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Volcanic eruptions commonly produce buoyant ash-laden plumes that rise through the
stratified atmosphere. On reaching their level of neutral buoyancy, these plumes cease
rising and transition to horizontally spreading intrusions. Such intrusions occur widely
in density-stratified fluid environments, and in this paper we develop a shallow-layer
model that governs their motion. We couple this dynamical model to a model for
particle transport and sedimentation, to predict both the time-dependent distribution
of ash within volcanic intrusions and the flux of ash that falls towards the ground.
In an otherwise quiescent atmosphere, the intrusions spread axisymmetrically. We
find that the buoyancy-inertial scalings previously identified for continuously supplied
axisymmetric intrusions are not realised by solutions of the governing equations.
By calculating asymptotic solutions to our model we show that the flow is not
self-similar, but is instead time-dependent only in a narrow region at the front of
the intrusion. This non-self-similar behaviour results in the radius of the intrusion
growing with time t as t3/4, rather than t2/3 as suggested previously. We also
identify a transition to drag-dominated flow, which is described by a similarity
solution with radial growth now proportional to t5/9. In the presence of an ambient
wind, intrusions are not axisymmetric. Instead, they are predominantly advected
downstream, while at the same time spreading laterally and thinning vertically due to
persistent buoyancy forces. We show that close to the source, this lateral spreading is
in a buoyancy-inertial regime, whereas far downwind, the horizontal buoyancy forces
that drive the spreading are balanced by drag. Our results emphasise the important
role of buoyancy-driven spreading, even at large distances from the source, in the
formation of the flowing thin horizontally extensive layers of ash that form in the
atmosphere as a result of volcanic eruptions.
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1. Introduction

Volcanic ash presents a considerable hazard both close to the volcano, where a large
volume of ash may accumulate on the ground, and on a regional scale, where airborne
fine ash particles are potentially hazardous to aviation (Miller & Casadevall 2000;
Bonadonna et al. 2011). Volcanic ash is transported into the atmosphere during an
eruption by a sustained buoyant plume of gas and particles (Sparks 1986). As the
plume ascends it mixes with the atmosphere, broadening its width and reducing its
density deficit (Morton, Taylor & Turner 1956; Woods 1988; Woodhouse et al. 2013).
The decreasing density of the atmosphere with height means that the bulk density of
the plume eventually becomes equal to that of the atmosphere, and, after an inertial
overshoot, the column spreads horizontally about this altitude to form a thin intrusion
(Bursik, Carey & Sparks 1992a; Bonadonna & Phillips 2003).

Two morphologies of intrusions are commonly observed (Sparks et al. 1997). In
the absence of significant atmospheric wind (when the wind speed is much slower
than the spreading rate of the intrusion), the plume spreads radially, forming an
axisymmetric intrusion known as an umbrella cloud. When the wind is significant,
however, the plume may be bent over as it rises, and an intrusion is formed which
is predominantly advected downwind of the volcano, but which also exhibits lateral
spreading. In both cases, the cloud is of relatively uniform density, but intrudes into
a stratified atmosphere. The resulting pressure distribution causes variations in the
thickness of the cloud to drive a predominantly horizontal spreading flow, which
is resisted by inertial drag and by turbulent drag between the intrusion and the
surrounding atmosphere. Importantly, the ash plays relatively little dynamical role in
this spreading, because it is sufficiently dilute that it does not contribute significantly
to the overall bulk density: the volumetric concentration of ash at the elevation where
the plume reaches neutral buoyancy is typically as low as 10−6, due to entrainment
of ambient air and particle fallout during the rise of the plume, leading to a density
contribution of approximately 1 part in 103 (Woodhouse et al. 2013).

The spreading of volcanic plumes is simply a consequence of the sustained plume
forming a region of mixed fluid, located around its neutral buoyancy height, within a
stratified ambient (see, e.g., Wu 1969; Amen & Maxworthy 1980; Ungarish 2005, and
references therein). This mechanism occurs much more generally in environmental
flows, for example in oceanic dispersal of pollutants (Chen 1980; Lemckert &
Imberger 1993; Akar & Jirka 1994, 1995) and in river interflows (Alavian et al.
1992). While we present our analysis in the context of the spreading of volcanic
plumes, our results apply more generally to high-Reynolds-number intrusions into a
continuously stratified ambient.

In the absence of significant drag or mixing effects, intrusions at high Reynolds
number are governed by conservation of mass and momentum, and by a linear
relationship between the thickness and the propagation speed of the front of the
intrusion (Benjamin 1968; Ungarish 2009). The ‘inertia-buoyancy’ scalings that
originate from these mechanisms have been applied previously to both axisymmetric
and wind-blown spreading volcanic plumes.

In the axisymmetric case, the focus of many experimental and theoretical studies
has been on obtaining the long-time growth rate of the intrusion. Using scaling
arguments and simplified models, Chen (1980), Lemckert & Imberger (1993) and
Woods & Kienle (1994) suggest that the intrusion radius rf (t) grows with time t as
rf ∼ t2/3. In a large-scale experimental study of continuously supplied axisymmetric
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intrusions into a stratified water ambient, Lemckert & Imberger (1993) found that the
growing radius of the intrusion (typically greater than 100 m in their experiments)
was best described as a power law rf (t) ∼ t0.72, which they associated with this
buoyancy-inertial regime, despite the difference between this exponent and the
value of 2/3 suggested by their scaling argument. In laboratory-scale experiments,
Kotsovinos (2000) observed a range of growth rates from rf ∼ t to rf ∼ t1/2, associated
with the initiation of the intrusion and the onset of drag, which occurs quite rapidly
at smaller scales. Richards, Aubourg & Sutherland (2014) observed continuously
supplied axisymmetric intrusions with a growth rate of approximately rf ∼ t3/4 in
laboratory experiments, and attributed this growth rate to a constant buoyancy flux
within the intrusion.

In this paper we focus on obtaining time-dependent solutions to the shallow-layer
equations that describe continuously supplied horizontal intrusions into a stratified
ambient. In the case of a continuously supplied axisymmetric intrusion we find a
surprising result: the scaling rf ∼ t2/3 for the growth of such an intrusion, although
widely used (e.g. Woods & Kienle 1994; Suzuki & Koyaguchi 2009; Costa, Folch &
Macedonio 2013), is not in fact realised by solutions of the shallow-layer model.
Instead, the solution takes the form of a time-dependent outer ‘head’ region,
connected by a jump to a time-independent steady inner ‘tail’, with the intrusion
radius growing as rf ∼ t3/4. This type of solution is not of self-similar form, and
the simple scaling arguments that rely on similarity, which are used to predict the
temporal evolution of rf ∼ t2/3, are not substantiated by our numerical solutions
of the governing shallow-layer equations. We analyse the equations asymptotically
to understand the origin of the rf ∼ t3/4 scaling. Additionally, we use dimensional
analysis to suggest that the reason for this non-self-similar behaviour in continuously
supplied axisymmetric intrusions originating from a point source is the occurrence of
two dimensional groups in the parameters that govern the equations, and therefore
different time-dependent length scales can be constructed. This is in contrast to the
two-dimensional intrusions that originate from a line source, and to instantaneous
releases of a constant volume of mixed fluid in either geometry, in which only one
time-dependent length scale can be constructed.

Some previous studies have suggested scaling arguments that lead to a radial
growth rate of t3/4 for continuously supplied axisymmetric intrusions, and these rely
implicitly on the assumption that the intrusion adopts a similarity form. However,
such a similarity solution is not in accord with either our numerical computations
or our asymptotic solutions. Kotsovinos (2000) presents a model for intrusions in
which the difference between the density of the ambient fluid immediately above
and below the intrusion is assumed to be independent of the flow thickness. This
assumption is appropriate for dense gravity currents or for intrusions that flow along
a sharp interface between two unstratified fluids of different density, but is not
applicable to intrusions into continuously stratified environments. In fact, the scaling
argument presented by Kotsovinos (2000) is equivalent to that developed by Didden
& Maxworthy (1982) for axisymmetric gravity currents, as discussed below. It will be
shown that this result is also not realised by the governing equations. Richards et al.
(2014) show that a scaling of rf ∼ t3/4 can be obtained for axisymmetric continuously
supplied intrusions by assuming that a quantity associated with the buoyancy flux of
the intrusion is constant, rather than the volume flux. The quantity conserved in the
scalings of Richards et al. (2014) is the buoyancy in the upper half of the intrusion
(the total buoyancy flux of the intrusion being zero, due to symmetry about the level
of neutral buoyancy). However, unlike in a gravity current, where the total excess
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buoyancy of the current is conserved even when ambient fluid is entrained into the
current, buoyancy is not conserved in the upper half of an intrusion, due to the flux
of buoyancy between the upper and lower halves of the intrusion required to keep
the intrusion well mixed.

The non-self-similar evolution that we derive in this paper occurs also in
axisymmetric compositional gravity currents driven by a sustained point source
that move over a horizontal boundary through an otherwise stationary uniform
environment (Garvine 1984; Bonnecaze et al. 1995; Slim & Huppert 2011). As
alluded to previously, naïve scaling on the assumption that these gravity currents
are self-similar would assert that rf ∼ t3/4 (Chen 1980; Didden & Maxworthy 1982;
Kotsovinos 2000). However, numerical integration of the equations and an analysis
of the flow (Slim & Huppert 2011) reveal that the current is not self-similar, but
instead features a steady tail and time-dependent front similar to those that occur in
continuously supplied axisymmetric intrusions, growing as rf ∼ t4/5. A simple scaling
analysis therefore fails, and in appendix A we calculate this growth rate through an
asymptotic solution for the flow at late times.

The effects of drag progressively influence the motion of sustained intrusions. While
the dynamics is controlled by fluid inertia and gradients of the hydrostatic pressure
sufficiently close to source, drag becomes dominant in the far field. We analyse
the transition to drag-dominated behaviour in the absence of wind and identify a
new radial spreading regime rf ∼ t5/9 when the dynamical balance is between the
pressure gradient and the hydraulic resistance, analogous to the transition from the
inertial-buoyancy regime to the drag state shown by Hogg & Woods (2001) for
compositionally driven gravity currents in a uniform environment.

A volcanic plume affected by wind no longer spreads radially. The intrusion
instead moves preferentially downstream as it is accelerated to the ambient wind
speed. Bursik et al. (1992a) used scaling arguments to predict that the steady width
of the spreading intrusion far downwind scales as x1/2, where x is the distance
downstream of the source. Akar & Jirka (1994, 1995) formulated a shallow-layer
model for continuously supplied intrusions and gravity currents into flowing ambients,
obtaining numerical solutions to the model close to the source and width-averaged
equations describing the spreading of the plume far downstream. Akar & Jirka found
good agreement between these theoretical results and field measurements of gravity
currents arising from discharges of warm water into the ocean. Using a similar
shallow-layer model, Baines (2013) formulated steady solutions by assuming energy
conservation and an irrotational flow, also finding an intrusion width proportional to
x1/2. Contrary to the suggestion of Baines (2013), we show that the presence of drag
must alter the lateral balance of forces far from source in wind-affected intrusions
and result in a width far downstream that is asymptotically smaller than x1/2. We find
that the model of Bursik et al. (1992a) describes an intermediate asymptotic regime,
and identify a new spreading regime, which becomes established further downstream,
in which the lateral motion is balanced by drag and the intrusion width scales as x1/3.

Sufficiently far from source, the ash particles within a volcanic intrusion act as
tracers due to their negligible contribution to the density, and are advected horizontally
with the intrusion velocity. In the vertical direction, the gravitational settling of the
ash particles is countered by their redistribution throughout the thickness of the
intrusion, due to turbulent fluid motion. This results in a flux of particles settling
out of the base of the intrusion proportional to the product of the vertically averaged
particle concentration and the particle settling velocity (Hazen 1904; Sparks, Carey
& Sigurdsson 1991). We integrate a model based on these processes to obtain the
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temporal and spatial distribution of particles within the intrusion. This distribution of
particles is of direct relevance to the prediction of hazards to aviation, and provides
a time-dependent source for models of particle settling in the atmosphere, used
to predict the location of ash deposits (Bursik et al. 1992a; Sparks et al. 1997;
Bonadonna & Phillips 2003).

This paper is structured as follows. In § 2 we present the shallow-layer intrusion
model. In § 3 we find time-dependent solutions of this model for continuously supplied
axisymmetric intrusions in the absence of drag, obtaining an unexpected non-similarity
structure for the solution, and find an asymptotic description of these non-similarity
solutions at intermediate times. In § 3.4 we demonstrate how the inclusion of drag,
which becomes significant at late times, alters this axisymmetric flow. In § 4 we show
how the addition of an ambient wind results in an intrusion that is primarily advected
downstream, and calculate explicitly the shape of the plume and rate of spreading
in the drag-dominated regime far downstream. In § 5 we couple the intrusions
calculated thus far to a particle transport and settling model appropriate for volcanic
intrusions. In § 6 we discuss the important role that buoyancy-driven intrusions play
in transporting volcanic ash in the atmosphere, and in § 7 we summarise and draw
conclusions. In appendix A we analyse the related problem of a continuously fed
axisymmetric gravity current moving along a horizontal boundary through a uniform
environment, deriving the solution in the form of an asymptotic series at late times.
For this flow, analogously to § 3, we demonstrate the non-similarity spreading and
use asymptotic arguments to calculate the solution for height and velocity of the
current. In appendix B we use related asymptotic techniques to evaluate higher-order
corrections to the leading-order long-time solution derived in § 3 for a continuously
fed axisymmetric intrusion.

2. Shallow-layer model

We model the intrusion of fluid from a sustained source of volume flux 2πQ? at
the height of neutral buoyancy, through an environment that is stably stratified with
constant buoyancy frequency, N? (hereafter, dimensional variables are denoted with a
star, and dimensionless variables are unadorned).

The intruding fluid is assumed to spread symmetrically about its vertical level
of neutral buoyancy as a relatively thin layer so that the vertical accelerations are
negligible and the pressure adopts a hydrostatic distribution. It is further assumed that
the density of fluid within the intruding layer is vertically uniform due to turbulent
mixing, and this implies that there are horizontal pressure gradients due to variations
in the thickness of the layer; these drive the motion.

We follow the approach of Ungarish & Huppert (2002) in modelling the flow in
terms of the dimensionless thickness of the intruding layer, h, and the dimensionless
horizontal velocity field, u = (u, v), with the coordinate axes aligned so that the
x and y axes are horizontal and the z axis is vertical. Length and time scales
are rendered dimensionless with respect to (Q?/N?)1/3 and N?−1 respectively. For
a volcanic intrusion into the atmosphere, the typical flux per radian at the plume
top Q? ranges from 104 to 1010 m3 s−1, and a typical atmospheric buoyancy
frequency is 0.01 s−1 (Sparks et al. 1997). Thus, the length scale (Q?/N?)1/3 used
for non-dimensionalisation is in the range 100 m–10 km. The time scale N?−1, by
contrast, is independent of the size of the eruption.

We model the intrusions as incompressible and, in order to do so, make two
assumptions. First, we assume that the variation of atmospheric pressure over the
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thickness of the intrusion is small; that is, the intrusions are much thinner than
the density scale height (the height over which the atmospheric density varies by
a factor of e), approximately 7 km (Gill 1982). Second, the Mach number of the
intrusions is very small (they are much slower than the speed of sound, ≈300 m s−1).
Conservation of mass is then given by

∂h
∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)=CE|U − u|, (2.1)

where CE is a coefficient of entrainment, which in general is dependent on the flow
variables, and U = (U, 0) is the ambient wind speed (assumed to be constant and in
the x direction).

To describe the balance of momentum we make the assumption that the dominant
processes influencing the energy and momentum of the intrusion are the influx
of mixed fluid at the plume source, the inertial resistance at the advancing flow
front and turbulent drag (Barenblatt 1996, § 11.6; Ungarish & Huppert 2002; Bolster,
Hang & Linden 2008). We assume that, compared with these processes, relatively
little momentum or energy is transferred to any excited internal wavefields or other
distortions to the background density gradient. It has been inferred that internal
gravity waves do play a significant role in some intrusive flows through stratified
fluids, such as in the collapse of a mixed region (Amen & Maxworthy 1980). In
other flows, however, such as the lock-release currents of Maurer & Linden (2014),
energy loss to gravity waves was observed to have a relatively small effect on the
propagation of the intrusion. Ansong & Sutherland (2010) made direct experimental
observations of gravity waves generated by the scenario that we consider in this paper,
namely a buoyant plume and subsequent radial intrusion into a stratified environment.
They measured the energy extracted by gravity waves to be small, approximately 4 %
of the energy of the plume at the neutral buoyancy height, and observed that these
waves originated largely from the region of inertial overshoot immediately above
the rising plume, rather than from the horizontally spreading intrusion itself. These
observations support our assumption that gravity waves play only a relatively small
role in the propagation of the volcanic intrusions that we consider. Nevertheless,
the onset of viscous effects in laboratory-scale flows means that observations of
high-Reynolds-number intrusions, including those made by Ansong & Sutherland
(2010), can only be made at relatively early non-dimensional times, compared with
the duration of volcanic intrusions. Large-scale experiments (similar to those of
Lemckert & Imberger 1993), or even field observations of gravity wave generation
by volcanic intrusions, may therefore be invaluable in determining the influence of
gravity waves on the spread of volcanic intrusions, and the extent to which our
modelling idealisations are justified.

Under the assumption that gravity wave effects can be neglected, and also that
Coriolis forces are negligible, the balance of momentum in the downwind and cross-
wind directions respectively yields

∂

∂t
(hu)+ ∂

∂x

(
hu2 + h3

12

)
+ ∂

∂y
(huv)=CD(U − u)|U − u| +CEU|U − u|, (2.2)

∂

∂t
(hv)+ ∂

∂x
(huv)+ ∂

∂y

(
hv2 + h3

12

)
=−CDv|U − u|. (2.3)

Here CD is the drag coefficient that parametrises the relationship between the
interfacial stresses and the velocity difference between the motion of the flowing
layer and the surrounding environment.



376 C. G. Johnson and others

For simplicity we assume that the drag coefficient CD is constant. This parametri-
sation of drag is a simple model for the tangential stresses at the interface between
the intrusion and the ambient, which may arise from wind stress or from thin mixing
layers, which form above and below the intrusion but do not result in significant
entrainment (Abraham, Karelse & Van Os 1979; Baines 2013). The final term of
(2.2) expresses the momentum of the fluid entrained into the current. This results in
an additional drag on the intrusion, which, like the drag parametrised in our model
through CD, is proportional to the square of the difference in velocity between the
intrusion and the ambient.

While there are well-accepted shallow-water parametrisations for the entrainment
coefficient CE for gravity currents (see, for example, Parker, Fukushima & Pantin
1986; Johnson & Hogg 2013), the rate of mixing into intrusions through stratified
environments (and potential resultant stratification within the intrusion) is not well
understood. We make the assumption that, for the continuously supplied intrusions
described in this paper, the flux of fluid entrained into the intrusion is much smaller
than the source flux Q?, and thus that the effect of entrainment on the current volume
is negligible. Hereafter we therefore set CE = 0, anticipating that future experimental
testing may provide the means to refine this approximation.

Our shallow model for intrusions (2.1)–(2.3) follows an established approach of
using depth-integrated equations to model flows into stratified environments (e.g.
Ungarish 2005; Baines 2013). Although we do not model details of the fully
three-dimensional turbulent flow, by including radial and temporal variability in
the flow fields our equations provide a much more complete model for intrusions
than the balance of flow forces, which has been used previously to estimate the
behaviour of intrusions (Chen 1980; Lemckert & Imberger 1993; Woods & Kienle
1994; Kotsovinos 2000; Richards et al. 2014).

Solutions to the hyperbolic equations (2.1)–(2.3) may form discontinuities and,
once these discontinuities are present, the continuum equations alone are no longer
sufficient to specify the future evolution of the system. To resolve this we specify
internal jump conditions (akin to the Rankine–Hugoniot conditions in gas dynamics),
which determine how the flow variables u and h are linked across the discontinuity.
We specify that the mass and momentum fluxes of the intrusion are conserved across
the jump, leading to the conditions

[h(u · n− c)]+− = 0 and [hu(u · n− c)+ nh3/12]+− = 0, (2.4a,b)

where c is the propagation speed of the shock in the direction of the unit shock
normal vector n and [·]+− denotes the difference in flow variables across the jump (cf.
Chapman 2000). In specifying continuity of mass and momentum fluxes we assume
that any additional processes at the jump, such as generation of internal waves or
entrainment of ambient fluid, play only a small role. The rate of entrainment at
internal jumps is limited by energy and entropy considerations (Jacobson, Milewski
& Tabak 2008), but obtaining a quantitative parametrisation of this entrainment rate
remains a challenging problem, especially in the case of a stratified ambient fluid
(see, for example, Thorpe 2010).

The source of the intrusion is located at the origin. We describe the source by
imposing a volume flux across a cylinder of radius r0 enclosing the origin, such that∫

r=r0

hu · r̂dθ = 2π, (2.5)

where r̂ is a unit radial vector. We discuss the definition of r0 further in the following
section.
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3. Axisymmetric flow
In the absence of wind (U = 0) the ensuing motion is purely radial with velocity

field ur = (u2 + v2)1/2, and the governing equations (2.1)–(2.3) become

∂h
∂t
+ 1

r
∂

∂r
(rurh)= 0, (3.1)

∂

∂t
(hur)+ 1

r
∂

∂r
(ru2

r h)+ ∂

∂r

(
h3

12

)
=−CDur|ur|, (3.2)

where the radius r = (x2 + y2)1/2. These equations are hyperbolic conservation laws,
possessing two characteristics with speeds ur ± h/2. We define the Froude number
for these axisymmetric flows with no azimuthal motion as the ratio of the radial flow
speed to the speed of the characteristics in a stationary flow,

Fr= 2|ur|/h. (3.3)

In an axisymmetric geometry, the boundary condition specifying the source flux
(2.5) becomes

rurh= 1 at r= r0. (3.4)

At the flow front we impose a kinematic boundary condition drf /dt= ur(r= rf ) and
a dynamic boundary condition which specifies a constant Froude number Frf , which
is of order unity, at the front of the intrusion (Ungarish 2006),

ur = 1
2 Frf h at r= rf (t). (3.5)

3.1. Steady drag-free flow
We seek fully time-dependent solutions to (3.1), (3.2) in which the drag is negligible
(CD = 0), but, as previously noted, will find that these time-dependent solutions are
in non-similarity form, and much of the time-dependent solution is in fact steady. We
therefore first look for steady solutions. The governing equations (3.1) and (3.2) can
be written in steady-state form as

d
dr
(rurh)= 0 and

d
dr

(
u2

r +
1
4

h2

)
= 0, (3.6a,b)

where (3.6b) follows directly from a simplification of (3.2). Integration of these
ordinary differential equations, which correspond to mass conservation and a Bernoulli
equation, requires two boundary conditions. The constant associated with (3.6a) is
supplied by the condition (3.4) at source. The constant associated with (3.6b) cannot
be supplied by the front condition (3.5), since the inherently unsteady front condition
cannot apply to a steady-state intrusion. We instead specify the constant of integration
of (3.6b), writing

u2
r + 1

4 h2 = E, (3.7)

where E is for now an arbitrary positive constant, which we shall show is determined
at the source of the intrusion.

With these constants determined, the solutions to (3.6a,b) can be obtained
algebraically (Baines 2013). There are two solutions for the velocity and thickness
fields: a supercritical solution in which Fr= 2|ur|/h > 1,

u2
r =

E
2
(1+Ψ ) and h2 = 2E(1−Ψ ), (3.8a,b)



378 C. G. Johnson and others

0 1 2 3 4 5 6 7 8

 0.5

1.0

1.5

FIGURE 1. The scaled velocity ur/
√

E (dashed line) and thickness h/
√

E (solid line) of
the steady supercritical axisymmetric intrusion as a function of the scaled radial distance
rE, given by (3.8). This solution illustrates both the radial thinning and the constant
velocity obtained for rE� 1. The constant far-field velocity is approached rapidly: u/

√
E

is within 4 % of its far-field value by rE= 2.

and a subcritical solution in which Fr 6 1,

u2
r =

E
2
(1−Ψ ) and h2 = 2E(1+Ψ ), (3.9a,b)

where

Ψ =
(

1− 1
E2r2

)1/2

. (3.10)

Both of these solutions exist only for r > 1/E, and at r= 1/E the flow is critical, i.e.
Fr= 1. We will show that it is always the supercritical solution (3.8) that is realised as
part of the fully time-dependent motion, and plot this supercritical solution in figure 1,
scaling h and ur by E−1/2 and r by E to remove the dependence on the parameter E. In
the supercritical solutions, ur tends to a constant and h decays with increasing radial
distance r, meaning that the Froude number Fr= 2|ur|/h diverges with increasing r.

The time-dependent evolution of a radial intrusion, specified by the hyperbolic
equations (3.1) and (3.2), requires two boundary conditions to be imposed at the
source r= r0, because it is supercritical, since two characteristics leave this boundary
(Whitham 1974). Both the flux condition (3.4) and the Bernoulli constant (3.7) used
to determine the steady supercritical solution (3.8) are therefore specified at the source.
We may identify the parameter E in terms of a source Froude number, Fr0 = 2|ur|/h
at r= r0 (where for this supercritical flow Fr0 > 1), from which we obtain

E= Fr2
0 + 1

2r0Fr0
. (3.11)

In the solutions that follow, the quantities Fr0 and r0 occur only through E, and we
may therefore specify without loss of generality either Fr0 or r0. A natural choice for
axisymmetric intrusions is to fix Fr0= 1; that is, to identify r0 as the radius at which
the flow is critical. In this case, from (3.11), we obtain r0 = 1/E.

In volcanic eruptions, the axisymmetric shallow intrusions that form are fed by
a rising plume. Near the origin, the flow transitions from a near-vertical plume to
a near-horizontal intrusion, and flow in this region is fully three-dimensional. In
this section we have demonstrated that, once the intrusion has become shallow,
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the parameters at source that determine its behaviour are the volume flux and the
parameter E. While the volume flux is frequently calculated from observations of
volcanic plumes, we note that E may be more difficult to infer. In particular, our
identification of r0 = 1/E as the radius at which the flow becomes critical is not the
same as the commonly used ‘corner radius’ of a volcanic umbrella cloud (Sparks et al.
1997), a parameter characterising the radius at which the vertical flow in the rising
plume transitions to a horizontal flow in the intrusion. The fully three-dimensional
flow in the region at which the corner radius is defined means that there may be
no simple relationship between the corner radius and the parameter E = 1/r0 which
determines the behaviour of the intrusion. However, we will show that the growth
rate of the intrusion at late times depends only very weakly on E (the growth rate is
proportional to E1/8), indicating that accurate measurement of E may not be necessary
to obtain good predictions of the growth of volcanic intrusions.

3.2. Unsteady drag-free flow
We now examine the unsteady radial motion. We numerically integrate the unsteady
radially symmetric equations (3.1), (3.2), with boundary conditions (3.4), (3.7) and
(3.5). Here and throughout this paper we use the shock-capturing method of Kurganov
& Tadmor (2000), which ensures that (2.4) is enforced at any discontinuities in the
solution. We obtain the thickness field h as a function of time (figure 2a), along
with the temporal evolution of the radial front rf (t) (figure 2b). This evolution and
the approach to steady state take a rather unusual form: rather than progressing
as a straightforward similarity solution, as is common for many models of gravity
current motion (see, for example, Ungarish 2009), the time-dependent solution is
steady everywhere except in a time-dependent region close to the front. The steady
inner tail region is described exactly by the steady supercritical solution (3.8a,b).
The convergence of hyperbolic characteristics at the interface between this tail and
the time-dependent frontal region means that the two regions are connected by an
outward-propagating jump or shock (see, for example, Whitham 1974). We denote
the radial position of this shock as rs(t), which is determined as part of the solution
(figure 2a).

Importantly, this two-region structure implies that the rate of radial spreading is
rather different from what might have been anticipated on the basis of simple scaling
arguments (see, for example, Lemckert & Imberger 1993; Woods & Kienle 1994).
Such scaling arguments advance by requiring that the time dependence of the current
length and flow variables are governed by similarity scalings. In a scaling argument,
the linear increase in current volume due to the continuous source would imply that
r2

f h∼ t, while at the intrusion front, ur∼ rf /t is required for kinematic consistency and
ur ∼ h to match the imposed frontal Froude number. Together these would imply that
rf ∼ t2/3. Our numerical solutions of the governing equations indicate that instead rf

varies as a power of time that approaches t0.75 at late times (figure 2b), close to the
rate rf ∼ t0.72 found experimentally for large-scale continuously supplied intrusions by
Lemckert & Imberger (1993).

The form of the numerical solutions indicates that this discrepancy in growth rate
between numerical solutions and scaling arguments is because the bulk of the motion
away from the front does not scale in a manner determined by the conditions at the
intrusion front, but is instead independent of time. The existence of time dependence
only near the current front is entirely analogous to that found by Garvine (1984)
and Slim & Huppert (2011) for axisymmetric gravity currents propagating over a
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FIGURE 2. Numerical time-dependent solutions of an axisymmetric intrusion in the
absence of drag (Frf = 1,E= 1). (a) The flow thickness h, centred on the neutral buoyancy
height z = 0, as a function of radial position at times t = 2, 10, 25, 50, 100. The radial
positions of the front of the intrusion rf (t) and of the internal jump rs(t) are indicated
for t = 100. (b) The radial position of the front of the intrusion rf and width of the
time-dependent frontal region rf − rs as a function of time. Dashed lines indicate the
theoretical late-time predictions (3.24) and (3.25) for the current radius rf and the width
of the time-dependent frontal region rf − rs respectively.

horizontal boundary through a uniform environment due to a sustained source. In
appendix A we show that the asymptotic arguments developed below may be applied
also to such gravity currents. In fact the non-existence of the similarity solution for a
sustained axisymmetric gravity current was established by Grundy & Rottman (1986),
although they did not demonstrate what might occur instead. For both intrusions and
gravity currents, we find numerically that the ordinary differential equations (ODEs)
that result from assuming that the current is self-similar become singular in the
interior of the flow, and cannot be integrated to satisfy the boundary conditions at
both the source and the front of the intrusion.

We now explain why the similarity solution is not achieved and how this behaviour
can be identified at the outset, without numerical solution of the governing equations.
In contrast to the axisymmetric continuously supplied flows described above, gravity
currents generated by a line source (e.g. Gratton & Vigo 1994) do attain a similarity
form, and the scalings of these can be obtained by simple scaling arguments. We
therefore identify a fundamental difference between radial flows supplied by a point
source (either gravity currents or intrusions) and ‘two-dimensional’ flows generated by
a line source. This difference can be explained by dimensional analysis. If a unique
time-dependent length scale can be constructed from time and the parameters that
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feature in the problem, a similarity solution for the current is expected (Barenblatt
1996). In this case there is exactly one dimensional group that can be constructed
from the parameters of the problem. When more than one dimensional group can be
constructed, a similarity solution may be obtained asymptotically at late times, but a
non-similarity form is also possible.

The governing equations for an axisymmetric intrusion, (3.1) and (3.2), contain no
parameters when redimensionalised and written in terms of u?r and b? = N?h?: the
parameters occur only in the boundary conditions. One dimensionless parameter Frf
enters into the problem in the boundary condition at the flow front (3.5), and at the
source of an axisymmetric flow we write the two boundary conditions required for a
supercritical flow as

b?u?rr? =Q?N?, (3.12)
u?2r + b?2/4= E?. (3.13)

These two parameters [Q?N?] ≡ L3T−2 and [E?] ≡ L2T−2 have differing dimensions,
and consequently the only dimensionless parameter that can be constructed from
them, (Q?N?)2/(E?3t?2), is time-dependent. Dimensional analysis then indicates that
the current radius at late times is given by rf = (Q?N?/E?)f [Frf , (Q?N?)2/(E?3t?2)],
where f is an arbitrary function of all the non-dimensional parameters in the problem.
The occurrence of a time-dependent argument of the undetermined function f means
that the time dependence of the system is also undetermined, and a simple similarity
solution is not necessarily expected.

In contrast, for an intrusion supplied by a line source of volume flux Q?
l per unit

width, the boundary conditions to be applied at source are

b?u? =Q?
l N? and (3.14)

u?2r + b?2/4= E?. (3.15)

In this two-dimensional flow there is a single dimensional group specified by the
parameters, which have dimensions [Q?

l N?]≡ [E?]≡L2T−2. We can then determine that
the current length xf attains a similarity form xf = (Q?

l N?)1/2t?f (Frf ,Q?
l N?/E?), where

f is again a function of all the non-dimensional parameters in the problem, but in this
case with no time-dependent parameters.

In contrast to the intrusions supplied by a source of constant flux, intrusions that
result from an instantaneous release of a fixed volume of mixed fluid are governed by
similarity solutions both in ‘two-dimensional’ and axisymmetric geometries (Ungarish
2005; Ungarish & Zemach 2007). In such constant-volume releases, neither the
dimensional governing equations (when written in terms of u?r and b? = N?h?) nor
the boundary conditions involve a dimensional parameter: the only dimensional
parameters occur in the specification of the initial conditions. In general, the
parameters describing the initial conditions would not be expected to affect the current
at late times. However, integrating the equation of conservation of mass across the
current and applying the kinematic condition at the flow front implies that one of
these parameters, the total current volume multiplied by N?, is conserved throughout
the time evolution of the current, and therefore plays a role in the buoyancy-inertial
similarity solutions attained at late time. Importantly, no other parameter resulting
from the initial conditions is conserved, so at late times the problem is described
by only one dimensional parameter. In two-dimensional intrusions, the conserved
quantity is

∫ x?f
0 b?dx? (where x?f is the location of the front of the current), which
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has dimensions [L2T−1], leading to a current that grows as t1/2 (Ungarish 2005).
In axisymmetric intrusions, this conserved quantity is

∫ r?f
0 rb?dr?, with dimensions

[L3T−1], leading to a current that grows as t1/3 (Ungarish & Zemach 2007).
The results of a dimensional analysis for gravity currents flowing over a horizontal

surface through an unstratified ambient are entirely analogous those obtained above for
intrusions. As with intrusions, only a single dimensional parameter can be constructed
for instantaneous releases of dense fluid in either two-dimensional or axisymmetric
geometries, and for two-dimensional gravity currents supplied by a constant source
of buoyancy, leading to similarity solutions in these three cases (Hoult 1972; Gratton
& Vigo 1994). For axisymmetric gravity currents resulting from a constant source
of buoyancy, two dimensional parameters can be constructed and a non-similarity
solution results (appendix A).

3.3. Details of the unsteady drag-free motion
We seek an analytical form for the non-similarity solution describing axisymmetric
continuously supplied intrusions at late times that is suggested by dimensional analysis
and by our numerical computations (figure 2). In constructing such an analytical form
we obtain algebraically the observed t3/4 growth rate of the current, and how this
growth rate arises from the interaction of the two regions in the current, the time-
dependent front and the steady inner tail. The jump at at r = rs(t) separating these
two regions plays an important role in the dynamics of the motion. For this radial
flow the jump conditions for mass and radial momentum (2.4) that act across this
discontinuity become

[(ur − c)h]r+s
r−s
= 0 and

[
ur(ur − c)h+ 1

12 h3
]r+s

r−s
= 0, (3.16a,b)

where the shock speed c= drs/dt and where r+s and r−s denote values of the radius r
immediately downstream and upstream of the shock respectively. On the source side
of the discontinuity (r< rs) the flow is described by the steady supercritical solution
(3.8) and in particular when r� r0 we find that

ur(r−s )= E1/2 + · · · and h(r−s )= E−1/2 1
r−s
+ · · · . (3.17a,b)

Since h(r+s )� h(r−s ), we may deduce the leading-order contributions from the jump
conditions (3.16), namely that c= ur(r+s ) and that (1/12)h(r+s )

3 = ur(r−s )
2h(r−s ).

The decrease in Froude number that occurs as fluid passes through the shock
allows the steady supercritical flow, which has a Froude number that increases with
increasing radial distance from source (Fr = 2ur/h ∼ r at for r � r0), to match
onto the boundary condition of constant Froude number at the flow front (3.5). It
is for this reason that only the supercritical steady solution (3.8) is relevant to the
time-dependent flow. The Froude number in the subcritical steady solution (3.9)
decreases with increasing radius (Fr ∼ 1/r for r � r0). If this steady subcritical
solution were connected with a shock to the constant Froude number front condition
(3.5), at large radial distances, fluid passing through this shock would move from a
region in which Fr� 1 to a region in which Fr is of order unity. Such an increase in
Froude number is associated with production of energy at the shock (Whitham 1974),
which is physically inadmissible. Thus, the supercritical steady solution is selected in
time-dependent flows by the constant Froude number at the flow front (3.5).
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We now seek the powers of time that govern the intrusion radius, shock position
and flow variables in the front region. The momentum jump condition and asymptotic
form of the steady inner tail solution (3.17) for r� r0 imply a scaling on the flow
thickness in the outer frontal region just downstream of the shock,

h(r+s )
3 ∼ 1/rs. (3.18)

The dynamic and kinematic boundary conditions at the current front imply a scaling
on the flow thickness at the front,

h(rf )∼ u(rf )∼ rf /t. (3.19)

Assuming that the positions of the shock rs and intrusion front rf scale as the
same power of time at late times (rf ∼ rs) and that the flow thickness likewise scales
uniformly with time throughout the frontal region [h(rf )∼ h(rs)] allows us to combine
the scalings (3.18) and (3.19) to obtain that rf ∼ rs∼ t3/4 and that, in the frontal region,
u∼ h∼ t−1/4. This scaling of rf (t) is consistent with the exponent determined by our
numerical solutions (figure 2b).

We therefore write rf = Kt3/4 + · · · and rs = Kst3/4 + · · · , where K and Ks are
constants to be determined, and pose similarity solutions for the thickness and velocity
field within the frontal region of the form h = t−1/4H0(r/rf ) and ur = t−1/4U0(r/rf ).
Two distinct current structures are possible with this ansatz. If Ks < K, the width of
the frontal region rf − rs ∼ t3/4 and the spatial variation of h and u within the frontal
region is determined by the functions H0 and U0. Alternatively, if Ks = K, the width
of the frontal region rf − rs must grow more slowly than t3/4, and the thickness and
velocity within the frontal region are spatially constant to leading order, taking the
form h= t−1/4H0(1) and u= t−1/4U0(1). We show now that this latter situation is the
case.

The mass conservation equation (3.1), when integrated across the frontal region,
yields

d
dt

∫ rf

rs

hrdr= rsh(r+s )[u(r+s )− c]. (3.20)

At leading order we have found that c= u(r+s ), but by substituting the leading-order
expressions and asymptotic form of the steady solution (3.17) into the jump condition
for mass (3.16a), we obtain that at the next order,

h(r+s )[u(r+s )− c] = ur(r−s )h(r
−
s )+ · · · =

1
rs
. (3.21)

Thus, on integrating (3.20), we obtain∫ rf

rs

hrdr= t+ · · · . (3.22)

Using the leading-order expressions for rs, rf and h in (3.22), we find that the powers
of time on either side of the equation can balance only if Ks =K.

Thus, to leading order the shock and the front move at the same speed. Substituting
the leading-order expressions h= t−1/4H0(1) and u= t−1/4U0(1) into the kinematic and
dynamic boundary conditions at r= rf , we obtain U0(1)=3K/4 and H0(1)=3K/(2Frf )
respectively. From the momentum jump condition (3.16b),

1
12
[H0(1)]3 = E1/2

K
, (3.23)



384 C. G. Johnson and others

which determines that the coefficient multiplying the intrusion radius rf =Kt3/4 is

K = (32/9)1/4E1/8Fr3/4
f . (3.24)

The width of the frontal region at late times can be determined by substituting the
similarity forms into (3.22), from which we obtain

rf (t)− rs(t)= t1/2

KH0(1)
+ · · · = (144K4E)−1/6t1/2. (3.25)

This predicted width, and the current radius (3.24), compare well with those calculated
from our time-dependent numerical computation (figure 2b). We note that at late times,
(3.22) implies that the volume of the fluid within the outer frontal region of the
intrusion scales as rf (rf − rs)h∼ t, whereas the volume of fluid within the tail region∫ rs

0 rh dr∼ t3/4. Thus, in the asymptotic regime of late time, the bulk of the intrusion
volume is contained within the time-dependent frontal region (cf. figure 2).

We demonstrate in appendix B that the long-time behaviour of the current can also
be derived by posing an asymptotic expansion for the flow variables. In doing so we
obtain a more accurate description of the flow at long times, by calculating next-order
corrections to the leading-order solution above.

3.4. Unsteady axisymmetric flow with drag
Our solutions so far have neglected the effect of drag on the radial intrusions. The
neglect of drag is an appropriate dynamical regime provided the drag force (CDur|ur|)
is much smaller than the inertia ∂(urh)/∂t. By comparing the magnitudes of these
terms in the frontal region at late times, we deduce that drag may be neglected here
if CDFrf t� 1. Numerical time-dependent solutions of the axisymmetric equations with
drag (figure 3a) are consistent with this view, with solutions with CDFrf t� 1 closely
resembling those in the drag-free case (figure 2a).

In dimensional form, we therefore have that drag becomes significant when
t? � 1/(N?CDFrf ). This time is independent of the volume flux of the eruption.
The value of CD for an intrusion at high Reynolds number is poorly constrained, but
by analogy with the turbulent drag that results from entrainment (e.g. Fernando 1991)
we anticipate values between 0.001 and 0.1. With CD= 0.01 the estimate above, with
typical atmospheric stratification of N? = 0.01 s, indicates that drag may become
important after approximately 3 h.

When CDFrf t≈1 (for example, the solutions at t=50, 100 and 200 in figure 3a) the
effects of drag become significant. In figure 3(a) the reduction in velocity in the steady
supercritical tail due to drag results in a thicker intrusion in this region, compared with
the drag-free case illustrated in figure 2(a). The time-dependent frontal region is both
wider and thinner than in the drag-free case, resulting in an intrusion with a much
smaller change in thickness across the jump linking the two regions. The width of the
frontal region grows rapidly with time when CDFrf t> 1, as drag becomes increasingly
significant, with this frontal region at late times forming the majority of the intrusion.

When CDFrf t� 1 a new dominant momentum balance is established between the
radial pressure gradient and the drag. Then, similarly to gravity current motion in a
uniform environment (Hatcher, Hogg & Woods 2000; Hogg & Woods 2001), the flow
undergoes a transition so that the dimensionless governing equations for the radial
motion are

∂h
∂t
+ 1

r
∂

∂r
(rurh)= 0 and

h2

4
∂h
∂r
=−CD|ur|ur. (3.26a,b)
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FIGURE 3. Time-dependent solutions of an axisymmetric intrusion including effects of
drag. (a) Illustration of the flow thickness h centred on the neutral buoyancy height z= 0,
with CD= 0.01 and parameters otherwise as in figure 2 at times t= 2, 10, 25, 50, 100, 200.
(b) Current front position rf as a function of time, for CD = 0.1, 0.01 and 0.001. The
dashed line indicates the theoretical growth rate at late times of the current with CD= 0.1.
(c) Numerical solutions of the time-dependent equations with CD= 0.1 at time t= 2× 103,
rescaled to similarity variables (solid curves), compared with solutions to the similarity
ODEs (3.28) for the drag-dominated regime (dashed curves).

These parabolic equations are subject to the source condition (3.4). In this drag-
dominated regime, there is a new class of similarity solutions for the ensuing motion,
and scaling can be usefully employed to determine the similarity exponents. To this
end, we note from integrating (3.26a) across the intrusion that mass conservation
demands r2

f h∼ t, while from (3.26b) the dynamical balance requires h3/rf ∼ CDr2
f /t

2.
Thus, we deduce that the similarity variable rf ∼ C−1/9

D t5/9 and seek solutions of the
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form

h= κC2/9
D t−1/9H (η), ur = κC−1/9

D t−4/9U (η) and rf = κC−1/9
D t5/9, (3.27a−c)

where η= r/rf (t) and κ is a dimensionless constant to be determined. On substitution
of (3.27) into the governing equations (3.26), we obtain

1
η
(ηU H )′ − 5η

9
H ′ − 1

9
H = 0 and

H 2

4
H ′ =−U |U |, (3.28a,b)

where the prime denotes differentiation with respect to η. These are subject to
boundary conditions U (1)= 5/9 and H (1)= 0, where the former imposes kinematic
consistency at the front and the latter is the Froude number condition in the regime
CDt � 1. Finally, the specification of the source flux is most easily enforced by
integrating the mass conservation equation (3.26a) from r= r0 to r= rf , which yields

κ3
∫ 1

0
ηH dη= 1, (3.29)

because r0/rf (t)� 1 when CDt� 1. Only one boundary condition at source is required
for these subcritical drag-dominated flows. The ordinary differential equations (3.28)
are readily integrated numerically (for example, using a Runge–Kutta method), and
applying (3.29) we find that κ = 1.222. The profiles of H and U , illustrated in
figure 3(c), closely match the numerical solution to the time-dependent equations
(3.1) and (3.2) at late times. In the similarity regime both the flow thickness and the
velocity decay monotonically with increasing radius, with the intrusion exhibiting a
rounded flow front.

The existence of a similarity solution in this drag-dominated regime (in contrast
to the non-similarity solution obtained in the drag-free regime) may be anticipated
from dimensional analysis. By writing (3.26a,b) in terms of a new variable hN2/3, we
find that the problem can be written in terms of only a single dimensional parameter,
N?2Q?3, with dimensions [N?2Q?3] ≡ L9T−5. Thus, as in the analysis for an intrusion
generated by a line source in § 3.2, the only length scale is a similarity length scale,
which in this case grows as t5/9, and a similarity solution to the equations must result.

We note that for η� 1 the solution has the form H (η)∼ η−1/5+ · · · and U (η)=
η−4/5 + · · · , and thus the original dimensionless variables h and ur are independent
of time for r� rf . To first order in r/rf , mass conservation (3.26a) then implies that
rurh is constant, from which we find

h= (20CD)
1/5r−1/5 + · · · and ur = (20CD)

−1/5r−4/5 + · · · . (3.30a,b)

These leading-order terms were obtained by Baines (2013) under the assumption of a
steady flow. We have shown that that once drag has become dominant, this steady
solution is in fact attained by the attracting time-dependent similarity solution, but
only in the regime r� rf . Thus, the flow is time-dependent close to the front of the
intrusion, but a steady intrusion is ‘laid down’ asymptotically, closer to the source.

4. Two-dimensional flow with wind drag
In the presence of an ambient wind, the intrusion no longer spreads radially, but is

preferentially deflected downwind sufficiently far from source, due to drag between
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FIGURE 4. A solution of (2.1)–(2.3) with CD = 0.1,U = 1 that has reached steady state.
(a) The intrusion thickness h, indicated by grey contours (at intervals of 0.025) and black
contours (at intervals of 0.1). (b) Flow streamlines (grey curves) and log(φ), indicated
by black contours. We have enforced the flux at source (2.5) by adding the source flux
as applied over a region of radius 3.18 in non-dimensional units: we have chosen this
as a typical radius at the neutral buoyancy height of a buoyant plume originating from a
volcano, calculated using the model of Woodhouse et al. (2013). The flow far downstream
is independent of this radius.

the intrusion and the ambient fluid. While initially the intrusion spreads nearly
axisymmetrically, at later times (when drf /dt � U) the intrusion is predominantly
advected downwind. In this latter phase, the front of the intrusion moves downwind
approximately at speed U, leaving behind a steady intrusion that spreads laterally
downwind. A typical numerically calculated steady-state solution to (2.1)–(2.3) that
is established in this case is illustrated in figure 4.

Close to the source, one of two behaviours is observed. For sufficiently low
ambient flow speed or sufficiently small coefficient of drag, the motion close to the
source is approximately radial, but ambient atmospheric wind arrests the upwind
motion some distance from the source, leading to a stagnation point. For sufficiently
large U or CD the flow direction is predominantly downwind everywhere. In flows
exhibiting a stagnation point, including that illustrated in figure 4, the transfer of the
initially upstream-propagating part of the intrusion to the lateral margins of the flow
downstream results in thickening of the intrusion close to its boundary.

Our primary focus is on the flow far downstream of the source, where the
component of the intrusion velocity aligned with the wind becomes close to the wind
speed, but lateral pressure gradients associated with the cross-wind gradients of the
intrusion thickness result in the current continuing to broaden. As a consequence of
this broadening and of mass conservation, the thickness of the intrusion continues to
diminish with distance from the source. Close to the source the flow has a bilobate
form, caused by deflection of the initially axisymmetric inflow by the wind, and
indicated by the contours of height in figure 4(a). At large distances from the source,
the flow always forms a single central maximum in flow thickness. The behaviour
sufficiently far downwind of the source may be analysed asymptotically based upon
the cross-wind velocity being much smaller than the downwind velocity (|v/u| � 1),
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which in turn implies that downwind length scales far exceed cross-wind ones. To
exploit this asymptotic regime, it is convenient to introduce an ordering parameter
ε ∼ |v/u| and write the downwind and cross-wind velocity components and intrusion
thickness as

u=U − ε2Ũ, v = εV and h= ε1/2H, (4.1a−c)
where Ũ, V and H are functions of X ≡ ε3/2x and Y ≡ ε1/2y. By substituting these
definitions into the governing equations (2.1)–(2.3) and obtaining the equations at
leading order when ε� 1, we find that conservation of mass (2.1) is given by

U
∂H
∂X
+ ∂

∂Y
(HV)= 0, (4.2)

and the components of the momentum equations (2.2) and (2.3) are given by

H2

4
∂H
∂X
=−CDŨ|V| and

H2

4
∂H
∂Y
=−CDV|V| (4.3a,b)

respectively. Integrating (4.2) across the width of the flow and applying the global
conservation of mass, which implies that the flow across any downstream section of
the flow is equal to that supplied by the source, gives

U
∫ W(X)

−W(X)
HdY = 2π, (4.4)

where the half-width of the intrusion is denoted by w(x)= ε−1/2W(X). This far-field set
of governing equations admits similarity solutions. First, from flux conservation (4.4),
we deduce UHY ∼ 1, while from mass conservation (4.2), U/X ∼ V/Y . Finally, the
cross-wind momentum (4.3) yields H3/Y∼CDV2. Together these identify the similarity
scaling H ∼ (CD/U)1/6X−1/3 and we seek a solution of the form

H =
(

CD

U

)1/6 Ĉ
X1/3

Ĥ(ξ) and W = Ĉ
(

X2

U5CD

)1/6

, (4.5a,b)

where ξ = Y/W(X) and Ĉ is a constant that is to be determined as part of the
solution. On substitution of (4.5) into the governing equations (4.3), integrating them
and applying the boundary condition that Ĥ(1)= 0, we find that

Ĥ(ξ)= ( 2
3

)2/3
(1− |ξ |3)1/3. (4.6)

Substituting (4.6) into (4.4) we find Ĉ= 2.159. Furthermore, we find that

V = UY
3X

and Ũ = Ĉ3

9C1/2
D U3/2|Y|X −

2UY2

9X2
. (4.7a,b)

The arbitrary ordering parameter is eliminated when this solution is written in terms of
the original dimensionless independent variables. The asymptotic regime within which
the similarity solutions are valid is then given by w/x� 1, which corresponds to x�
U−5/2C−1/4

D . An additional constraint on the applicability of these solutions arises from
the fact that, near the axis y = 0, inertial terms in (2.3) that are neglected in (4.3b)
are of comparable size to the drag and pressure forces. Comparing the size of the
neglected terms with the terms in (4.3b), we find that the solutions above are valid
when |y|� (x2C5

DU)−1/6, or, in other words, are valid for all but a negligible fraction
of the width of the intrusion when x�U/CD. Comparison of the similarity solutions
with numerical computations of the governing equations (2.1)–(2.3) (figure 5) indicates
that the similarity solution is indeed realised far downstream.
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FIGURE 5. Cross-sections of the thickness of the intrusion shown in figure 4, scaled to
the similarity variables Ĥ and ξ . Cross-sections are taken at non-dimensional distances
downstream of the source of x= 200 (dash-dotted curve), 1000 (dashed curve) and 2500
(dotted curve). The similarity solution (4.6) is indicated by the solid curve.

4.1. Downwind spreading regimes

Our calculation of current width spreading as w ∼ x1/3 far downstream differs from
the prediction of w ∼ x1/2 of Bursik et al. (1992a). Their prediction is made under
the assumption that the downstream speed of the intrusion is equal to the ambient
wind speed U due to drag, but that the lateral spreading far downstream is in an
inertia-buoyancy regime, governed by the constant Froude number condition at the
flow extremities, rather than being governed by the balance between lateral pressure
gradients (4.3) and drag. Drag becomes increasingly important in this lateral spreading
at late times (or, equivalently, far downwind of the source), and thus we expect a
transition some distance downwind from an intrusion spreading in the inertia-buoyancy
regime of Bursik et al. (1992a) to one spreading in the drag-dominated regime, as
described in § 4. We seek the location of this transition.

The width of a wind-dominated intrusion in the inertia-buoyancy spreading regime
is given by Bursik et al. (1992a), up to an undetermined parameter, postulated to
be of order unity, depending on the flow geometry. We now calculate this parameter
within the context of the model proposed by Bursik et al. (1992a) in which the
downstream intrusion velocity is exactly equal to the wind speed, u=U. Under this
assumption the steady governing equations in the absence of drag become

U
∂h
∂x
+ ∂

∂y
(hv)= 0, (4.8)

U
[

U
∂h
∂x
+ ∂

∂y
(hv)

]
=− ∂

∂x

(
h3

12

)
(4.9)

and

U
∂

∂x
(hv)+ ∂

∂y
(hv2)=− ∂

∂y

(
h3

12

)
. (4.10)

Identifying the quantity U∂/∂x with the temporal derivative in a frame moving
downstream at velocity U, as Bursik et al. (1992a) do, we see that (4.8) and
(4.10) are simply the equations of mass and lateral momentum conservation for
a one-dimensional intrusion, with the dynamic boundary condition v = Frf h at the
flow front. The width of the steady laterally spreading intrusion can therefore be
determined by solutions to the unsteady one-dimensional system (4.8) and (4.10),
which has been studied previously in the context of intrusions resulting from the
instantaneous release of a constant volume of mixed fluid. At late times a similarity
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solution describes the spreading (Ungarish 2009), and predicts a thickness profile for
the intrusion

h(x, y)= C̃x−1/2

(
y2

wi(x)2
+ 1

Fr2
f
− 1
)1/2

, (4.11)

where the intrusion half-width wi(x) is given by

wi(x)= C̃x1/2/U (4.12)

and C̃ is a function of the frontal Froude number. We note that under the scalings
implied far downstream by (4.11) and (4.12), the term on the right-hand side of (4.9)
is asymptotically small, and thus this equation is also satisfied by any solution of (4.8).

Integrating the thickness profile (4.11) across the width of the flow, and requiring,
as in (4.4), that the flux through this profile is equal to the source flux gives

C̃2
∫ 1

−1
(η2 + Fr−2

f − 1)1/2dη= 2π. (4.13)

Evaluating this integral for the value of the Froude number suggested by Ungarish
(2009), Frf = 1.19/

√
2, we then obtain C̃ = 1.926. It is notable that the thickness

profile in the buoyancy-inertial spreading regime (4.11) is qualitatively very different
from that found in the drag-dominated regime (4.6), with the minimum intrusion
thickness occurring along the centreline, y= 0.

Equating the half-width wi given by (4.12) with the half-width predicted for the
drag-dominated current (4.6), we find that the spreading becomes drag dominated at
an approximate distance

xt ≈ 2.0U/CD (4.14)

downwind of the intrusion source. As we have noted, the value of CD for an intrusion
at high Reynolds number is very poorly constrained, but using CD=0.01 with realistic
atmospheric values of N? = 0.01 s−1 and U? = 10 m s−1, (4.14) indicates that the
transition from inertia-limited to drag-limited spreading occurs in the region of
200 km downstream of the source. While the uncertainty in CD limits the accuracy
of this estimate, the order of magnitude suggests that both regimes are likely to be
observable in volcanic plumes, which can reach over 1000 km downwind (Pouget
et al. 2013). It is notable that the flux Q? does not enter into the redimensionalised
form of (4.14), x?t ≈ 2.0U?/(CDN?); this estimate is therefore independent of the
plume flux.

5. Particle transport
Motivated by the atmospheric transport of volcanic ash, we now analyse models of

the transport of particles within horizontally flowing intrusions. The concentration of
suspended particulate is assumed to be sufficiently dilute that it does not significantly
alter the density of the intrusion, but rather it is advected by the fluid motion and
settles under gravity. We assume that the particles are maintained in suspension by
the action of fluid turbulence, and that this turbulence is sufficiently energetic to keep
the suspension vertically well mixed. It is assumed that there is no flux of particles
across the upper surface of the intrusion, but that particles may settle across the lower
surface. At the lower interface, the flux per unit area is vsφ, where φ is the volume
fraction of particles within the intrusion and vs is the dimensionless settling velocity.
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Then, the equation governing the evolution of the volume fraction within the intrusion
is given by

∂

∂t
(hφ)+ ∂

∂x
(uhφ)+ ∂

∂y
(vhφ)=−vsφ, (5.1)

or, equivalently,
Dφ
Dt
=−vs

h
φ, (5.2)

where D/Dt = ∂/∂t + u · ∇. This model is a form of Hazen’s law (Hazen 1904;
Sparks et al. 1991; Bursik et al. 1992b). The mean settling velocity vs of a particle
in turbulence is close in value to its settling velocity in a still fluid, but may differ
slightly from this due to inertial effects (Maxey 1987). The assumption of a well-
mixed intrusion requires the particle settling velocity to be much smaller than the
turbulent velocity scales within the flow. This is true of the fine ash particles (diameter
6 50 µm, for which vs� 1 m s−1) which comprise a substantial portion of the ash
in the intrusion (Bonadonna & Phillips 2003).

As with the dynamical evolution of the plume, we consider the case where the
source conditions are steady. The volume fraction of particles at the source of the
intrusion is then a constant φ0, and both φ0 and the settling velocity vs can be scaled
out of the problem by defining

Φ = (φ/φ0)
1/vs, (5.3)

which results in a particle transport equation

DΦ
Dt
=−Φ

h
, (5.4)

with boundary condition Φ = 1 at the source. This transformation could be useful for
analysing polydisperse suspensions (Harris, Hogg & Huppert 2002), in which case the
volume fraction of every class of particles, each with a different settling velocity, is
related to the evolution of the single field Φ.

When the flow is purely radial, the governing equation (5.1) becomes

∂

∂t
(hφ)+ 1

r
∂

∂r
(rurhφ)=−vsφ. (5.5)

For steady flows, by noting that volume flux conservation imposes rurh= 1, we find
that if the source particle concentration φ0 is time-independent, the volume fraction
of particles in the intrusion attains the steady distribution (Sparks et al. 1991)

φ

φ0
= exp

(
−vs(r2 − r2

0)

2

)
. (5.6)

This distribution occurs both in the steady tail region of the drag-free currents and,
asymptotically, in the region close to the source of the drag-dominated current, where
the steady flow (3.30) is established.

In figure 6 we show the particle concentration in the drag-free radial intrusion
illustrated in figure 2, calculated from time-dependent solutions of (5.5). In these
computations we have chosen vs = 0.01. We note, however, that the scaling (5.3)
implies that these numerical solutions can be rescaled to obtain the solution
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FIGURE 6. Particle concentration φ/φ0 as a function of radial position for a drag-free
intrusion with parameters as in figure 2 and a non-dimensional settling velocity vs= 0.01,
at times t = 10, 25, 50 and 100 (solid lines). The particle concentration in the steady
tail region is described by steady solution (5.6) (dashed line), decaying as log(φ)∼−r2.
In the time-dependent head region (highlighted with dotted lines for t= 100), the particle
concentration varies widely, with the concentration at the flow front decaying more slowly
than the tail region, as log(φ)∼−r5/3 at large r.

for arbitrary settling velocity. In the steady tail region (for r < rs), the particle
concentration is equal to the steady solution (5.6). For material points within the
time-dependent frontal region, the late-time behaviour of the intrusion thickness is
h∼ t−1/4, which, when substituted into the characteristic equation (5.2) and integrated,
implies that log(φ)∼−t5/4. Expressing t in terms of the radial position of this frontal
region r ∼ t3/4, we obtain a radial decrease in particle concentration log(φ) ∼ −r5/3,
slower than the decay in the tail region. Thus, the particle concentration in the
unsteady frontal region may be significantly larger than that which would be estimated
if a steady-state particle distribution were assumed. The higher concentration of
particles in the flow head, compared with that in the adjacent region of the steady
tail, is due to the thicker flow in the head, which from (5.2) results in reduced
sedimentation. Qualitatively similar profiles of φ are obtained in continuously supplied
radial particle-driven gravity currents (Bonnecaze et al. 1995).

In wind-driven non-axisymmetric intrusions, numerical solutions for the particle
concentration can be obtained by integrating the hyperbolic equation (5.1) alongside
the equations governing the intrusion dynamics, equations (2.1)–(2.3). Such a solution
is illustrated in figure 4(b). We have established in § 4 that, far downwind of the
source, the intrusion adopts a steady state given by the similarity solution (4.6) and
(4.7). Substituting for the velocity and thickness fields in (5.2), we obtain

U
∂φ

∂x
+ Uy

3x
∂φ

∂y
=−vs

U

(
U
CD

)1/6 (3
2

)2/3
φ

Ĉ(1− y3/w3)1/3
. (5.7)

This governing equation may then be integrated along the characteristics, which are
described by dy/dx= y/3x, to find that

φ

φ0
= k exp

(
−vs

U

(
U
CD

)1/6 (3
2

)5/3 x4/3

2Ĉ(1− y3/w(x)3)1/3

)
. (5.8)
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The coefficient k is constant on each characteristic, and must be determined by
integrating (5.2) along the characteristic from the boundary condition at the source,
φ = φ0, to the region far downstream, where the asymptotic form (5.8) is obtained.

We note that by making only two assumptions, that the downwind velocity of the
intrusion is constant and that its thickness decays downwind as x−1/3 (as implied by
(4.5)), we obtain from integrating (5.2) that log(φ/φ0) ∼ −x4/3. This straightforward
scaling captures the overall dependence of particle concentration on downwind
distance that occurs in the asymptotic solution for particle concentration (5.8).

6. Discussion

Our results have important consequences for the modelling of volcanic ash transport
in the atmosphere, as we discuss below. In particular, we examine the implications of
our study on the modelling strategies currently used to forecast volcanic ash transport
in the atmosphere.

The disruption that can be caused by volcanic ash in the atmosphere to both
aviation and infrastructure on the ground necessitates the forecasting of ash transport
over large areas. Currently, the majority of models used to predict ash transport in
the atmosphere, a class of models known as Volcanic Ash Transport and Dispersion
(VATD) models, are based on the advection of ash particles by (persistent) atmospheric
winds and the diffusion of ash, primarily by atmospheric turbulence (Folch 2012).
These advection-diffusion models are appealing in operational applications, where
rapid forecasts are required during volcanic crises, because efficient numerical schemes
can be employed for their computation. However, advection–diffusion models currently
work under the assumption that the wind field within the intrusion does not differ
from the ambient atmospheric wind, thereby neglecting the effect of buoyancy-induced
motion within the intrusion.

An important aspect of ash cloud behaviour is the observation that the ash layers
are characteristically quite thin in the far field at hundreds of kilometres from the
source (Hobbs et al. 1991; Schumann et al. 2011). Whereas ash clouds can be
several kilometres thick near the source (Sparks et al. 1997), thinning occurs rapidly
with distance from the source (e.g. Dellino et al. 2012, figure 1) and the far-field
thickness is typically a few hundred metres. The buoyancy-driven radial flow that
results in thinning of the intrusion (figure 1) is absent from models invoking the
advection–diffusion description, and vertical diffusion in these models then typically
results in a predicted thickening of ash clouds. Thinning of ash clouds is, however,
a key feature of buoyancy-driven intrusion models, and is seen in laboratory studies
(Wu 1969; Amen & Maxworthy 1980; Faust & Plate 1984; Holasek, Woods & Self
1996b; Richards et al. 2014) and numerical investigations (Herzog, Oberhuber & Graf
2003; Koyaguchi, Ochiai & Suzuki 2009; Suzuki & Koyaguchi 2009). Thus, models
that include buoyancy appear to be more consistent with observations of thin far-field
ash layers.

Advection–diffusion models of volcanic ash dispersion can predict the formation of
thin ash layers only through the action of vertical wind shear, which can transport
ash at different altitudes in different directions. The sensitivity of advection–diffusion
descriptions of ash transport to the direction of the ambient wind field at different
altitudes can lead to predictions of ash at altitudes and locations where no (or very
little) ash has been observed (Dacre et al. 2011; Devenish et al. 2012), and requires a
precise description of the vertical distribution of ash above the volcanic source (Dacre
et al. 2011; Devenish et al. 2012; Kristiansen et al. 2012). Furthermore, the formation
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of thin ash layers in advection–diffusion models is dependent on specific ambient wind
conditions, whereas the thinning of ash layers is an intrinsic feature of the radial wind
fields (or, far downwind, laterally diverging wind fields) that result from buoyancy-
driven spreading.

Correctly forecasting the thickness of the ash cloud is an important factor in
forecasting the peak ash concentration within an intrusion, which has become a
critical aspect of ash hazard management for aviation (a concentration of 2 mg m−3

has become the threshold above which flying is regarded as a concern). Satellite
observations of ash in the atmosphere can provide the total vertically integrated mass
of ash at each horizontal location in the plume (Francis, Cooke & Saunders 2012),
but estimates of ash concentration cannot be made without prior knowledge of the
thickness of the ash layer (Prata & Prata 2012). Thin layers of ash will lead to higher
peak ash concentrations than if the same mass of ash were distributed in a thicker
vertically diffuse layer.

The importance of buoyancy-driven motion in volcanic intrusions is highlighted
by the significant spreading in the upwind and cross-wind directions observed in
‘strong’ volcanic plumes (plumes that rise predominately vertically, with little effect
of atmospheric wind on the ascent of the plume). For large volcanic eruptions the
buoyancy-driven spreading of the intrusion can be strongly dominant over the ambient
wind field over large areas. For example, satellite observations of the ash cloud
from the 1991 eruption of Mount Pinatubo, Philippines, showed an approximately
axisymmetric spreading of the ash cloud to a distance of 300 km (Holasek, Self &
Woods 1996a) despite strong atmospheric winds (Oswalt, Nichols & O’Hara 1996).
Similarly, satellite observations showed significant upwind and cross-wind spreading
of the ash cloud formed during the 18 May 1980 eruption of Mount St. Helens,
USA (Sarna-Wojcicki et al. 1980; Sparks, Moore & Rice 1986), and photographs
from aircraft and satellites of the ash cloud from Córdon Caulle, Chile, showed some
upwind ash transport and cross-wind spreading of the intrusion, while the majority of
the ash cloud was transported downwind (Collini et al. 2013). The advection–diffusion
descriptions of ash transport currently used in VATD models are unable to describe
significant motion of ash against the wind (any upwind motion is due only to transport
by diffusion, which is negligible in comparison to advection by the wind field unless
the wind speed is small), and cross-wind motion is driven by atmospheric turbulence,
so it is dependent on the ambient meteorology. In contrast, models that include the
effect of buoyancy have the potential to capture the upwind and lateral transport of
ash (Baines 2013). The correct prediction of this transport is essential for confident
forecasts and interpretation of the distribution of ash deposits following volcanic
eruptions. Costa et al. (2013) have demonstrated that an advection–diffusion model
of ash transport from the 1991 eruption of Mount Pinatubo is unable to capture the
upwind and cross-wind spreading of ash near the volcanic source that is observed
in satellite observations, and suggest that buoyancy-driven spreading is necessary in
order to describe the observed ash distribution.

From our modelling of wind-blown plumes in § 4 we expect that, far from source,
weaker volcanic plumes will be advected downstream by wind, while spreading
laterally due to buoyancy. Bursik et al. (1992a) showed that the spreading of the
cloud from the 1980 eruption of Mount St. Helens could indeed be explained by
lateral buoyant spreading to distances of several hundred kilometres downwind.
However, we expect that even further downwind than this, the advection of particles
by the buoyancy-driven component of the motion will diminish in importance relative
to the dispersion of particles due to atmospheric diffusion. The motion then becomes
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dominated in the downwind direction by advection due to the ambient wind and
dominated in the vertical and/or cross-wind directions by the diffusive transport due
to (transient) turbulent winds, as described by the current VATD models. We estimate
the distance from source within which the buoyancy-driven motion is dominant
by constructing Peclet numbers in the lateral and vertical directions. These Peclet
numbers quantify the relative strength of buoyancy-driven spreading and thinning of
a wind-blown plume, as described in § 4, compared with dispersion in the horizontal
and vertical directions due to atmospheric turbulence, which can be parametrised
by a linear diffusion with horizontal and vertical diffusion coefficients Dh and Dv

respectively. The Peclet numbers Peh and Pev in the lateral and vertical directions
respectively represent the ratio of the time scale for turbulent diffusive transport
across the intrusion (given by w2/Dh for horizontal diffusion and h2/Dv for vertical
diffusion) to the time scale of buoyancy-driven spreading of the intrusion (given by
w/v for lateral motion and h/ḣ for vertical motion, where ḣ is a vertical velocity
scale). The intrusion length scales in the lateral and vertical directions are w and
h respectively. The lateral velocity scale is v, and from differentiating the scaling
wh ∼ constant, obtained from (4.4), we find ḣ = hv/w. The horizontal and vertical
Peclet numbers are therefore

Peh = wv
Dh

and Pev = h2v

wDv

(6.1a,b)

respectively. When buoyancy-driven lateral spreading is dominant over turbulent
diffusion (as expected near source) we have Pe � 1, whereas when atmospheric
turbulent diffusion dominates buoyant motion, which may occur very far from source,
we have Pe� 1. For Pe∼ 1 both buoyancy and diffusion contribute to the dispersion
of ash. On substituting into (6.1) the asymptotic forms for w, v and h in the
drag-dominated spreading regime of a wind-driven plume (from (4.5) and (4.7)) and
equating the Peclet numbers to 1, we obtain dimensional estimates for the distance
downstream at which atmospheric diffusion becomes significant in the lateral and
vertical directions,

x?h ∼
Q?3N?2

CDU?2D?
h

3 and x?v ∼
(

Q?3U?2CD

N?2D?
v

3

)1/5

(6.2a,b)

respectively. In the upper troposphere and lower stratosphere, horizontal diffusivities
D?

h are typically 5–20 m2 s−1, with vertical diffusivities D?
v approximately a factor

of 100 smaller (e.g. Cadet 1977; Woodman & Rastogi 1984; Schumann et al. 1995).
Taking other parameters appropriate to volcanic intrusions in the atmosphere, we find
that vertical diffusion becomes significant long before horizontal diffusion (x?v � x?h).
With Q? = 107 m3 s−1, a value indicative of a moderately sized volcanic eruption
column, the vertical diffusion becomes significant approximately 1000 km downstream.
Although only an order-of-magnitude estimate, this suggests that in larger volcanic
eruptions, buoyancy-driven spreading (in particular the drag-dominated regime that we
describe in § 4) is the dominant process through which volcanic intrusions spread and
by which ash is dispersed, even very far from source.

A consequence of this buoyancy-driven horizontal dispersal of ash is that suspended
ash is advected to the margins of an ash cloud, which can result in an ash cloud with
quite sharp edges, consistent with observations (Prata & Prata 2012; Spinetti et al.
2013). In an advection–diffusion framework, horizontal spreading of ash is driven only
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by horizontal gradients in the ash concentration, which implies a diffuse outer zoning
and decreasing concentrations of ash towards the flow margins.

Predictions of the vertical distribution of ash within an intrusion also differ between
advection–diffusion and buoyancy-driven spreading models. In a buoyancy-driven
intrusion, the difference in velocity between a volcanic intrusion and the surrounding
atmosphere results in the generation of internal turbulence within the intrusion. This
turbulence can keep ash particles in suspension throughout the layer, which underlies
our use in § 5 of a particle settling flux based on a uniform distribution of ash
throughout the height of the intrusion. In advection–diffusion models, the only source
of vertical mixing is the much weaker atmospheric turbulence, which is less effective
at keeping ash particles suspended. Vertical mixing due to buoyancy can keep quite
large particles in suspension and may explain why particles of up to 100 µm were
transported to the UK during the Eyjafjallajökull eruption in 2010 (Stevenson et al.
2012).

7. Summary and conclusions

We have presented solutions to a depth-integrated model for continuously supplied
intrusions into a linearly stratified atmosphere. For an axisymmetric intrusion in
which the drag between the intrusion and the surrounding atmosphere is negligible,
the intrusion grows in a manner that is completely different from that previously
suggested by simple scaling arguments. While scaling arguments suggest that the
radius of a continuously supplied axisymmetric intrusion should grow as rf ∼ t2/3, we
find that the solution of the depth-integrated model is not a similarity solution, and
an asymptotic growth rate of rf ∼ t3/4 is established instead. This suggests a need to
re-evaluate interpretations of volcanic plumes, such as those of Costa et al. (2013)
and references therein, that are predicated on the assumption that rf ∼ t2/3.

We have demonstrated that this non-similarity behaviour is anticipated from
dimensional arguments, and that the simple scalings break down due to an internal
jump in the flow, which results from the need to connect the Froude number of the
steady solution in the inner tail (3.8) to the Froude number at the current front Frf ,
which is of order unity. Such a jump allows the current volume to be contained
almost entirely within a thin annulus near the current front, a distribution different
from that anticipated in the scalings of Lemckert & Imberger (1993) and Woods &
Kienle (1994). We note the similarity with entraining gravity currents, in which the
restriction of the current buoyancy to a thin boundary layer also results in a solution
different from that predicted by simple scaling arguments (Johnson & Hogg 2013). A
consequence of the non-similarity behaviour of these intrusions is that, even though
the flow near the front of the intrusion is evolving, the intrusion near the source is
steady, exhibiting an approximately constant radial velocity and rapid radial thinning.

When the ambient is moving relative to the source of the intrusion, buoyancy
effects result in a pronounced thinning and lateral spreading with increasing distance
downstream. Far downstream, the predominant motion of the flow is due to advection
by wind, but our far-field solution (4.6) demonstrates that even far from source,
buoyancy effects play a role in thinning and spreading an intrusion.

We have shown that drag increasingly influences the motion of an intrusion at
late times. The time and location of this transition to a drag-influenced current
are dependent on the poorly constrained drag coefficient CD. However, for typical
atmospheric conditions, and an order-of-magnitude estimate of CD = 0.01 which is
consistent with the mechanism of drag through turbulent mixing, we have shown in
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§ 4 that drag becomes important after approximately 3 h for axisymmetric plumes,
and in § 4.1 that for intrusions in a moving ambient, drag dominates the lateral force
balance and changes the spreading regime after approximately 200 km. Both these
estimates are independent of the source flux of the intrusion, and are of a magnitude
that suggests that volcanic plumes may often be in a transitional regime where the
effects of drag are neither negligible nor dominant.
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Appendix A. Continuously supplied axisymmetric gravity currents in a
homogeneous ambient

In §§ 3.2 and 3.3 we demonstrated that a continuously supplied axisymmetric
intrusion exhibits a steady inner tail region coupled to an unsteady frontal region, and
a growth rate rf ∼ t3/4 that differs from that obtained from direct scaling arguments.
In this appendix we demonstrate that the same arguments predict a very similar
structure in the case of an axisymmetric gravity current in an unstratified ambient,
which was previously observed by Garvine (1984) and analysed by Slim & Huppert
(2011). This emphasises that the non-similarity two-region solution structure is not
a property specific to intrusions, but is a more generic phenomenon resulting from
the continuous supply of fluid to a high-Reynolds-number current in an axisymmetric
geometry.

Defining the dimensional reduced gravity g′?= g?(ρ?− ρ?0)/ρ?0 , where ρ? and ρ?0 are
the current and ambient fluid densities respectively and g? is the acceleration due to
gravity, in this appendix we non-dimensionalise lengths by (Q?2/g′?)1/5 and times by
(Q?/g′?3)1/5. The axisymmetric shallow-water equations for a gravity current flowing
over a horizontal surface are then

∂h
∂t
+ 1

r
∂

∂r
(rurh)= 0, (A 1)

∂

∂t
(hu)+ 1

r
∂

∂r
(ru2

r h)+ ∂

∂r

(
h2

2

)
= 0. (A 2)

In this homogeneous ambient the Froude number condition at the flow front is

ur = Frf

√
h, at r= rf (t). (A 3)

Simple scaling arguments for such a gravity current would suggest that conservation
of mass is given by hr2

f ∼ t, while the dynamical balance of buoyancy and inertia
requires that h ∼ (rf /t)2. Together, these suggest that rf ∼ t3/4 (Chen 1980; Didden
& Maxworthy 1982; Bonnecaze et al. 1995). However, numerical solutions of (A 1)
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FIGURE 7. Numerical time-dependent solutions of an axisymmetric gravity current (Frf =
1.19, Fr0 = 1, r0 = 1). (a) Flow thickness h at times t = 2, 10, 25, 50. (b) Current front
position rf and width of the time-dependent frontal region rf − rs as a function of time.
The dashed lines of gradient 4/5 and 3/5 indicate the theoretical late-time predictions
(A 19) and (A 28) for rf and rf − rs respectively.

and (A 2) (figure 7) indicate that the solution is not in similarity form, but has a steady
inner tail region connecting to a time-dependent frontal region through a discontinuity.

Seeking a steady solution that we anticipate will form the tail region, we discard
time derivatives and the front condition, and as before obtain two conservation
equations

d
dr
(rurh)= 0 and

d
dr

(
u2

r

2
+ h
)
= 0. (A 4a,b)

We apply the source conditions

rurh= 1 and u2
r/2+ h= Ẽ at r= r0, (A 5a,b)

which represent the constant mass flux and the energy density (Bernoulli constant)
respectively. By substituting (A 5a) and the Froude number condition at source, Fr0=
u/
√

h at r= r0, into (A 5b), we obtain an expression for the Bernoulli constant Ẽ in
terms of the source Froude number,

Ẽ= [Fr−2/3
0 + (1/2)Fr4/3

0 ]r−2/3
0 . (A 6)

The expressions for h and u, analogous to (3.8a,b), are solutions to a cubic equation,
and as in the case of intrusions, both a subcritical and a supercritical solution exist
(Garvine 1984). Selecting the supercritical solution as before, we find that for r� r0,

ur(r)= (2Ẽ)1/2 + · · · and h(r)= (2Ẽ)−1/2 1
r
+ · · · . (A 7a,b)

As with the radial intrusions, the supercritical flow at source means that two source
boundary conditions (A 5a,b) are specified. The solution in the supercritical region
flow is fully specified by these conditions through integrating (A 4), and is therefore
steady because the source conditions are steady. Our specification of both the required



Modelling intrusions through quiescent and moving ambients 399

source boundary conditions (A 5a) and (A 5b) introduces the additional dimensional
parameter Ẽ? (where [Ẽ?] = L2T−2), which allows for a non-similarity solution.

We contrast this with the approach of Bonnecaze et al. (1995), who attempt to
construct a similarity solution to the problem of a radial continuously supplied
gravity current, based on the simple scaling arguments that suggest rf ∼ t3/4.
Bonnecaze et al. (1995) construct a discontinuous solution to the resulting similarity
ordinary differential equations with an unsteady supercritical region near the source.
However, this supercritical region does not satisfy the source condition (A 5b). More
problematically, the similarity solution suggested by Bonnecaze et al. (1995), and
illustrated in their figure 1(b), has a singularity within the domain of the intrusion,
and cannot be integrated back to the origin in similarity space, where the source
boundary conditions (A 5a,b) must be applied. Numerically integrating the similarity
equations with the parameters chosen by Bonnecaze et al. (1995), we find that the
singularity is at y = 0.019, where y is their similarity variable. Thus, the result
of Bonnecaze et al. (1995) is not a solution to the problem of a gravity current
originating from a continuous source of buoyancy of fixed size.

The procedure for obtaining the non-similarity solution for the time-dependent
frontal region is analogous to that in § 3.3 and shares some features with Slim &
Huppert (2011), although importantly it differs in detail from their construction.
The outer frontal region is connected to the inner steady tail through a shock or
discontinuity at r= rs(t). The jump conditions across this shock for a gravity current
in a homogeneous ambient, assuming conservation of mass and momentum, are

[(ur − c)h]r+s
r−s
= 0 and

[
ur(ur − c)h+ 1

2 h2
]r+s

r−s
= 0. (A 8a,b)

As in § 3.3, we seek a similarity solution for the frontal region and pose that h(r+s )∼
ur(r+s )

2, while noting that ur(r−s )
2h(r−s ) ∼ 1/rs and c ∼ rs/t. Thus, we anticipate that

rf = rf 0t4/5 and rs = rs0t4/5, where rf 0 and rs0 are constants to be determined. This
ansatz is identical to the formulation of Slim & Huppert (2011). However, it is not the
complete solution because it does not satisfy the shock conditions exactly: the largest
omitted term in the balance of momentum flux across the shock (A 8) is ur(r−s )ch(r−s ),
and this is O(t−1), while the leading-order terms are O(t−4/5). Furthermore, we show
below that rf 0 = rs0 and thus, as Slim & Huppert (2011) anticipate, their similarity
solutions for the frontal region are only valid for a region of vanishing width, because
to leading order the front and the shock move at the same speed. Thus, in order to
obtain a more complete description of the solution within the frontal region at late
times, we must account for the non-self-similar evolution of the height and velocity
fields.

To do this, we examine the asymptotic form of the height and velocity fields in
the regime t� 1, extending the solution beyond the leading-order description deduced
above by extending the matching of mass and momentum fluxes (A 8) across the
shock to next order. We pose expansions for the front and shock positions and the
height and velocity fields that account for the first correction terms to the leading-
order terms. These corrections are O(t−1/5) smaller than the leading-order terms, due
to the magnitude of the first omitted terms in the shock conditions, as identified above.
Thus, we write

rf (t) = rf 0t4/5 + rf 1t3/5 +O(t2/5), (A 9)

rs(t) = rs0t4/5 + rs1t3/5 +O(t2/5), (A 10)
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h(r, t) = r2
f 0t−2/5H0(η)+ rf 1rf 0t−3/5H1(η)+O(t−4/5), (A 11)

u(r, t) = rf 0t−1/5U0(η)+ rf 1t−2/5U1(η)+O(t−3/5), (A 12)

where η= r/rf (t). Denoting differentiation with respect to η by a prime, we find that
the leading-order expressions of mass and momentum conservation are given by

− 2
5ηH0 − 4

5η
2H′0 + (ηU0H0)

′ = 0, (A 13)

− 1
5 U0 − 4

5ηU′0 +U0U′0 +H′0 = 0. (A 14)

The kinematic and dynamic boundary conditions at the front of the motion, when
applied to (A 9), (A 11) and (A 12), imply that

U0(1)= 4
5

and H0(1)= 16
25Fr2

f
. (A 15a,b)

Straightforwardly, from the governing equations (A 13) and (A 14), we find U′0(1) =−2/5 and H′0(1) = 4/25; these values will be needed in the analysis that follows.
Differentiating (A 10) gives the speed of the shock,

c= 4
5 rs0t−1/5 + 3

5 rs1t−2/5 +O(t−3/5), (A 16)

and the leading-order expressions from the balance of mass and momentum fluxes at
the shock (A 8) then yield

U0(ηs)= 4ηs

5
and H0(ηs)

2 = 2(2Ẽ)1/2

r5
f 0ηs

, (A 17a,b)

where ηs = rs0/rf 0. From (A 13), and using (A 15) and (A 17), we deduce∫ 1

ηs

6
5
ηH0dη=−

[
ηH0

(
U0 − 4

5
η

)]1

ηs

= 0. (A 18)

Since H0 is strictly positive, we deduce that rs0 = rf 0 and thus, from (A 15) and (A
17), that

r5
f 0 =

54Fr4
f Ẽ1/2

213/2
. (A 19)

In summary, to leading order the front and the shock move at the same speed, and,
to the same order of truncation when t� 1, the frontal region is of vanishing width.
The value of rf 0 (A 19) is identical to that derived by Slim & Huppert (2011) and
compares favourably with our numerical computations (see figure 7).

However, our subsequent analysis, in which we compute the solution at the next
order, differs from Slim & Huppert (2011) because the frontal region is not in precise
similarity form. First, we evaluate the shock conditions at next order, and to this end
we require the height and velocity fields at r= r+s , given by

u(r+s , t)= rf 0U0(1)t−1/5 + (U′0(1)(rs1 − rf 1)+ rf 1U1(1)
)

t−2/5 +O(t−3/5), (A 20)

h(r+s , t)= r2
f 0H0(1)t−2/5 + rf 0

(
H′0(1)(rs1 − rf 1)+ rf 1H1(1)

)
t−3/5 +O(t−4/5). (A 21)
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Then, from the balance of mass fluxes across the shock we find

1
r3

f 0H0(1)
= rf 1(U1(1)−U′0(1))+ rs1

(
−3

5
+U′0(1)

)
(A 22)

and from the balance of momentum fluxes we find

− 8
5r3

f 0H0(1)
=
(

H′0(1)+
1
2

H0(1)
)

rs1 + (H1(1)−H′0(1))rf 1. (A 23)

With the boundary conditions at the current front U1(1)= 3/5 and H1(1)= 24/(25Fr2
f ),

obtained in the same way as the boundary conditions on the leading-order functions
(A 15), we obtain from (A 22) and (A 23) values for rs1 and rf 1,

rs1 = 1
8r3

f 0H0(1)
(−6− 9Fr2

f ) and rf 1 = 1
8r3

f 0H0(1)
(2− 9Fr2

f ). (A 24a,b)

The width of the frontal region is then

rf (t)− rs(t)= (rf 1 − rrs1)t3/5 +O(t2/5)= t3/5

r3
f 0H0(1)

+O(t2/5). (A 25)

This asymptotic result is compared with the numerical output in figure 7, again
showing good agreement between the two when t� 1. To complete the formulation
at this order, we find the following governing equations:

− 3
5ηH1 − 4

5η
2H′1 + (η(U0H1 +U1H0))

′ =− 1
5η

2H′0 + (ηH0U0)
′, (A 26)

− 2
5 U1 − 4

5ηU′1 + (U0U1)
′ +H′1 =− 1

5ηU′0 +U0U′0 +H′0, (A 27)

which can be integrated numerically with the boundary conditions above to calculate
the functions H1 and U1.

As in the case of an intrusion, global mass conservation can be used to determine
a part of the solution at this order (the width of the frontal region rf (t) − rs(t)),
without the need to exploit fully the underlying asymptotic structure of the solution.
The analysis proceeds by noting that

d
dt

∫ rf (t)

rs(t)
rhdr= rs(u(r−s )− c)h(r−s )= 1+ · · · . (A 28)

Then, to leading order rf (rf − rs)h(rf )= t+ · · · , and this leads to (A 25).

Appendix B. Asymptotic expansion for an intrusion close to the front
In § 3.3 we calculated the leading-order expressions for the radius and for the flow

velocity and thickness of a continuously supplied radial intrusion. Here, we extend this
analysis to obtain the next-order terms describing the flow at late times, by posing
an asymptotic expansion within the time-dependent head region. This derivation is
analogous to that performed for gravity currents through a homogeneous environment
in appendix A. Guided by the leading-order behaviour of an intrusion at late times
derived in § 3.3, and the magnitude of the neglected terms when this leading-order
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solution is substituted into the governing equations, we pose the following asymptotic
expansion for the intrusion at late times:

rf (t) = rf 0t3/4 + rf 1t1/2 +O(t1/4), (B 1)

rs(t) = rs0t3/4 + rs1t1/2 +O(t1/4), (B 2)
h(r, t) = rf 0t−1/4H0(η)+ rf 1t−1/2H1(η)+O(t−3/4), (B 3)

u(r, t) = rf 0t−1/4U0(η)+ rf 1t−1/2U1(η)+O(t−3/4), (B 4)

where η= r/rf (t). The leading-order expressions of mass and momentum conservation
are then given by

− 1
4ηH0 − 3

4η
2H′0 + (ηU0H0)

′ = 0, (B 5)

− 1
4 U0 − 3

4ηU′0 +U0U′0 + 1
4 H0H′0 = 0, (B 6)

where a prime denotes differentiation with respect to η. The kinematic and dynamic
boundary conditions at the front of the motion, when applied to (B 1), (B 3) and (B 4),
imply that

U0(1)= 3
4

and H0(1)= 3
2Frf

, (B 7a,b)

and, from the governing equations (B 5) and (B 6), we find U′0(1)=−1/2 and H′0(1)=
Frf /2. These values will be needed in the analysis that follows. The speed of the shock
is given by

c= 3
4 rs0t−1/4 + 1

2 rs1t−1/2 +O(t−3/4), (B 8)

and the leading-order expressions from the balance of mass and momentum fluxes at
the shock (3.16) then yield

U0(ηs)= 3ηs

4
and H0(ηs)

3 = 12E1/2

r4
f 0ηs

, (B 9a,b)

where ηs = rs0/rf 0. Integrating (B 5), and using (B 7) and (B 9), we deduce∫ 1

ηs

5
4
ηH0dη=−

[
ηH0

(
U0 − 3

4
η

)]1

ηs

= 0. (B 10)

Since H0 is strictly positive, we find that rs0 = rf 0 and thus, from (B 7) and (B 9),
that

r4
f 0 =

32Fr3
f E1/2

9
, (B 11)

which is consistent with our existing leading-order result (3.24).
At next order we first evaluate the shock conditions, for which we require the height

and velocity fields at r= r+s , given by

u(r+s , t)= rf 0U0(1)t−1/4 + (U′0(1)(rs1 − rf 1)+ rf 1U1(1)
)

t−1/2 +O(t−3/4), (B 12)

h(r+s , t)= rf 0H0(1)t−1/4 + (H′0(1)(rs1 − rf 1)+ rf 1H1(1)
)

t−1/2 +O(t−3/4). (B 13)

From the balance of mass fluxes across the shock we then find

1
r2

f 0H0(1)
= rf 1(U1(1)−U′0(1))+ rs1

(
−1

2
+U′0(1)

)
(B 14)



Modelling intrusions through quiescent and moving ambients 403

and from the balance of momentum fluxes we find

− 6
r2

f 0H0(1)2
=
(

H′0(1)+
1
2

H1(1)
)

rs1 + (H1(1)−H′0(1))rf 1. (B 15)

With the boundary conditions at the current front U1(1) = 1/3 and H1(1) = 1/Frf ,
obtained in the same way as the boundary conditions on the leading-order functions
(B 7), we obtain from (B 14) and (B 15) that

rf 1 = 2Frf

9r2
f 0
(1− 7Fr2

f ) and rs1 = 2Frf

9r2
f 0
(−2− 7Fr2

f ). (B 16a,b)

In calculating both rf 1 and rs1 explicitly, with this calculation we extend the results
in § 3.3, where only the leading-order width of the front (rf 1− rs1)t1/2 was obtainable.
The governing equations at this order,

− 1
2ηH1 − 3

4η
2H′1 + (η(U0H1 +U1H0))

′ =− 1
4η

2H′0 + (ηH0U0)
′, (B 17)

− 1
2 U1 − 3

4ηU′1 + (U0U1)
′ + 1

4(H0H1)
′ =− 1

4ηU′0 +U0U′0 + 1
4 H0H′0, (B 18)

can be integrated numerically with the boundary conditions above to obtain the
functions H1 and U1.
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