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Gravity currents in a porous medium
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We consider the release from a point source of relatively heavy fluid into a porous
saturated medium above an impermeable slope. We consider the case where the
volume of the resulting gravity current increases with time like tα and show that
for α < 3 at short times the current spreads axisymmetrically, with radius r ∼ t (α+1)/4,
while at long times it spreads predominantly downslope. In particular, for long times
the downslope position of the current scales like t while the current extends a distance
tα/3 across the slope. For α > 3, this situation is reversed with spreading occurring
predominantly downslope for short times. The governing equations admit similarity
solutions whose scaling behaviour we determine, with the full similarity form being
evaluated by numerical computations of the governing partial differential equation.
We find that the results of these analyses are in good quantitative agreement with a
series of laboratory experiments. Finally, we discuss the implications of our work for
the sequestration of carbon dioxide in aquifers with a sloping, impermeable cap.

1. Introduction
Horizontal differences in density between two fluids lead to the propagation of

so-called gravity currents. These currents are of interest in a number of industrial as
well as natural applications and so obtaining an understanding of the way in which
they propagate has motivated a considerable amount of current research (Huppert
2006).

In previous publications, our understanding of axisymmetric viscous gravity
currents on an impermeable boundary (Huppert 1982) has been generalized to take
account of the effects of a slope (Lister 1992) as well as the propagation of a current
in a porous medium (Huppert & Woods 1995; Lyle et al. 2005). Here, we consider
the propagation of a gravity current from a point source in a porous medium at an
impermeable sloping boundary. Of particular interest is the evolution of the current
away from the axisymmetric similarity solution found by Lyle et al. (2005).

We begin by deriving the evolution equations for the shape of a current whose
volume varies in time like qtα . A scaling analysis of these governing equations reveals
the extent of the current as a function of time up to a multiplicative constant. The full
form of the similarity solutions that give rise to these scalings can only be determined
by numerical means, however, and to do so we modify the numerical code of Lister
(1992). For some particular values of α, it is possible to make analytical progress;
these cases are considered separately and provide a useful check of the numerical
scheme. We then compare the results of the numerical calculations to a series of
experiments and find good quantitative agreement between the two. Finally, in the
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Figure 1. Sketches of a gravity current, of density ρ + �ρ, propagating in a porous medium
saturated with liquid of density ρ above an inclined plane. (a) Plan view of the current and
(b) horizontal section through the current.

last section, we discuss the implications of our results in geological settings, with
particular emphasis on the implications of our work for the sequestration of carbon
dioxide.

2. Formulation
2.1. Governing equations

We consider a gravity current consisting of fluid material of density ρ + �ρ in a deep
porous medium saturated with fluid of density ρ, which is bounded by an impermeable
barrier at an angle θ to the horizontal (see figure 1 for a sketch of the setup). That the
saturated porous medium is deep in comparison with the vertical extent of the current
allows us to neglect the motion of the surrounding fluid, simplifying the problem
considerably. We use the natural Cartesian coordinate system centred on the mass
source and aligned with the slope of the impermeable boundary. The depth, h(x, y, t),
of the gravity current is then determined by continuity combined with Darcy’s
law (see Bear 1988, for example) and the assumption that the pressure in the current
is hydrostatic, i.e.

P − P0 = �ρgh cos θ − (ρ + �ρ)gz cos θ + ρgx sin θ (z < h), (2.1)

with P0 constant. Here, Darcy’s law takes the form

u = − k

µ
[∇P − (ρ + �ρ)g(sin θ, 0, −cos θ)], (2.2)

where k is the permeability of the porous medium and µ is the viscosity of the liquid.
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The velocity within the porous medium is therefore given by

u = −k�ρg

µ

(
−sin θ + cos θ

∂h

∂x
, cos θ

∂h

∂y
, 0

)
. (2.3)

Using this along with the conservation of mass, we obtain

∂h

∂t
=

kρg′

µφ

(
cos θ

2
∇2h2 − sin θ

∂h

∂x

)
, (2.4)

where φ is the porosity of the porous medium and g′ ≡ g�ρ/ρ. Equation (2.4) is a
nonlinear advection–diffusion equation for the current thickness, with the two terms
on the right-hand side representing the gravity-driven spreading of the current and
its advection downslope, respectively.

It is common to close the system by requiring that the volume of the current depend
on time like qtα for some constant α � 0 (Huppert 1982; Lister 1992; Huppert &
Woods 1995). This constraint leads to solutions of self-similar form (as we shall see
again in this case) but also covers the natural cases of a fixed volume release (α = 0)
and a constant flux release (α = 1). To impose this volume constraint, (2.4) must be
solved along with

φ

∫ xn

xu

∫ ye(x)

−ye(x)

h dy dx = qtα, (2.5)

with |y| = ye(x) giving the edge of the current for xu(t) < x < xn(t). Note that (2.5)
contains an extra multiplicative factor of φ, which was omitted in the study of an
axisymmetric current in a porous medium by Lyle et al. (2005).

Equations (2.4) and (2.5) may be non-dimensionalized by setting T = t/t∗, H = h/h∗,
X = x/x∗ and Y = y/y∗, where

t∗ ≡
(

q

φV 3 tan θ

)1/(3−α)

, x∗ = y∗ ≡ V t∗, h∗ ≡ x∗ tan θ, (2.6)

and

V ≡ kρg′ sin θ

µφ
(2.7)

is the natural velocity scale in the problem. In non-dimensional terms, therefore, the
current satisfies

∂H

∂T
= ∇ · (H∇H ) − ∂H

∂X
, (2.8)

along with the volume conservation constraint∫ Xn

Xu

∫ Ye(X)

−Ye(X)

H dY dX = T α. (2.9)

2.2. Scalings

To aid our physical understanding of the spreading of the gravity current, we begin
by considering the scaling behaviour of the spreading in the limits of short and long
times. For α < 3, (2.3) shows that at short times (T � 1) the typical horizontal velocity
scale is X/T ∼ H/X so that H ∼ X2/T . Further, X ∼ Y and volume conservation
(2.9) requires that HXY ∼ T α . From this we therefore find the axisymmetric scalings
obtained by Lyle et al. (2005), namely

H ∼ T (α−1)/2, X ∼ Y ∼ T (α+1)/4. (2.10)
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Regime Downslope extent Cross-slope extent Thickness
x y h

α < 3 t � t∗ ∼
(

V q

φ tan θ

)1/4

t (α+1)/4 ∼
(

V q

φ tan θ

)1/4

t (α+1)/4 ∼
(

q tan θ

φV

)1/2

t (α−1)/2

α < 3 t � t∗ ∼ V t ∼
(

q

φ tan θ

)1/3

tα/3 ∼
(

q2 tan θ

φ2V 3

)1/3

t (2α−3)/3

α > 3 t � t∗ ∼ V t ∼
(

q

φ tan θ

)1/3

tα/3 ∼
(

q2 tan θ

φ2V 3

)1/3

t (2α−3)/3

α > 3 t � t∗ ∼
(

V q

φ tan θ

)1/4

t (α+1)/4 ∼
(

V q

φ tan θ

)1/4

t (α+1)/4 ∼
(

q tan θ

φV

)1/2

t (α−1)/2

Table 1. Summary of the asymptotic scalings for the dimensions of a gravity current in a
porous medium at an inclined plane. Here dimensional notation is used for clarity, and t∗ and
V are as defined in (2.6) and (2.7), respectively.

At long times (T � 1), again for α < 3, the typical downslope velocity of the current
is X/T ∼ 1 while in the across-slope direction we have Y/T ∼ H/Y . Combined with
volume conservation XYH ∼ T α these scalings lead to

H ∼ T (2α−3)/3, X ∼ T , Y ∼ T α/3, (2.11)

so that the current spreads predominantly downslope. It is worth noting here that the
long time scaling X ∼ T is unsurprising because (2.8) may be simplified by moving
into a frame moving at unit speed downslope (Huppert & Woods 1995). We also
note that the scaling Y ∼ T α/3 is identical to that found by Lister (1992) for a viscous
current on a slope.

When α > 3, the importance of the two downslope terms (the diffusive and
translational terms) reverses. In particular, at long times (HHX)X � HX , so that
we recover the axisymmetric spreading scalings given in (2.10) as being relevant for
T � 1. Conversely, for T � 1 we recover the non-axisymmetric scalings of (2.11). A
summary of the different scaling regimes expected is given in dimensional terms in
table 1.

That we observe axisymmetric spreading if α > 3 and T � 1 is surprising, but is a
consequence of the fact that the downslope flux in a porous-medium gravity current is
only weakly dependent on the local height and so can be swamped by the spreading
terms in (2.8). In the viscous case, this is not possible because the downslope flux is
able to remove the incoming flux much more efficiently and penalizes the accumulation
of material at a particular point more.

2.3. Numerics

The axisymmetric spreading of a gravity current in a porous medium above an
horizontal plane was considered by Lyle et al. (2005). In particular, they determined
the coefficients in the scalings (2.10) by finding a solution dependent on one similarity
variable in that case. To determine the prefactors in the non-axisymmetric scaling
relations (2.11), it is necessary to resort to numerical solutions of (2.8) and (2.9).
The numerical code used to do this was adapted from that used by Lister (1992)
for a viscous gravity current on an inclined plane, with minor alterations to make it
applicable to a gravity current in a porous medium. This code is an implementation
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of a finite-difference scheme on a rectangular grid with time-stepping performed
using an alternating-direction-implicit method. Equation (2.8) was written in flux-
conservative form allowing the diffusive and advective terms to be represented by the
Il’in scheme (Clauser & Kiesner 1987). More details of the numerical scheme may be
found in Lister (1992).

3. Special values of α

In this section, we consider separately particular values of α that are of special
interest. In some of these cases, it is possible to make progress analytically, providing
useful checks on the numerical scheme discussed in § 2.3, but they also shed light on
situations of practical interest.

3.1. Constant volume

As already noted, the differential equation (2.8) may be simplified by moving into
a frame translating at unit speed downslope. However, for general values of α, this
corresponds to a point source that is moving uphill in the new frame, complicating
the analysis. For a current of constant volume, α = 0, there is no distinguished
source point and we let X′ ≡ X − T . The resulting transformation of (2.8) has an
axisymmetric similarity solution (Lyle et al. 2005), which may be written

H (X, Y, T ) =
1

8T 1/2

(
4√
π

− R′2

T 1/2

)
, (3.1)

where R′ ≡ (X′2 + Y 2)1/2.

3.2. Constant flux: a steady state

For very long times T � 1, we expect that a constant-flux current (corresponding to
α = 1) will approach a steady state, whose shape we now determine. We expect this
steady shape to be observed far from the nose of the current, since the nose is always
unsteady, requiring that X � T . Sufficiently far downstream from the source (X � 1),
the steady shape is given by

∂2H 2

∂Y 2
= 2

∂H

∂X
, (3.2)

which has a similarity solution of the form H (X, Y ) = X−1/3f (Y/X1/3) where the
function f satisfies

d2f 2

dη2
+

2

3

(
f + η

df

dη

)
= 0,

∫ ηe

−ηe

f dη = 1, f (±ηe) = 0. (3.3)

This has solution

f (η) = 1
6

(
η2

e − η2
)
, (3.4)

where ηe = (9/2)1/3 ≈ 1.651 denotes the position of the current edge in similarity
variables.

This shows that far away from the source and nose regions, we should expect the
shape of unsteady currents to approach Y = (9X/2)1/3. Superimposing this curve onto
the numerically calculated current provides a useful check of the numerical scheme
described in § 2.3. This comparison (see figure 2) shows that, away from both the
nose and source regions, we do indeed see the steady-state shape, though this region
is confined to T −1 � X/T � 1 in the rescaled coordinates used in figure 2.

It is interesting to note that the similarity solution (3.4) is precisely that given
by Huppert & Woods (1995) for the shape of a two-dimensional current of
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Figure 2. Numerical evolution of the boundary of the current in rescaled coordinates at
(a) T = 1.23, (b) T = 9.52 and (c) T = 270.9. The last of these is indistinguishable from the
steady-state shape that is found at long times in these rescaled variables. The similarity
solution for the steady shape in the interior is given by Y = (9X/2)1/3 (dashed line) and is valid
away from the source and the front regions, which in these rescaled variables requires that
T −1 � X/T � 1.

constant volume spreading in a porous medium above an horizontal boundary.
This correspondence arises because in the steady state case considered here, fluid
moves downslope at a constant velocity – independently of its cross-slope position
and the current height – so that X is a proxy for time. A material slice in the
(y, z)-plane thus remains planar as it is advected downslope and so spreads laterally
in exactly the same way that a fixed volume release does in two dimensions.

3.3. α = 3

When α = 3, the non-dimensionalization leading to (2.8) breaks down because there is
no longer a characteristic time scale t∗ of the motion. Instead, an additional natural
velocity scale, (q/φ)1/3, enters the problem. We thus define a new set of dimensionless
variables T̃ = t/t̃∗, H̃ =h/h̃∗, X̃ = x/x̃∗ and Ỹ = y/ỹ∗ where t̃∗ is an arbitrary time
scale and

x̃∗ = ỹ∗ ≡
(

q

φ tan θ

)1/3

t̃∗, h̃∗ ≡ x̃∗ tan θ. (3.5)

In these non-dimensional variables, the system becomes

∂H̃

∂T̃
= δ

(
∇ · (H̃∇H̃ ) − ∂H̃

∂X̃

)
, (3.6)

along with volume conservation in the form∫ X̃n

X̃u

∫ Ỹe(X̃)

−Ỹe(X̃)

H̃ dỸ dX̃ = T̃ 3, (3.7)

where δ ≡ V (φ tan θ/q)1/3 is essentially the ratio of the two velocity scales in the
problem. By substituting H̃ = T̃ Φ(ξ, η) with X̃ = T̃ ξ and Ỹ = T̃ η, time can be elimin-
ated from this problem completely so that Φ is the solution of the two-dimensional
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Figure 3. Numerical results showing the shape of currents with α = 3 obtained by solving
(3.8) and (3.9) for six values of the parameter δ. Labels refer to the value of δ for each current.

problem

3Φ = [Φ(ξ + δ(Φξ − 1))]ξ + [Φ(δΦη + η)]η (3.8)

(with subscripts denoting differentiation) and∫ ξn

ξu

∫ ηe

−ηe

Φ dη dξ = 1. (3.9)

The system (3.8) and (3.9) was solved by time-stepping the problem in (3.6) and
(3.7) using a minor modification of the code described in § 2.3. This was found to be a
convenient method of solution and also demonstrates that time-dependent solutions
converge on the time-independent solution. The results of this calculation are shown
in figure 3 for a number of different values of δ.

The importance of the case α = 3 as a transition between qualitatively different flow
regimes is reminiscent of earlier work on gravity currents. For an axisymmetric gravity
current, Huppert (1982) found that viscous forces dominate inertia at long times for
α < 3 (being insignificant at short times) with the situation reversed for α > 3. Acton,
Huppert & Worster (2001) found that a viscous gravity current propagating over
a permeable medium spreads only a finite distance if α < 3 but spreads indefinitely
for α > 3. Despite these similarities, the reappearance of a transition at α = 3 here is
purely coincidental.

3.4. α > 3

In § 2.2, we observed that for α > 3 a scaling analysis suggests that we should observe
axisymmetric spreading for T � 1. For such values of α, therefore, we expect to recover
the axisymmetric solutions given by Lyle et al. (2005) in our numerical simulations.
In particular, for α = 4 we would expect to find that

Xn, Ymax ∼ 0.8855T 5/4,

where the prefactor here has been determined by repeating the analysis of Lyle et al.
(2005). As shown in figure 4, this result is indeed obtained from our numerical results.

4. Experimental results
We conducted a series of experiments in which a saline solution (dyed red) was

injected at constant flux (α = 1) into the base of a porous medium saturated with fresh
water. The details of the experimental setup are as described by Lyle et al. (2005). In
summary, the experiments were performed in a square-based Perspex tank of internal
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Figure 4. Numerical results for the positions of the current edge Xn and Ymax as a function of
time T for α = 4 (solid lines). For T � 1 these obey the axisymmetric spreading relationship,
Xn, Ymax ∼ 0.8855T 5/4 (dashed line), expected from the axisymmetric analysis of Lyle et al.
(2005).

Expt Symbol g′ (cm s−2) q (cm3 s−1) θ (deg.) t∗ (s) x∗ (m) h∗ (m)

1 � 91 2.14 9.5 40.5 0.112 0.019
2 � 99 1.31 10 25.2 0.080 0.014
3 � 99 3.04 18 11.9 0.067 0.022
4 � 99 4 18 13.7 0.077 0.025
5 � 99 5.78 18 16.5 0.093 0.030
6 � 91 3.86 5 196.2 0.286 0.025

Table 2. Parameter values investigated in the six experiments presented here as well as the
symbol used to represent their results in figure 5.

side length 61 cm and height 41 cm. The porous medium consisted of a self-supported
matrix of glass ballotini (diameter 3 mm), which filled the tank to a height of 25 cm.
In contrast to the experiments of Lyle et al. (2005), the Perspex tank was tilted (so
that the gravity current was propagating on a slope) and the saline solution was
injected at the edge of the tank, away from the corner because the inherent symmetry
is different here to that of the axisymmetric case. Video footage of the motion was
captured using a CCD camera and measurements of the front distance down slope
xn as well as the maximum lateral extent of the current ymax were made using the
image analysis software ImageJ.† The details of the six different values of g′, q and θ

investigated are given in table 2, along with the relevant values of the typical scales
t∗, x∗ and h∗. The latter estimates are based on the measurements of φ = 0.37 and
k = 6.8 × 10−9 m2 given by Lyle et al. (2005). The experimental results of Lyle et al.
(2005) are in very good agreement with theory once the additional factor of φ in (2.5)
is included. We therefore believe these values of φ and k to be correct.

† ImageJ is distributed by the National Institutes of Health and may be downloaded from:
http://rsb.info.nih.gov/ij/
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Figure 5. Numerical (solid line) and experimental (symbols) results for the position of the
nose of the current, Xn, and the maximum horizontal extent of the current, Ymax, as functions
of time. The symbols used to represent each experimental run are given in table 2.

t = 3 s

t = 11 s

t = 21 s

t = 36 s

t = 56 s

t = 76 s

10 cm

Figure 6. Comparison between the current profiles (dark) observed in Experiment 3 and
those predicted by numerical computation (superimposed white lines).

Figure 5 shows that the experimental results are in good agreement with the
theoretical results produced by solving (2.8). The comparison between experimentally
observed current profiles and those predicted from theoretical solutions of (2.8) shown
in figure 6 is also favourable – particularly away from the source region. Two possible
mechanisms may account for the slight discrepancy between experiments and theory
observed: the drag exerted by the solid substrate on the current and the fact that the
pore Reynolds number in our experiments is typically O(5). Such a value suggests
that we may be approaching the regime where Darcy’s law begins to break down,
which is around Re =10 (Bear 1988).

5. Geological relevance
Our experimental and numerical analyses have shown that shortly after the

initiation of a constant-flux gravity current (α = 1) it begins to spread axisymmetrically
in the manner described by Lyle et al. (2005). However, at times much longer than the
characteristic time t∗ given in (2.6), the current loses its axisymmetry and propagates
predominantly downslope. Since it propagates at constant velocity in this regime,
the current propagates much further and faster in this case than if it remained
axisymmetric. This is potentially problematic in a range of practical applications,
such as the sequestration of carbon dioxide in which supercritical carbon dioxide
is pumped into aquifers. Since the density of the liquid carbon dioxide lies in the
range 500 ± 150 kg m−3 (Chadwick et al. 2005), it remains buoyant with respect to
the ambient water and so will rise up any inclined boundaries.

The time scale, t∗, over which asymmetric spreading develops is of interest to
those wishing to predict the course of the released current. While it is difficult to
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evaluate t∗ in a precise manner because of the uncertainties in the properties of the
surrounding rock, we can make some estimates on the basis of the available data
from the Sleipner field (Bickle et al. 2006; Chadwick et al. 2005). In this Norwegian
field, around 109 kg of liquid CO2 is currently pumped into the local sandstone each
year. Presumably owing to geological complications, this single input flux is observed
later to separate into around ten independent currents propagating within different
horizons of the permeable layer, each of which has a volume flux lying in the region
0.002 � q � 0.03 m3 s−1. Combined with typical measured values for the porosity and
permeability of 0.7 � k � 5×10−12 m2 and φ = 0.31±0.04 as well as the CO2 viscosity,
µ =3.5 ± 0.5 × 10−5 Pa s (Bickle et al. 2006) we can estimate upper and lower bounds
on the value of t∗. When θ = 1◦, we find that 0.03 � t∗ � 14.2 years. This suggests
that the effects of non-axisymmetric spreading may indeed be important in the field.
Because of the variety of values of the slope that we might expect to encounter in any
geological setting, we note also that for θ � 1, t∗ ∼ θ−4/(3−α). For constant pumping
rate (α = 1), this gives t∗ ∼ θ−2, i.e. the precise value of the time scale over which the
current becomes asymmetric depends sensitively on θ . This suggests that the different
spreading regimes discussed here may be observed in the field and may also have
practical implications.

Since injection occurs into confined layers of sediment, estimates for the vertical
scale of the current, h∗, are also important. Interestingly, h∗ is independent of θ

for θ � 1 (measured in radians) and α = 1 so that, with the parameter values given
above, we find 1.2 � h∗ � 25 m. This suggests that, near the source, the depth of the
sediment layer may be similar to that of the current (and so exchange confined flows
may become significant). However, we expect that the scaling H ∼ T −1/3 valid away
from the source ensures that the present study will remain valid downstream.

We are grateful to John Lister for access to his code for a viscous current on a slope
and to Robert Whittaker for discussions. Mike Bickle, Andy Chadwick, Paul Linden
and John Lister also provided valuable feedback on an earlier draft of this paper.
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