axisymmetric situation and hence set
all derivatives with respect to y equal to zero. The
dynamical equations, with all these simplifications
included, are

_lop

2Qp = o O% s 2.1
& +2Qu =20 2.2)
ot =5 )

o _ ,

a_z =—8p » (2’3)
ou ow
w7 = 0. 2.4

Here Q is the angular velocity of the layer, p, is a
representative density, p’ is the density perturbation
associated with the motion, and g is the gravitational
acceleration (presumed constant). The quantity p is the
pressure plus the centrifugal potential with the contri-
bution from the static state subtracted out. These
equations are standard in the theory of rotating strati-
fied fiuids (Veronis 1970).

Let Ty(z) and po(z) represent the basic stratifications
of temperature and molecular weight, and 7" and p’
be perturbations due to the motion. In a slowly moving
fluid element, the pressure perturbation adjusts
quickly, and to good approximation we have

p' = po(—orT’ + '), (2.5)

where ap = —(@1n p/0 In T)pand «, = (0 In p/d In p),.
The linearized conservation equations for 7 and p are

T o bw=0 2.6)
and
op'
L —Bw=0, @7
where
=, =0, g

and Q, the heat exchange rate of the perturbation with
the background, will be specified presently. Diffusion
of helium is neglected. In the present considerations,
o, oy, By, and B, are all positive. The model is a
generalization of one used by D. W. Moore (private
communication) to discuss stratified spin-down; and
Moore’s model is in turn an extension of a model used
by Holton (1965).

The choice of boundary conditions depends some-
what on particular circumstances. The configuration
we have in mind consists of a star with a u-gradient
in the core and an Eddington-Sweet circulation in the
envelope. If the u-gradient were an absolute barrier,
the currents would be turned aside at the edge of the
core. In that case, as Mestel (1953) has discussed, a
viscous boundary layer would form at the core-
envelope interface. We take this as our initial con-
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figuration and follow the subsequent development of
motion in the core.

The viscous boundary layer at the edge of the core
is of the Ekman type in which the principal forces are
Coriolis and viscous. The detailed structure of this
thin layer does not affect the interior motion; its
influence is entirely through the matching condition it
provides between the core and envelope velocities.
Therefore, all that we need is some representation of
the tendency of the envelope flow to penetrate into the
core, and for this purpose a qualitatively adequate
condition is the Ekman boundary condition,

ov ov
w - _C[a B (a)env] ’

where C is a constant and the subscript “env” denotes
evaluation at the inner edge of the envelope. The
Ekman condition implies that if there is a difference in
the vertical vorticity across the interface, a vertical
flow follows inexorably. A number of other forms
could be used, but this one is well documented, and
applies to Mestel’s model with its viscous boundary
layer. In particular, for that case C = $(v/Q)*/2, where
v is the kinematic viscosity. Condition (2.9) applies at
z = R,, where R, is interpreted here as the core radius.
At z = 0, corresponding loosely to the center of the
star, we must have

2.9

w=0 at z=0. (2.10)

In applying condition (2.9) we are neglecting initial
transients whose time scale is the viscous diffusion
time across the Ekman layer of thickness ~ (v/Q)Y2,
This time is of the order of one rotation period, during
which the viscous layer is established and the penetra-
tive velocity, w, is set up. These transients are not
described by the equations we have just written; for
the more refined calculation they entail, see the papers
of Greenspan and Howard (1963) and St. Maurice
and Veronis (1975). In addition, at # = 0 we require
that 7", u’, u, and v vanish.

The vorticity at the edge of the envelope in effect
forces the penetration. The meridional component of
the envelope velocity vanishes at the poles and equator.
At the inner edge of the envelope we represent this
behavior by assuming

Veny = Vom (eilx) s (2'11)
where V, is a constant, x = 0 corresponds to the pole,
and x = =/l to the equator, that is, / is roughly
2R.~'. The factor e'** will be common to all the
dependent variables and R denotes the real part.

Finally, we must specify Q. For a qualitative des-
cription of the thermal effects we can use

Q=—qT", (2.12)

where g1 is the thermal time of the core. The calcula-
tions in § III are performed for this case. We note,
however, that we have also used the form

0 = kV2T" (2.13)
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to study the problem. This representation raises the
order of the differential equations and complicates the
mathematics. We report briefly on the details in
Appendix A but simply mention here that for the
large-scale effects equation (2.13) gives results similar
to those found with equation (2.12) with the replace-
ment of g by /%«.

III. RESPONSE OF THE CORE

After a period of adjustment, the flow in the core
becomes steady in the rotating frame. The time scale
of this response is the spin-up time which is one of the
principal results to be derived from the model.

To solve the system of equations, we let each depen-
dent variable vary with x like exp (ilx) and take the
Laplace transform in time, giving due attention to the
initial conditions. We then have a system of ordinary
differential equations in z which can easily be reduced
to the single equation,

@+ D% — PSP + S + I = 0, G.D)
where
W=etx f: we~Pidt | (3.2)
St =N, 52 - N (3.3)
and
N;? = gagfr, N2 = 8B, . (3.9

The N’s are the buoyancy frequencies due to the
stratification of T'and g, while Sy and S, are the dimen-
sionless stratification parameters normally used in the
theory of rotating stratified fluids. As pressure will not
occur in what follows, the use of p for the transform
variable should not cause confusion.

_Laplace transformation of the boundary conditions
gives us

W =—ilC(V — Vol[p) at z=R,, (3.5)
W=0 at (3.5b)

where V is related to v just as W is related to w. With
the help of the equations, condition (3.5a) may be
rewritten as

z=0,

oW = —c[m%':-’ - iIVo] at z=R,. (36)

Note that ¥V and W, being Laplace transforms, do not
have dimensions of velocity while ¥, does.

The solution of equation (3.1) subject to conditions
(3.5b) and (3.6) is

W= ilCV, sinh (kz)
~ psinh (kR,) + 2QCk cosh (kR,)

Kk = lz[(p i q)Srz + Su2] .

3.7

where

(3.8)
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We see that W is an even function of k, and equation
(3.8) shows that p is also even in k. Hence W has no
branch points in the p-plane. The Laplace inversion of
W is therefore straightforward with contributions
coming only from the poles of expression (3.7), and
hence

w=ilCV, > A,sinh (k,z) exp (pat + ilx), (3.9)
n=1
where

A, = sinh (k,,Rc){l + 2QC%} [k coth (ch)]}

k=ky
(3.10)

and k, and p, are the joint solutions of equation (3.8)
with

psinh (kR;) + 2QCk cosh (kR;) = 0. (3.11)

The other variables of the flow can now be obtained.
They are

u=-CV, 2 Ak, cosh (k,z) exp (pat + ilx),

e (.12)
cosh (kyz)

v=" cosh (koR,)

e'* + 2QCV,

o0

X Z k"p’:” cosh (k,z) exp (pat + ilx),

n=1

(3.13)

B, sinh (ko2)

= ilVo 36 % cosh (koK)

e + iICV,B,

x 3, 22 sinh (6.2 exp (pat + il3), (3.14)
n=1£n

[

T = —ilCVofr . 5 4

n=11n +

7 sinh (k,z)

x exp (p,t + ilx),

ko2 = I21i [( £
0 m P+4q

These solutions are expressed in terms of the decay-
ing normal modes of the differential equations and
boundary conditions of § II. The amplitudes A4, are
determined by the initial conditions. We find that the
values of p, are all real and negative, and hence
the inverses of the | p,| represent the decay times of the
modes. For very large time a nonzero azimuthal
velocity remains, as would be expected from the
boundary conditions. The most slowly decaying mode
determines the spin-up time, which is thus the largest
value of |p| ! allowed by equations (3.8) and (3.11).

In the special case for which g = 0 there is only one
solution for (3.8) and (3.11):

p = —2QCkcoth (kR), k = I(S;* + S.2)'2, (3.17)

(3.15)

where

)ST2 + Sﬁ] (3.16)
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which is essentially the result first given by Holton
(1965). The core adjusts to the vorticity at its boundary
in time scale of order |p|~*, but the effects are felt
only to a depth of approximately 1R, (S;2 + S,2) /2
into the core. This case is particularly simple because
the density effects due to molecular-weight and
thermal effects are indistinguishable (in the present
approximation) in the absence of any diffusion of
either.

Another special case corresponds to that for which
S, = 0 and g # 0. In this case we can readily reduce
equations (3.8) and (3.11) to

2QC(K? — 125,2)

tanh (kR,) = 7

(3.18)

and
k2
p == = z 1252

Equation (3.18) has one real root, k,, and an infinite
number of imaginary roots k, = ik, (n = 2, 3,4, ...).
We see from equation (3.18) that k,2 > /2532 and
from equation (3.19) that p; < 0. All the other values
of p are also negative. In the typical astrophysical
case, the diffusion time is much longer than the dy-
namical time, which statement, in terms of the present
model, translates into

QCISrjg> 1. (3.20)

This condition simply says that the thermal time of the
core is much greater than the spin-up time of a layer of
thickness ~ R,/Sr. In this limit k, ~ ISy and p; ~
—2QCISy coth (ISyR,). With a little graphical analysis
we find that x, ~ (n — 3/2)7/R,, 0 > py > ps>...>
—q, and p, ~ —w%q(n? + 4R212S;?)~*. With [ =
2R, we have |p,| ~ 7%q(=? + 16S;2)~, which for
S7%2 > 1 becomes 7%q/(4Sy)?, the inverse of the Edding-
ton-Sweet time.

These results indicate that a layer of thickness
~%R /Sy at the outer edge of the core adjusts quickly
to the forcing at the boundary in a time ~ R,/(4Q2CSy).
The time behavior of the rest of the core, whose scale is
R, x k,~1, is qualitatively characterized by p,, which
gives the lowest decay rate of the thermal modes.
Thus, the final adjustment is accomplished by a
boundary-driven meridional circulation on the
Eddington-Sweet time. These results have been
previously derived by L. N. Howard (private com-
munication) and D. W. Moore (private communica-
tion). For a detailed analysis of this problem see the
recent paper of St. Maurice and Veronis (1975); for
the effect of sidewalls see the papers of Sakurai (1969)
and Walin (1968). A qualitative discussion is also
available (Howard, Moore, and Spiegel 1967).

In the case of principal interest here, we have
gradients of both x and T and “diffusion” of T. The
decay rates of the modes are described by equations
(3.8) and (3.11) which may be rewritten as

2QCk(k* — I25?)
qk* — IS,%)

= —2QCk coth (kR;). (3.19)

tanh (kR,) = . (3.21)
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2 _ j2Q 2
_ _4%592_0 — —20Ck coth (kR,) (3.22)
and
S2 = Su2 + S2. (3.23)

These equations always admit one real root, k,, and,
if
2QC §?
qR. S,*

there is a second real root, k,. If this inequality is
reversed, this root becomes pure imaginary. This latter
case is the one that holds in astrophysical conditions
where dynamical effects are more important than
diffusion. At the transition between the two cases,
k = 0 becomes a double root of equation (3.22),
leading to a simple pole of equation (3.7). The re-
maining roots, ix,, are all pure imaginary. In the limit
QCS?/(gR,S7?) » 1 (cf. [3.20]) with / = 2/R,,

<1, (3.24)

ky ~ 2S/R,,  p, ~ —4QCSR.~*coth (2S). (3.25)
Asinthecase S, = 0, x, ~ (n — 3/2)7/R, in this limit,
but now 0 > p, > p3g > -+ > —q and

w2 + 1652

Pa ™ =431 168° (3.26)
Thus, the circulation penetrates a distance R./(2S) into
the core on the very short time scale |p,|~*, which is
independent of the separate gradients of p and T.
The rest of the core is dynamically affected on a time
scale |py|~* For S2>» 1 and S,2 < 1, |ps|~! is the
Eddington-Sweet time. When S,2 > 1, the response
time of the core becomes

- S? N2
|Pal ™ ~ 55 Toem = 3y Toem» (3.27)
where Ty is the thermal time of the core (approxi-
mated by ¢~*) and
N% = N2 + N,2. (3.28)
We must now determine how much of the core is
susceptible to these effects of circulation. For this we
return to the solutions expressed in equations (3.12)-
(3.16) and look at them for times large compared to
|p2| ~1. We see that the spatial dependence for large
time is characterized entirely by k,~* which gives the
penetration depth of the secondary circulation. This
depth is

R

h=ky ! = 2—§— . (3.29)
u

It is this quantity that determines the softness of the
u-barrier, since a meridional current exterior to the
core will penetrate a distance k, ™! into the core. If we
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introduce expressions (1.8), (3.3), and (3.4) into
equation (3.29), we find that

_ R.Q
~ (gldn poldz[®)’

where we have replaced «, by ue~*.

B (3.30)

IV. DISCUSSION

The results just presented bear on the penetration
of a p-barrier by meridional currents. Evidently a
number of approximations have been made, but for
the most part these are just explicit forms of approxi-
mations that are implicitly made in most treatments of
stellar circulation theory. An important omission
made here that is not customary in such treatments is
the neglect of meridional currents driven by horizontal
gradients of p; however, such currents are qualita-
tively similar to the ones studied here. For both kinds
of currents we must attempt to confront the question
raised by Mestel (1953): Can a p-barrier be set up
despite rotational mixing ? The results found here sug-
gest that such a barrier can be penetrated and we must
allow for some mixing. Once we do this, changes in
N, will occur and these will affect the circulation
times. Thus, on the time scale of stellar evolution the
mixing problem becomes nonlinear and the present
results cannot be applied directly. They do, however,
give us some guide to what happens, and we are led to
the following scheme for including the effects of rota-
tional mixing in calculations of stellar evolution.

Consider arotating star which has just arrived on the
early main sequence. The star has a convective core
whose interaction with the circulation further compli-
cates matters. Fortunately, we have the simplification
that convective mixing proceeds much more rapidly
than rotational mixing. The direct interaction between
convection and circulation probably occurs outside the
unstable core itself, that is, beyond the radius at which
Bz, the difference between the temperature gradient and
the adiabatic gradient, vanishes. Therefore we must
know how far the convective motions overshoot the
radius at which B, = 0.

We suggest that an estimate for the distance of
convective overshoot, though normally difficult to
obtain, may be simply made for a rotating star, based
on the discussion of § III. There we saw that a flow
impinging on the boundary of a rotating, stably
stratified fluid will penetrate a distance into the core
which is independent of the incident speed, provided
it is not too large. The cause of this penetration is the
rigidity imposed on the fluid by rotation. If there were
no stratification, the Taylor-Proudman theorem
(Veronis 1970) would hold (in our simple model) and
the motion would be independent of z away from the
boundary layers. The stable stratification prevents the
motion from being completely independent of z,
though there is a finite distance over which the rotation
can assert itself and give an effective rigidity to the
fluid. For qualitative purposes, it should not matter
whether the origin of a penetrative velocity is Ekman
pumping, as in equation (1.9), or a convective motion.
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On a time scale short compared to the thermal time,
the convection will overshoot at least to a distance
implied by equation (3.16). If we consider the largest
convective scales, the horizontal scale /=t ~ R,. The
distance of overshooting is then ~R,Q/N (or even
more if the convection were sufficiently vigorous).

If we evolve the star over a time short compared to
the circulation time, we can estimate the new p-distri-
bution assuming that it was known at the outset. In
this new distribution we assume that the core is homo-
geneous out to the radius where B; = 0 and that
thereafter the value of u drops linearly to its initial
value in a distance R,N/Q, where N is evaluated for
the initial stratification. This procedure can be con-
tinued over several time steps until the material
extruded by the core is swept away by the meridional
circulation. How do we then allow for this latter
effect?

Let us neglect the influence of the overshooting on
the temperature distribution as well as the possible
turbulent conductivity and viscosity it provides. Then
the circulation behaves qualitatively as described in
§ III when it interacts with the newly established u-
gradient. As long as the region of u-gradient is less
thick than h of equation (3.30), the currents should
successfully mix the material outward on the time scale
indicated by equation (3.26). Thus, the important
length scale is

h = RQIN,;

and as long as the region of p-gradient is less thick
than this, mixing between core and envelope takes
place on the time scale

_ 7?02 4 4N?
TT PR ANETe

where . is the thermal time scale of the core. These
formulae are further discussed in Appendix B, where
we find that until the u-gradient is large enough that
N, > Q, it cannot seriously impede mixing.

As evolution proceeds, with mixing included as
described here, it is still possible that a sufficiently
large value of p builds up outside the convective core
so that the criterion for inhibition of mixing by the
p-gradient is met. But mixing of the core does not stop
completely even then. Rather, a layer of thickness # at
the top of the barrier is continually eroded away, and
this should be allowed for. The formulae indicate how
the rates of extrusion from the convective core and of
erosion of the p-barrier can be followed.

While this procedure provides ways to estimate the
rate of exchange between core and evelope, it does not
tell us how the matter from the core is to be distributed
in the envelope. On the basis of analogous problems in
convection theory and of observations of salt layers in
oceans (Turner 1973) we conjecture that a series of p-
layers would form in the envelope. It would be neces-
sary to study the transport of u through these layers,
and to deal with this we would need to understand the
structures of the layer interfaces. Instead, we propose

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977ApJ...213..157H

J o213 TI5TH!

A,

~
=
[=h

162 HUPPERT AND SPIEGEL

in first approximation that one simply mix all the
material from the core uniformly through the envelope.
Such a proposal evidently involves a great deal of
uncertainty, and it is but one of the difficulties which
have been sidestepped here. We have equally neglected
the formation of horizontal u-gradients in the over-
shooting. Moreover, effects of evolution, such as the
shrinking of the core and the spin-up currents resulting
from its enhanced angular velocity, may play a vital
role. And the results obtained in § III are themselves
uncertain, the model being so primitive. But the scheme
does provide some estimate of the amount of mixing,
and we feel that something of this kind should be

Vol. 213

tried in a stellar evolution calculation, if only to test
systematically the consequences of an effect whose
neglect seems to us to be an even cruder approxima-
tion than that proposed here.

We are indepted to the NSF for support under
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Foundation for a fellowship, to the 1975 GFD
Summer School at WHOI for hospitality during the
preparation of the manuscript, to Dr. G. Vauclaire for
a discussion of evolutionary problems, and to
Professor D. W. Moore for his comments on the
manuscript.

APPENDIX A

In this Appendix we examine the consequences of using the radiative diffusion representation (2.13) for the heat
exchange rate Q. Inserting equation (2.13) into equation (2.6) and proceeding as before, we again obtain a single

equation for the vertical velocity, W, which is

2 2 2
[p _ K(‘-j;z - 12)] X - 12{ST2p + Suz[p - K(j—zz - 12)]}W —o0.

(AD)

In contrast to equation (3.1), the governing differential equation (A1) is fourth order and thus four boundary
conditions are required. Two of these are the conditions (3.5b) and (3.6) used in the text:

W=0 at z=0

and

W= -c(m%”— ilVo) at z=R,,

d:

(A2)

(A3)

while the other two are derived from conditions on the temperature. We assume first that zero thermal flux eman-

ates from the center of the core and hence

(A4

The condition at the edge of the core is more subtle and requires a matching to the envelope. However, it will be

of the form

ar’

T'+'I7——z—=0 at z=R,.

d:

(AS)

Though 7 is actually a functional of the flow in the envelope, we treat it as a given constant.

The general solution of equation (A1) is

W = ¢, sinh kyz + ¢, sinh koz + ¢, cosh k4,2 + ¢4 cosh kyz

where k,2 and k,? are the solutions of

Kt = [0 + 8, + (p[)K® + [(S7p[e) + 128,71 = 0.

(A6)

(AT)

From equation (2.6) with Q given by equation (2.13), we can write the Laplace-transformed thermal field,

@
0= e'“"f T'e "4t ,
0

as

(A8)

0 = —Br[(12S2p)[(k,% — I2S,%)(c, sinh kyz + c3 cosh ky2) + (ky?2 — 12S,%)(cy sinh kyz + ¢4 cosh ky2)] . (A9)

In principle, the method of solution is now straightforward: evaluate the four constants ¢y, ¢,, cs, ¢, from the
inhomogeneous boundary conditions (A2)-(AS5) and then determine the inverse Laplace transform of W to obtain
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w and thence the remaining fields. In practice the Laplace inversion is extremely cumbersome and could not be
expressed in terms of known functions. We therefore content ourselves with the determination of the large-time
solutions and an estimate of the time scale for the most slowly decaying mode.

The large-time solution is obtained by considering the limit p — 0. In this limit equation (A7) becomes

k*—1°(1 + S,)k* + 1*S,2 =0, (A10)

with solutions k, = IS, and k, = /. On substituting these values into equations (A6) and (A9) and solving the
resulting four equations for ¢, to ¢4, we find that

cosh IS,z o

o~ Vo oosh IS,R,

as t—>o (A11)

and

- iVoB, sinh IS,z ol
# ™ 2Q8, cosh IS,R,

while the », w and T” fields tend to zero in this limit. These results are exactly the same as those obtained in § ITI
(cf. eqs. [3.12]-[3.16]) using the representation (2.12) for Q.

The time scale of the decaying portions of the solution emerges from equation (A7), which with a slight arrange-
ment can be written as

as t—o0, (A12)

w(k? — I?)(k? — I2S,%)
B kK — 257 )
The exact evaluation of the eigenvalues, k2, requires determination of the full solution as discussed above. However,
without carrying out the solution in detail we can see that the eigenvalue leading to the smallest value of p will be of

the form k = in{/(2R,), where { is a constant of order unity. Numerical evaluation for a number of values of
S, S, C, and 7 confirms that this is true; and to good approximation we have

(@20 + 16S,%)
@ + 165%)°
where we have replaced / by 2/R.. Equation (A14) is to be compared with equation (3.26); after replacement of ¢

by «(72¢2 + 16)/(4R.?) the two equations differ only by numerical factors. When S,% > 1, the response time
becomes

(A13)

K

P="7Rr?

(=2(% + 16) (A14)

S2
||~ ~ <3 T, (A15)
n

where the thermal time of the core, Ty, is here approximated by [4R,2/(#2{2 + 16)]« 1. Equation (A15) is identical
to equation (3.27).

This analysis deals only with the decay time of the longest-lived normal mode. We will not discuss here the new
modes that enter when the radiative terms are described by the diffusion approximation. Some of those modes
are mainly thermal. They may be important for stellar evolution since they might affect burning rates. This question
needs a fuller investigation, but for that a more realistic model should be devised.

APPENDIX B

Kippenhahn (1974) estimates the speed of circulation in a region with a u-gradient as

q !
v, X [T I B1
" “TBTV« l | ( )

where p’ is the perturbation associated with the motion and we have converted to our notation and neglected
deviations from ideal gas behavior. To obtain a result which may be compared with ours we must specify u'. If
we set 1’ & B,R,, the circulation time, R,/v,, becomes

2
Ty = ——'Qc-1° (BZ)
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The quantity g, ! is identified with the Kelvin-Helmholtz time of the core if, as we assume now, the horizontal
scale of motion /=* ~ R,. On the other hand, from expression (3.26) we find the circulation time

_ mQR 44N
~ Pt ang %

T

(B3)

When N;%2 > N2> Q2 we recover equation (B2). But there is a disquieting feature since we would expect to
recover the correct time scale for meridional circulation when N, — 0, and this is not possible with equation (B2).
Perhaps another choice of p’ should be introduced into equation (B1); there is one suggested in § 2.3 of Kippen-
hahn’s paper, but that does not seem to alleviate the problem. The consequence of the difference between the times
expressed in equations (B2) and (B3) appears in the discussion of the penetration of a p-barrier by Eddington-
Sweet circulation. Kippenhahn suggests as a qualitative criterion for the inhibition of such penetration that
v, > vg, Where vg is the Eddington-Sweet circulation speed. In our notation, his expression for the Eddington-
Sweet time R/vg is
H, N;? _
=2, (B4)

where H, is the pressure scale height and ¢~ is the Kelvin-Helmholtz time of the star. His criterion becomes
7,/7e < R,/R when expressed in terms of the time scales. On the other hand, from the appropriate special case
considered in § ITI, or immediately from equation (B3) when N, = 0, we see that

_ 1202 4 4N,

Ty = —‘”2—9—2-——q-1. (BS)

should be used in such comparisons and not expression (B4). The difference between 7, and =y is that the latter
holds only for Q2 « N2. Now if we use (B3) and (B5) instead of (B2) and (B4) in Kippenhahn’s criterion, we find,

using the notation of equation (3.3),
1+ S22+ 8,2 (Rc) (qc)

aT+sa0+ 55 < ')g (®9)
Since q (or q.) varies inversely as R (or R,), the right-hand side is greater than unity and this criterion for prevention

of mixing is always met. This is, as it were, built into expression (B3).
In fact, as we saw in the previous section, the envelope currents always penetrate to a finite depth into the core,

h = R.QIN,, (B7)

and this corresponds to the transition layer mentioned by Kippenhahn. But this formula makes it clear that even
if the rotation is small in terms of the total density stratification, its effects are central. For until the p-gradient
builds to the point where

N, > Q, (B8)

the p-barrier is totally ineffective. And when condition (4.8) is met, the u-barrier can stop the circulation only after
it has penetrated to a depth 4 in the core. Therefore, condition (B8) would seem to be the appropriate rule of thumb
for the onset of an effective u-barrier.
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