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An earlier treatment of the diffraction of a shock wave advancing into a region of 
uniform flow, based on Chisnell’s (1965) extension of Whitham’s (1957) rule for 
shock diffraction, is corrected for an algebraic error and then compared with an 
analogous treatment based on the more recent extension derived by Whitham 
(1968). The basis for comparison is the pressure just behind a shock wave that is 
diffracted by a thin wedge travelling at  supersonic speed. The approximation 
provided by Whitham’s extension is both simpler than, and typically superior 
to, that provided by Chisnell’s extension (although the numerical differences are 
small in the Mach-number regime considered). 

1. Introduction 
We consider the diffraction of an approximately uniform, plane shock wave 

that moves into a region of uniform, plane flow, modifying an earlier analysis 
by Miles (1965). This analysis was based on Chisnell’s (1965) extension of Whit- 
ham’s (1957) treatment of a shock wave moving into a uniform, quiescent region 
and was applied to the calculation of the pressure just behind a diffracted shock 
wave on a wedge which penetrates that shock wave at  supersonic speed. The result 
was compared with that inferred from Smyrl’s (1963) solution of the linearized 
boundary-value problem. Since then, Whitham (1968) has proposed that his 
original treatment be extended through a Galilean transformation, with results 
that differ from those based on Chisnell’s modification. Moreover, we have found 
that Miles’s (1965) calculation of the initial angle of diffraction of the shock 
contained an error. 

We present here a comparison of the alternative approximations to the 
wedge pressure just behind the diffracted shock wave, based on the respective 
methods of Chisnell (1965) and Whitham (1968). 

2. Shock-diffraction approximations 
Assuming that all velocities are approximately parallel (so that we may neglect 

the squares of the angles of inclination), we consider an approximately uniform, 
plane shock wave that moves to the right with relative Mach number *IZ into 
a uniform, plane flow of Mach number M .  We require the change in WZ, say h z ,  

associated with a small change, say 68, in the angle of inclination of the shock 

t Also Department of Aerospace and Mechanical Engineering Sciences. 
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(68 > 0 implies that the shock is locally concave with respect to the uniform 
flow on the right; see figure 1 of Miles 1965). 

Employing Chisnell’s (1965) extension of Whitham’s method to determine 
the variation of wz with angle of diffraction of the shock, we obtain (Miles 1965) 

1.2 

. u o ‘ 8 1  8 0.4 

where: (&/68),, is given by Whitham’s [1957, equation (22)l ‘shock-shock’ 
relation for a shock moving into a quiescent region ( M  = 0) ;  the function L(m) 
is given by Miles (1965) and decreases from 1 at mz = 1 through a very flat 
minimum of approximately 0.7774 near PPZ = 3 to 0.7848 at 9% = 00 (for y = 1-4). 
Employing Whitham’s method in a reference frame for which the fluid velocity 
aheadof theshockiszero (Whitham 1968)’ we obtain, withno further assumptions, 

I I I I 

To (m, 1.03) : 
I I I I 

We remark that (1) reduces to (2) for wa-+ 1, PR-+CO, and M+O, and that the 
maximum discrepancy between the two results is roughly 30 %. 
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FIGURE 3. The relative pressure on the wedge, just behind the diffracted shock wave, for 
M = 2 and y = 1-4. Curves 0 and 1 are based on (S ,m/SO),  and (Sm/SB),, respectively; 
curve 2 is based on the linearized boundary-value problem. p1 is the undisturbed pressure 
behind the incident shock wave. 

for most wz and M . t  Typical results are plotted in figures 3 and 4, from which it 
can be seen that the use of either value for (Sm/SO) leads to an error of approxi- 
mately 5 yo (note that in both these figures the zero of the vertical axis has been 
suppressed and the vertical scale exaggerated in order to emphasize the difference 
between the different formulations). 

t There do exist values of m, M for which the result based on (8m/SO), is closer to the 
exact result than that based on (Sm/SO), ,  but for these cases either formulation typically 
leads to an error of less than 1 yo. 
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FIGURE 4. The pressure on the wedge, just behind the diffracted shock wave, for M = 4 
and y = 1.4. Curves 0 and 1 are based on ( S m / S B ) ,  and G(m/SB),, respectively; curve 2 is 
based on the linearized boundary-value problem. 

4. Conclusion 
We infer from this comparison that Whitham’s original (1957) formulation 

typically provides a more accurate approximation for the diffraction of a shock 
wave moving into an area of uniform flow than does Chisnell’s (1965) generaliza- 
tion thereof. 
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