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The behaviour of an inviscid gravity current released from a lock and propagating
over a horizontal boundary at the base of a stratified ambient fluid is considered in the
framework of a one-layer shallow-water formulation. Solutions for two-dimensional
rectangular and axisymmetric geometries, with emphasis on the rotation of the
latter, were obtained by a Lax–Wendroff scheme. Box-model approximations are also
discussed. The axisymmetric and rotating case admits steady-state lens structures, for
which approximate and numerical solutions are presented. In general, the stratification
reduces the velocity of propagation and enhances the Coriolis effects in a rotating
system (in particular, the maximal radius of propagation decreases). Comparisons of
the shallow-water results with Navier–Stokes simulations and laboratory experiments
indicate good agreement, at least for the initial period of propagation. The major
deficiency of this shallow-water model is the lack of incorporation of internal waves. In
particular, if the propagation is at subcritical speed, the applicability of the model is re-
stricted to the time prior to the first effective interaction between the head of the grav-
ity current and the lowest-order internal wave; an estimate of this position is presented.

1. Introduction
The study of gravity currents, which occur whenever fluid of one density flows

primarily horizontally into fluid of a different density, has a long history (Simpson
1997; Huppert 2000). Part of the motivation for these investigations is that gravity
currents arise frequently in both industrial and natural settings. A gravity current may
be driven by compositional or temperature differences, leading to a homogeneous
current, or by suspended particulate matter, leading to a particle-driven current
(Bonnecaze et al. 1993, 1995; Huppert 1998). Combinations of both particle and
compositional or temperature differences can also occur, as discussed by Hogg,
Hallworth & Huppert (1999). Currents may propagate in a variety of geometries,
including a rectangular two-dimensional situation or a cylindrical axisymmetric
configuration. They may also be influenced by sidewalls and/or topographic
constraints. Many of these processes have now been investigated. A typical study
considers the instantaneous release of a constant volume of heavy fluid from behind
a lock into a large reservoir of a less dense homogeneous fluid above an impermeable
horizontal boundary. In this paper, our primary aim is to evaluate theoretically the
effects of a stratified ambient on the propagation of high-Reynolds-number currents
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resulting from the instantaneous release of a finite volume of fluid of constant density.
We consider both rectangular two-dimensional and axially symmetric cylindrical
geometries. Background rotation in the latter, which contributes significant Coriolis-
centrifugal effects, is also considered. Our work may find applications in areas such
as the intrusion of fronts in both the oceans and atmosphere and is also relevant to
environmental control and hazard assessment.

A study of the prototype problem has been presented by Maxworthy et al. (2002).
They considered the propagation of a saline current released from behind a lock
over a horizontal bottom into a linearly stratified saline ambient in a rectangular
container whose upper boundary was open to the atmosphere. The investigation was
a combination of laboratory and numerical experiments. The numerical solutions,
obtained from the full Boussinesq formulations, were in very good agreement with
the measurements. Attention was focused on the influence of the stratification on the
speed of propagation of the nose.

In Ungarish & Huppert (2002, referred to hereinafter as UH), we developed the
theoretical interpretation of the experimental observations in the framework of a
shallow-water (SW) theory. The analysis indicated that the effects of stratification can
be incorporated into the classical homogeneous-fluid SW formulation by: (i) a modi-
fied pressure gradient correlation in the horizontal momentum equation; and (ii) a
modified pressure head correlation in the boundary condition which specifies the speed
of propagation of the front (nose). These modifications introduce a dimensionless
parameter, S, which expresses the relative strength of the stratification compared to
the density difference between the current and the top of the ambient. The parameter
as defined varies from S =0 for the homogeneous case to S = 1 when the density
of the ambient at the bottom is equal to that of the current. The analysis of UH
did not solve the SW partial differential equations for the general case; they were
concerned only with the velocity of propagation in the initial slumping stage, during
which the nose propagates with constant velocity and height (for rectangular geometry
only). For this case, the solution can be reduced to simple, mainly analytical, calcula-
tions. The results for the velocity of propagation were in good agreement with the
corresponding experimental measurements of Maxworthy et al. (2002), and also with
numerical solutions of the Navier–Stokes equations developed in UH.

These encouraging results motivated this extension. The objectives are to investigate
additional features of the propagation of gravity currents into a stratified ambient
fluid, with the aid of the previously developed theoretical formulations. In particular,
we now relax the restriction of our investigation beyond the slumping stage in a
two-dimensional geometry with its constant velocity of propagation of the front and
describable by analytical solutions of the SW equations. We employ a numerical
finite-difference code to solve the SW equations in the more general circumstances,
with the objectives of: (i) following the propagation of a rectangular current for
a longer time and distance than in previous papers; and, in particular, (ii) solving
for axisymmetric currents, mostly when subject to effects of rotation (i.e. Coriolis-
centrifugal forces due to the rotation of the system). The rotating configuration
also includes the quasi-steady-state lens structure for which we shall derive results
from the SW theory. The initial time-dependent propagation usually overshoots the
radius of the lens. The details of this effect (connected with the important Rossby
adjustment process) have not been investigated for the stratified ambient. A related
problem, of homogeneous lenses in a stratified rotating fluid, has been considered
before both theoretically and experimentally by Gill (1981), Griffiths & Linden (1981)
and Hedstrom & Armi (1988), but the generating process they considered was a slow
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Figure 1. Schematic description of the system: (a) the geometry; and (b) the density profiles
in the current (solid line) and ambient, for various values of S (dashed lines).

intrusion, not an instantaneous release from behind a lock of a gravity current of
constant volume, as discussed in § 3.1.

The elementary system under consideration is sketched in figure 1. A deep layer of
ambient fluid, of density ρa(z), lies above a horizontal surface at z = 0. Gravity acts
in the −z-direction. In the rectangular case, the system is bounded by parallel vertical
smooth impermeable surfaces and the current propagates in the direction labelled x.
At time t = 0, a given volume of homogeneous fluid of density ρc � ρa(z = 0) ≡ ρb

and kinematic viscosity ν, initially at rest in a rectangular box of height h0 and length
x0, is instantaneously released into the ambient fluid. A two-dimensional current
begins to spread. We assume that the appropriate Reynolds number of the horizontal
flow is large and hence viscous effects can be neglected.

In the axially symmetric geometry, the coordinate x is replaced by the cylindrical
radial coordinate r , and the dense fluid is initially stored in a cylinder of radius r0 and
height h0. The entire system is assumed to be rotating with constant angular velocity
Ω about the z-axis. In this case, the motion is affected by the Coriolis-centrifugal
forces, and the usual propagation of the dense fluid in the radial direction is coupled
with its motion in the azimuthal direction. An additional dimensionless parameter
enters the formulation, C, which represents the ratio of Coriolis to inertia forces. The
case of a homogeneous ambient has been discussed by Ungarish & Huppert (1998),
Hallworth, Huppert & Ungarish (2001) and Ungarish & Zemach (2003); significant
features are the finite radius of propagation and the possibility of steady-state lens
structures. We are interested in small values of C; otherwise, the Coriolis effects
restrict the propagation to a small distance and no real gravity current develops.

The major deficiency of the one-layer SW model used in this work is that internal
gravity waves are discarded. Our arguments are that these waves have little influence
on the motion of the current in certain practical circumstances, at least during
a significant initial period of propagation, and that, for analytical progress, it is
worthwhile, perhaps even necessary, to decouple the current and the waves. A closely
related problem is the stratified flow over a fixed obstacle, a topic covered thoroughly
by Baines (1995), from which useful insights can be gained. However, the gravity
current is a time-dependent deformable ‘obstacle’, whose shape interacts with the
waves it produces in the ambient. The analytical study of this flow field is evidently
a formidable task, and our idea is to attempt the following decoupling: first, solve
for the propagation of the gravity current under the assumption of an unperturbed
ambient; next, consider the perturbations produced in an impulsively started flow
over an obstacle of prescribed height h(x, t) over the bottom (the relative velocity far
upstream is that of the front of the current, uN (t)). In this paper, we solve only the
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first problem, which is the easier, and yet the more fundamental one, as reflected by
the accurate predictions provided by the SW results for a considerable time interval.
We note in passing that the waves are intrinsically incorporated in the Navier–Stokes
simulations performed in our study.

The structure of the paper is as follows. In § 2, the model equations of motion,
based on shallow-water approximations and the appropriate boundary conditions, are
developed, and the method of solution is briefly discussed. Results for the rectangular
case are presented and compared with the experiments of Maxworthy et al. (2002)
and numerical solutions of the Navier–Stokes equations. The extensions of the SW
theory to the axially symmetric case, with and without rotation (including the steady-
lens limit), are developed in § 3. Here, comparisons with numerical solutions of the
Navier–Stokes equations and to recent unpublished experiments are presented. Next,
in § 4, box model approximations are briefly discussed. We present a summary of
our results and some concluding remarks in § 5. The Appendix contains a short
description of the Navier–Stokes numerical simulation used in this work.

2. Rectangular two-dimensional case
The configuration is sketched in figure 1. For the rectangular case, we use an {x, y, z}

Cartesian coordinate system with corresponding {u, v, w} velocity components, and
assume that the flow does not depend on the coordinate y and that v ≡ 0.

The formulation has been presented in UH. For the sake of completeness we briefly
repeat here only some essentials.

Initially, the height of the fluid which will make up the propagating current is h0,
its length x0 and the density ρc. The height of the ambient fluid is H and the density
in this domain decreases linearly with z from ρb to ρo, where the subscripts b, o refer
to bottom and open surface values, respectively. (Note that the linear variation is
taken here for simplicity of analysis, but is not essential.)

It is convenient to use ρo as the reference density and to introduce the reduced
density differences and ratios between them

ε =
ρc − ρo

ρo

, εb =
ρb − ρo

ρo

, (2.1)

and

S = εb/ε, (2.2)

from which it follows that

ρc = ρo(1 + ε), ρa = ρo

[
1 + εS

(
1 − z

H

)]
. (2.3)

The parameter S represents the magnitude of the stratification in the ambient fluid,
and we consider only 0 � S � 1. The homogeneous ambient is recovered by setting
S = 0. We also define the reference reduced gravity,

g′ = εg, (2.4)

where g is the acceleration due to gravity.
We recall that the leading, or mode one, linear internal waves in a closed two-

dimensional channel propagate with velocity

uW = ± NH

π
, (2.5)
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where N = (Sg′/H )1/2 is the buoyancy frequency (Baines 1995); we emphasize that
here the variables are in dimensional form.

2.1. SW formulation

We use a one-layer approximation which is expected to capture many of the important
features of the flow, and is the simplest shallow-water model. In the ambient-fluid
domain we assume that u = v = w = 0 and hence the fluid is in purely hydrostatic
balance and maintains the initial density ρa(z). The motion is assumed to take place
in the lower layer only, 0 � x � xN (t) and 0 � z � h(x, t). As in the classical inviscid
shallow-water analysis of a gravity current in a homogeneous ambient, we argue
that the predominant vertical momentum balance in the current is hydrostatic and
that viscous effects in the horizontal momentum balance are negligibly small. Hence,
the motion is governed by the balance between pressure and inertia forces in this
horizontal direction.

A relationship between the pressure fields and the height h(x, t) is now obtained.
In the motionless ambient fluid, which is open to the atmosphere, the pressure does
not depend on x. The hydrostatic balances are ∂pi/∂z = −ρig, where i = a or c. Use
of (2.3) then yields

pa(z, t) = −ρo

[
1 + εS

(
1 − 1

2

z

H

)]
gz +C (2.6)

and

pc(x, z, t) = −ρo(1 + ε)gz + f (x, t), (2.7)

where the constant C reflects the fact that a constant pressure is assumed at the top
of the ambient at z = H (the deformation of the free surface is negligible for ε� 1).
Pressure continuity between the ambient and the current on the interface z = h(x, t)
determines the function f (x, t) of (2.7) and we obtain, after some algebra,

∂pc

∂x
= ρog

′ ∂h

∂x

[
1 − S

(
1 − h

H

)]
. (2.8)

As expected, the effect of stratification on the gravity current, as reflected by the
horizontal pressure gradient, increases as S increases. However, we must keep in mind
that internal waves should be expected to develop in the stratified ambient owing to
the propagation of the current (in a frame attached to the nose, this resembles the
motion over an obstacle, see for example Baines 1995). These waves may disturb the
ideal hydrostatic upper-ambient-layer assumption, at least in some parameter range.
This will be verified and discussed later.

The next step is to consider the vertical average of the horizontal inviscid mo-
mentum equation in the dense fluid, and eliminate the pressure term by (2.8). In
conjunction with volume continuity, we obtain a system of equations for h(x, t) and
for the averaged longitudinal velocity, u(x, t).

It is convenient to scale the dimensional variables (denoted here by asterisks) by

{x∗, z∗, h∗, H ∗, t∗, u∗} = {x0x, h0z, h0h, h0H, T t, Uu}, (2.9)

with

U = (h0g
′)1/2 = N

√
H

S
h0, T = x0/U, (2.10)
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where U is a typical inertial velocity of propagation of the nose of the current and
T is a typical time period for longitudinal propagation for a typical distance x0; we
emphasize that N is dimensional. Note that the horizontal and vertical lengths are
scaled differently, which, as pointed out by Ungarish & Huppert (1999), removes the
initial aspect ratio h0/x0 from the SW analysis in the homogeneous circumstances,
and this applies also to the stratified case considered here. However, we shall see that
the parameter h0/x0 enters the present problem at a later stage, in the context of
wave–current interaction. We note in passing that the dimensionless velocity of the
leading waves, uW , see (2.5), is ±(SH )1/2/π.

Hereinafter, dimensionless variables are used, unless stated otherwise. In any case,
x0, h0 and N are dimensional.

In conservation form, the equations can be written as

∂h

∂t
+

∂

∂x
(uh) = 0, (2.11)

and

∂

∂t
(uh) +

∂

∂x

[
u2h + 1

2
(1 − S)h2 + 1

3
S

h3

H

]
=0. (2.12)

In characteristic form, these become

[
ht

ut

]
+


 u h

1 − S + S
h

H
u


[

hx

ux

]
=

[
0
0

]
. (2.13)

The characteristic curves and relationships provide useful information for the
solution of the system, including a proper requirement of boundary conditions for
the interface height h at the ends of the current domain. Following the standard
procedure, we obtain

a(h) dh ± du = 0, (2.14)

where

a(h) =

[
1 − S + (Sh)/H

h

]1/2

, (2.15)

on the characteristics with dx/dt = c±, where

c± = u ±
[
h

(
1 − S + S

h

H

)]1/2

. (2.16)

The initial conditions are zero velocity and unit dimensionless height and length at
t = 0. Also, the velocity at x = 0 is zero, and an additional condition is required at
the nose x = xN (t).

We use the conditions which have been developed and verified in UH, based on the
arguments that, briefly: (i) the velocity of the nose is proportional to the square-root
of the pressure head (per unit mass); (ii) the factor of proportionality, defined as
the Froude number Fr, varies in a quite narrow range with the ratio hN/H ; and
(iii) the behaviour of Fr in the stratified case is approximated well by the well-known
homogeneous situation. Consequently,

uN = Fr h
1/2
N ×

[
1 − S

(
1 − 1

2

hN

H

)]1/2

. (2.17)
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The term in the square brackets of (2.17) is equal to 1 in the non-stratified case
(S = 0), and smaller than 1 for S > 0. This term expresses the explicit slow-down of
the head owing to the stratification effects.

The value of Fr is required to close the SW formulation. The consensus is that a
quasi-steady motion of the head can be assumed for which the steady-state considera-
tions of Benjamin (1968) predict that Fr is a function of hN/H (Klemp, Rotunno &
Skamarock 1994). The theoretical value is slightly higher than observed in real
currents, and corrections have been suggested. In this spirit, we shall use the simple
empirical correlation derived by Huppert & Simpson (1980)

Fr(hN/H ) =

{
1.19 (0 � hN/H � 0.075),

0.5H 1/3h
−1/3
N (0.075 � hN/H � 1).

(2.18)

It was shown in UH that the combination (2.17)–(2.18) provides complete qualitative
agreement and very good quantitative agreement with the experimental results of
Maxworthy et al. (2002) for the nose velocity during the slumping stage, which justi-
fies its use in the present study.

2.2. Results and comparisons for two-dimensional cases

Analytical results of the foregoing SW formulation may be obtained for restricted
circumstances. UH obtained the initial slumping velocity of the nose, uN , in a two-
dimensional geometry, by integrating the balance on the forward characteristic from
the unperturbed bulk of dense fluid to the point where it intersects with the nose
condition. The analytical behaviour of h(x, t) and u(x, t) in the ‘dam-break’ stage was
presented by Ungarish (2004). However, in general, the resulting SW system requires
numerical solution. This is the situation also for the classical homogeneous case. The
present formulation includes a new physical effect, the stratification of the ambient,
reproduced by the additional dimensionless parameter S. However, this does not affect
the qualitative properties of the SW system as known from the classical case (recovered
here for S = 0). For the range of interest, 0 � S � 1, the resulting system is hyperbolic
and well posed. The characteristics are real-valued and propagate faster than the fluid
near the boundaries. We therefore used the robust two-step Lax–Wendroff finite-
difference method (Morton & Mayers 1994; Press et al. 1992) to integrate the SW
equations of motion. This scheme has been used successfully before in the solution
of various gravity currents (Bonnecaze et al. 1993; Ungarish & Huppert 1998) and
we found that, after the modification introduced by the stratification, it also works
efficiently in the cases considered in this paper (two-dimensional and axisymmetric
with and without rotation). The current domain [0, rN (t)] is mapped into a constant
[0, 1] domain, which is discretized in equal intervals. The typical grid has 100 points,
with time step 0.8 × 10−2, and the run time is insignificant.

The validity of the results may be affected by the neglected effect of the internal
gravity waves. We claim that in the present initial-value problem this effect influences
the propagation of subcritical currents only. An inspection of (2.17) indicates that
the type of current depends on the values of H and S. Since Fr is about 1 and hN

smaller than 1 (typically, 0.5 in the initial stages of motion), (2.17) indicates that uN is
smaller then 1 and decreases with S, while, on the other hand, the forward wave speed
uW = (SH )1/2/π increases with S and can attain values both smaller and larger than
1. Consequently, both supercritical (uN >uW ) and subcritical (uN <uW ) currents are
feasible; the former are expected for weak stratification and shallow ambients (small
S and not large H ) and the latter for strong stratification and/or deep ambients (S
close to 1 and/or large H ). The critical curve Scr (H ) obtained from our formulation
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Figure 2. The sub- and supercritical subdomains in the (S,H )-domain, as predicted by the
SW theory. The dashed line is the approximation Scr for large H .

(using the initial slumping velocity uN derived in UH) is displayed in figure 2. An
expansion for large H yields the approximation

Scr =

[
1 +

(
Fr(0) + 2

2πFr(0)

)2

H

]−1

, (2.19)

and in the present case Fr(0) = 1.19, see (2.18). The conclusion is that a significant
portion of the, (S,H )-domain corresponds to supercritical currents, and for these
circumstances the wave-propagation interaction is expected to be unimportant for at
least the SW slumping distance, xN ≈ 3 (eventually the velocity of the front decays
and the subcritical domain is attained, but viscous effects may also become important
at this stage).

On the other hand, even for a subcritical current, the initial motion is dominated
by the inertia–pressure balance in the dense fluid, not by the waves in the ambient.
This has been clearly observed in the experiments of Maxworthy et al. (2002). Using
the insights provided by these experiments, we can estimate the position x2 where the
first strong interaction between the waves and the nose occurs as follows. First, the
nose propagates two wavelengths with the wave locked to the head. Next, the wave
is unlocked from the head and moves forward relative to the current until the crest
reaches the nose (and thus slows it down). No mixing or instabilities were observed
during this process. The analogy with the obstacle problem Baines (1995) indicates
that the wavelength (scaled with x0) is λ= 2π(H/S)1/2(h0/x0)uN . The propagation with
velocity uN of the tandem motion over 2 λ plus the relative motion (with velocity
uW − uN ) over λ/4 yields

x2 = 1 + 2
h0

x0

H

(
πuN√
SH

)

2 +

0.25(
πuN√
SH

)−1

− 1


. (2.20)
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Using again our results for the initial uN as a function of S and H we obtain
straightforward estimates of x2.

Maxworthy et al. (2002) provided the experimental distance (from the gate of the
lock) Xtr where significant deceleration of the nose occurs. A comparison with the
present result, for subcritical currents, is shown in figure 3. There is some scatter
of the experimental points, but overall the magnitude and the trend predicted by
(2.20) are confirmed. (In view of the simplification involved in the derivation of
(2.20), and keeping in mind that the practical detection of x2 is not a clear-cut
task, a closer agreement could not be expected.) Thus, we think that (2.20) captures
well the parameters that govern the start of interactions between the waves and the
propagation of the subcritical current, and can be used as a reliable estimate of the
range of applicability of the SW results. The behaviour of x2 (see figure 3) indicates
that there are many significant combinations of S, H and h0/x0 for which the present
SW results are relevant to subcritical currents. Eventually, the effects of the waves
become dominant and the presently discussed density-driven propagation will evolve
into a wave-dominated flow field; this complex transition, as elucidated by Manasseh,
Ching & Fernando (1998) (where other important references are also given) requires
a different type of investigation and is left for future work.

We now proceed to a more detailed solution of two typical cases.
Consider the case corresponding to ‘Run 5’ of Maxworthy et al. (2002): H =3

and S = 0.293. (Here, U = 23.82 cm s−1, T = 0.840 s, h0 = 5 cm, x0 = 20 cm, ε =0.1156,

N = 1.48 s−1). The calculated SW profiles of h and u as functions of x at various
times are shown in figure 4.

Maxworthy et al. (2002) consider this configuration as typical to the supercritical
domain, and emphasize that in this case no wave generation behind the head and
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Figure 4. SW predicted profiles for Run 5 at t = 1(2)25.

no wave–head interaction is observed (at least during the initial propagation). This
is in agreement with our domain diagram given in figure 2. To be specific, the initial
velocity of propagation predicted by SW, uN =0.54, is larger than uW = 0.30.

Figure 5 presents a comparison between the experimental results (taken from
figure 5 of Maxworthy et al.) and SW predictions for xN as a function of t . The
agreement is excellent for t < 10, and afterwards the experimental results lag slightly
behind the SW results. Overall, the agreement is satisfactory and the discrepancy at the
later stage can be attributed to viscous and mixing effects which are not incorporated
in the SW model. (The graph of xN vs. t displays some weak oscillations after t = 10,
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of Maxworthy et al. (2002).

which may be the result of internal waves in the ambient or of measurement errors,
but their amplitude and mean contribution to the main propagation are insignificant.)

A typical subcritical gravity current is illustrated in Maxworthy et al. (2002) by
experiment ‘Run 19’, with H =3 and S = 0.72. (Here U = 19.86 cm s−1, T = 1.01 s,
h0 = 5 cm, x0 = 20 cm, ε = 0.0804, N = 1.94 s−1). The experimentally detected subcrit-
ical type of current is in agreement with our domain diagram given in figure 2.
To be specific, in this case the initial velocity of propagation predicted by SW,
uN =0.38, is smaller than uW = 0.47. The SW profiles of h and u as functions of
x at various times are shown in figure 6; the qualitative behaviour is similar to
that of Run 5, figure 4, but the velocity is smaller in the present case for which S is
larger. Comparisons for the propagation as a function of time are presented in figure 7.
We observe that, initially, there is excellent agreement between SW predictions
and experiment. However, at x ≈ 5, the propagation of the real current is strongly
hindered by the interaction between the nose and the waves. For the combination
S = 0.72, H = 3 and h0/x0 = 0.25 used in the experiment, the theoretical start of
interaction, see (2.20), is at x2 = 4.8 (it is remarkable that the corresponding reported
experimental value Xtr yields, in our scaling, the same result).

The interaction extends about 5 dimensionless time units, after which the previous
speed is recovered. The SW solution evidently misses this interaction; the SW
curve shows no special behaviour in the pertinent time period, and, consequently, a
significant discrepancy of xN is present for t > 15.

To further corroborate our predictive tools we also performed numerical compu-
tations of the Navier–Stokes (NS) equations. Details of our finite-difference numerical
code are presented the Appendix. We used a mesh of 320 horizontal and 200 vertical
intervals. The dimensionless length of the tank, xw, was 8, sufficiently large to avoid
the influence of the reflected wave on the motion of the current. In contrast to the
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Figure 6. SW predicted profiles for Run 19 at t = 1(2)29.

SW solution, the NS computations require many CPU hours on powerful computers.
The comparison of the NS value of xN as a function of t with experimental and
SW results is presented in figure 7. The three results are in excellent agreement for
t < 12. Afterwards, some strong deceleration of the nose occurs in the NS results, in
perfect agreement with the experiment, but with no counterpart in the SW solution.
This strengthens the reliability of the NS code and also indicates that the interaction
between the waves and the head is a robust property of the system, that occurs after
a certain interval of propagation during which the SW approximation can be applied.
Indeed, the NS results display pronounced oscillations of the isopycnals in the region
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Figure 7. Comparisons of experiment (full line), SW (dashed line) and numerical
Navier–Stokes (symbols) results for Run 19 of Maxworthy et al. (2002).

of the nose, figure 8, which confirm the experimentally derived connection of the
wave–nose interaction hindrance.

The internal stratification waves are, as anticipated, an important ingredient in
the motion of the subcritical gravity current after some initial time. The numerical
NS simulation predict well the time and the nature of the wave–current interaction.
However, the present SW model, which ignores these waves, predicts accurately the
motion for a limited interval only. This is consistent with our attempt to decouple
the problems of current (assuming an unperturbed ambient) and waves. Here we
solve only the first problem, which is the easier, and yet the more fundamental one,
as reflected by the accurate predictions provided by the foregoing SW results for a
considerable time interval.

The wave problem that must be subsequently treated is expected to resemble the
‘small amplitude topography’ analysis (Baines 1995 § 5.2), at least when H/S is large.
The dominant Nh/U parameter of the obstacle can be expressed in our case as
(S/H )1/2(hN/uN ), and the typical wavelength, scaled with x0, is λ=2π(H/S)1/2(h0/

x0)uN (consistent with the observation of Maxworthy et al. 2002 figure 14 for
the subcritical regime). During the slumping stage, (hN/uN ) and uN are constant,
thereafter both decrease with time. At the beginning of the motion the ‘obstacle’
encountered by the ambient is the protruding rectangle of length a = uNt (the domain
behind the lock x < 1 undergoes a gentle depression over a similar length) and hence
λ/a = 2π(H/S)1/2(h0/x0)/t is large for some time interval, during which the buoyancy
reaction to the obstacle is expected to be quite mild. The inherent time-dependent
shape of the current renders the steady-state features of the classical investigations
of the stratified flow over a fixed obstacle, and in particular Long’s model results,
of limited relevance to the times of propagation discussed here. Intriguing questions
about upstream disturbances and columnar modes cannot yet be answered.

In summary, we showed that the present SW theory provides a reliable means
for determining a priori the super- or subcritical classification of a gravity current
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configuration. This theory predicts well the propagation of currents of the first class,
and also the propagation of currents of the second class until the determined position
x2. We showed that the NS simulations are in good agreement with experimental
observations concerning the wave–head interaction of the subcritical current. These
results have advanced the knowledge on two-dimensional gravity currents in a
stratified ambient and will serve as a good starting point for further work, both
theoretical and experimental.

3. Axisymmetric and rotating cases
In this section, we consider the current to be released from a cylindrical lock of

height h0 and radius r0, and the entire system to be rotating with a constant angular
velocity Ω about the vertical axis z (with Ω = 0 as a particular case). We use a
cylindrical coordinate system, {r, θ, z}, co-rotating with the ambient fluid. The velocity
components in the rotating system are {u, v, w} and we assume that the flow does
not depend on the angular coordinate θ . In the meridional plane r, z the current is
similar to that sketched in figure 1, but, in addition: (i) the geometry diverges with
r; (ii) there is motion in the azimuthal direction; and (iii) the rotation of the system
about z introduces centrifugal-Coriolis forces.

It is convenient in this section to scale the dimensional variables (denoted here by
asterisks) by

{r∗, z∗, h∗, H ∗, t∗, u∗v∗} = {r0r, h0z, h0h, h0H, T t, Uu, Ωr0v}, (3.1)

where

U = (h0g
′)1/2, T = r0/U. (3.2)

We also define the angular velocity (in the rotating system)

ω = v/r, (3.3)

a dimensionless variable scaled with Ω .
As compared to the previously considered two-dimensional case, two extensions

of the SW equations of motion are necessary. First, the geometrical curvature terms
must be incorporated, which is a quite straightforward task. Secondly, for Ω > 0, the
azimuthal momentum equation and Coriolis-centrifugal terms must be added to the
formulation. The relevant dimensionless parameter is the typical Coriolis to inertia
ratio

C =
Ωr0

(g′h0)1/2
. (3.4)

This parameter does not take into account the stratification of the ambient. We shall
prove later that the effect of Coriolis forces is more pronounced when S increases
(and, actually, the inertia of propagation in the radial direction decreases.) We are
interested in small values of C; otherwise, the Coriolis effects restrict the propagation
to a small distance and no real gravity current develops. On the other hand, when C
is small the deviation of the current from the initial solid-body-rotation is significant,
i.e. the Rossby number of the flow is not small. We note in passing that an important
parameter in stratified rotating fluids is the ratio of the usual buoyancy frequency of
the ambient, N, to f = 2Ω . This is related to our parameters by

f

N =
2√
S

h0

r0

C
√

H. (3.5)
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The one-layer model is used, again, for simplicity. A hydrostatic–cyclostrophic pres-
sure balance is assumed in the motionless ambient, and a vertical hydrostatic balance
in the dense fluid. After some algebra, it turns out that in the range of parameters
considered here (in particular ε � 1 and C < 1) the relationship between the lateral
pressure gradient and inclination of the interface is similar to the two-dimensional
case, and the z-averaged azimuthal momentum balance and Coriolis interaction are
similar to the non-stratified case, as discussed by Ungarish & Huppert (1998). The
internal waves are, again, not incorporated in the SW formulation for the reasons
mentioned above.

In conservation form, the averaged balance equations of continuity, radial
momentum and azimuthal momentum can be written as

∂h

∂t
+

∂

∂r
(uh) = −uh

r
, (3.6)

∂

∂t
(uh) +

∂

∂r

[
u2h + 1

2
(1 − S)h2 + 1

3
S

h3

H

]
= −u2h

r
+ C2vh

(
2 +

v

r

)
, (3.7)

and

∂

∂t
(vh) +

∂

∂r
(uvh) = −2uh

(
1 +

v

r

)
(3.8)

which in characteristic form become


ht

ut

vt


 +




u h 0

1 − S + S
h

H
u 0

0 0 u





 hr

ur

vr


 =


 −uh/r

C2v(2 + v/r)
−u(2 + v/r)


 . (3.9)

The first two characteristic velocities of this system dr/dt = c± are given by (2.16)
as in the two-dimensional case, but the balance on the characteristics is modified by
the curvature and Coriolis terms so that

dh ± 1

a(h)
du = dt

[
−uh

r
± 1

a(h)
C2v

(
2 +

v

r

)]
. (3.10)

The third characteristic velocity is dr/dt = u and the corresponding balance can be
used to derive the boundary condition for ω at the nose, (3.14).

The initial conditions are zero velocity in both radial and azimuthal directions, and
unit dimensionless height and length at t = 0. Also, for t > 0, the velocity at r = 0
is zero, and the boundary conditions for the variable h can be evaluated from the
characteristics which propagate from the interior with c− and c+ to r = 0 and rN ,
respectively.

Boundary conditions for the radial and azimuthal (angular) velocity components at
the nose r = rN (t) are required. We argue that for small values of C2, the boundary
conditions for uN are as in the two-dimensional case, and we shall therefore use
(2.17) and (2.18). This assumption is vindicated by the good agreement of the rN (t)
predicted by the present SW formulation with full NS computation and laboratory
experiments, as discussed in § 3.2. (The formulation of the boundary condition for the
propagation of the nose of the gravity current when C2 is not small is beyond our
scope, because in this case the distance of propagation is typically less than 1 and
hence the resulting flow is not truly a gravity current, but rather an adjusting bulk of
rotating fluid.)
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Concerning the angular velocity, we note that the foregoing equations of motion
yield conservation of potential vorticity, which reads

D

Dt

(
ζ + 2

h

)
=0, (3.11)

where

ζ =
1

r

∂

∂r
(r2ω) (3.12)

is the axial vorticity component (scaled with Ω), see for example Ungarish & Huppert
(1998). On account of the initial conditions, the conservation of potential vorticity
can be reformulated as

h = 1 + 1
2
ζ. (3.13)

A combination of the total volume conservation of the dense fluid, (3.13) and (3.12)
yield the boundary condition

ω = −1 +

(
1

rN (t)

)2

(r = rN ). (3.14)

The same result can be obtained by following the balance on the aforementioned
third characteristic starting at r = 1, as presented in Ungarish & Huppert (1998).

3.1. Steady lenses (SL)

For C > 0, the system (3.9) admits a non-trivial steady-state solution with u =0
and rN =constant. This reflects an equilibrium between the pressure and Coriolis-
centrifugal forces (actually, a strongly-idealized situation, because both viscous effects
and residual motion from the initial propagation are neglected). The task is to
determine h(r), ω(r) and rN of the possible steady lens (SL). These flows have impor-
tant applications in oceanography (Csanady 1979; Hedstrom & Armi 1988).

Letting y = r/rN , we can express the radial momentum and potential vorticity
equations, (3.7) and (3.13), for 0 � y � 1, as

A
dh

dy
= C2r2

Ny[ω(2 + ω)], (3.15)

h = 1 + ω + 1
2
y

dω

dy
, (3.16)

where

A = 1 − S + S
h

H
, (3.17)

subject to the boundary conditions (3.14), regularity at y = 0 and h(y = 1) = 0. Sub-
stitution of (3.16) into (3.15) yields a single equation for ω. The solution provides
rN of the lens, ω(y) and h(y). For the non-stratified case, S = 0, which is obviously
the simplest one because A= 1, numerical and approximate analytical solutions have
been presented (see Ungarish & Zemach 2003 where other references are given).
The stratified system is complicated by the additional parameter S; in particular, for
S = 1 we obtain A= h/H , and a singularity of (3.15) at y = 1 appears owing to the
conditions h(1) = 0. The influence of S is clarified by the following results.

3.1.1. Analytical approximations

The first type of approximate solution can be derived when C � 1 and 1 − S � C
(i.e. S is not very close to 1). An expansion in powers of C indicates that h ∼ C,
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and hence, to leading order, A= 1 − S is a positive constant. This reduces, to leading
order in C, the present problem (3.15)–(3.16) to that of a non-stratified case, but with
a modified Coriolis coefficient

Cm = C(1 − S)−1/2. (3.18)

Following Ungarish & Huppert (1998) (see also Ungarish & Zemach 2003), we readily
obtain the approximation

h = Cm(1 − y2), (3.19)

ω = −1 + Cm

(
1 − 1

2
y2

)
, (3.20)

and

rN = (2/Cm)1/2. (3.21)

We are interested in cases with small Cm because otherwise the distance of propagation
is small, see (3.21), and no real gravity current appears. As could be expected,
the stratification decreases the pressure gradients and hence increases the relative
importance of the Coriolis effects. The lens is thin, O(Cm), and practically ‘feels’
the ambient fluid in the proximity of the bottom whose density is ρb. The resulting
lens is like one produced in a homogeneous case with density difference ρc − ρb.
The approximation (3.18)–(3.21) evidently diverges when S approaches 1, i.e. ρc − ρb

vanishes, and hence a different expansion is required for this case, as follows.
The second type of approximate solution can be derived when S = 1 and C2H � 1.

The density difference between the lens and the ambient is small, and hence, as
compared with the previous case, a thicker lens, a smaller radius and a stronger
slope of the interface are required to counterbalance the Coriolis effects. An order of
magnitude consideration indicates that here h(y) and ω(y) + 1 can be expanded in
powers of (C2H )1/3. Substitution of this expansion in the governing equation, subject
to volume conservation and boundary conditions yields, to leading order,

h = (C2H )1/3
(

3
2

)1/3
(1 − y2)1/2, (3.22)

ω = −1 + (C2H )1/3
(

2
3

)2/3 [
1 − (1 − y2)3/2

] 1

y2
, (3.23)

and

rN =
(

3
2

)1/3
(C2H )−1/6. (3.24)

As y → 1, h′(y) and ω′′(y) → ∞, but |ω′(y)| is small; a local and relatively small
contribution of viscous or turbulent dissipation effects is expected to develop. We are
interested in cases with small C2H because otherwise the distance of propagation is
small, see (3.24), and no real gravity current appears.

When S = 1, the dimensionless parameter C2H can also be expressed as
(Ωr0Nh0)

2 = (f r0/2Nh0)
2, where, again, N is the usual buoyancy frequency of

the ambient, and f = 2Ω , see (3.5). The foregoing approximations yield the following
compact results for the radius of propagation and aspect ratio of the lens in the S = 1
case

r∗
N

V ∗ 1/3
=

(
3

π

N
f

)1/3

, (3.25)

h∗(0)

r∗
N

=
1

2

f

N , (3.26)
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where V ∗ is the volume of the lens (the upper asterisks denotes dimensional variables).
It is remarkable that the shape of the lens is determined only by the volume and
f/N; the details of the initial aspect ratio h0/r0 do not influence the results (to
leading order).

The case S =1 is related to the lenses produced by intrusion in a stratified fluid
at a neutral level, i.e. at the horizontal midplane z = 0, the densities of the ambient
and intruding fluid are equal, which corresponds to εb = ε, or S = 1, in our study. The
aspect ratio of the height to radius of the lens provided by the present approximation
(3.26) is in full agreement with the result that has been theoretically predicted and
experimentally confirmed for the neutral level intrusion lens from a point source
of non-rotating fluid (Gill 1981; Griffiths & Linden 1981; Hedstrom & Armi 1988).
Actually, for a small value of C2H (as assumed here) the present constant-volume lens
spreads significantly. Therefore its angular velocity is reduced to almost −1, see (3.23),
and hence the features of a lens of non-rotating fluid are a good approximation.

The foregoing results are also useful in the energy balance considerations. The
pertinent potential (in the reduced-gravity field) and kinetic energies, scaled with
ρog

′r2
0h

2
0 (per radian) can be expressed as:

PE = r2
N

∫ 1

0

[
1
2
(1 − S)h2(y) +

1

6

S

H
h3(y)

]
y dy, (3.27)

EK = 1
2
C2r4

N

∫ 1

0

(1 + ω(y))2h(y)y3 dy. (3.28)

(The kinetic energy in the initial and SL stages is contributed by the azimuthal
velocity only because there is no radial motion in these situations.) In the initial state,
h = 1, rN = 1 and ω = 0, and hence

E = PE + KE = 1
4
(1 − S) +

1

12

S

H
+ 1

8
C2 (t = 0). (3.29)

As expected, the stratification reduces the potential energy in the initial system.
The energy in the SL is obtained by substituting the appropriate h(y) and ω(y) in
(3.27)–(3.28). Using the approximations (3.19)–(3.24), we find: (i) for S < 1

E = Cm

[
1
6
(1 − S) + Cm

1

24

S

H

]
+ 23

240
C3

m(1 − S); (3.30)

and (ii) for S = 1

E = 1
20

(
3
2

)2/3 1

H
(C2H )2/3 + 0.120

1

H
(C2H )4/3. (3.31)

The last term in (3.29)–(3.31)) represents the kinetic energy. We conclude that for the
cases considered here (small Cm for S < 1 and small C2H for S = 1) the energy of
the SL is significantly smaller than in the initial state. The potential energy is the
dominant term in both the SL and initial states. The difference with the lens created
by slow injection mentioned above is the need to dissipate the energy excess.

For given C, the radius rN decreases with S according to (3.21), and at some value
of S the radius rN predicted by (3.24) is reached. This point of intersection provides
the estimate of the limit of validity of (3.21). This yields

S < 1 − 0.43(C/H )2/3, Cm < 1.5(C2H )1/3, (3.32)

which is actually a very mild restriction on the applicability of the approximations
(3.20)–(3.21). We conclude that the approximations developed here are expected to



88 M. Ungarish and H. E. Huppert

cover practically the entire range of S of interest. This has been confirmed by
comparison with the more accurate results considered next.

3.1.2. Numerical solutions

In general, the determination of the SL system must be performed by numerical
methods, which include iterations on the nonlinear right-hand side of (3.15) and value
of rN . We used a finite-difference discretization on a 100 interval grid, and performed
iterations (from some initial guess guided by the foregoing approximate results) for
obtaining the proper nonlinear combination of ω(y), h(y) and rN which satisfies the
equations and converges to the boundary condition h(1) = 0.

The S = 1 case requires special attention. The straightforward finite-difference
approach fails in the corner region where y approaches 1, because of the singularity
which shows up as A= h/H tends to 0 and the slope of h becomes very large.
However, ω remains regular, and hence for y close to 1 (3.15), subject to (3.14), can
be approximated by

1

2H

dh2

dy
= −C2r2

N

(
1 − 1

r4
N

)
= −β, (3.33)

which yields

h = [2Hβ(1 − y)]1/2 , (3.34)

and this expression is used in the last grid interval of the numerical solution instead
of the difference equation for h.

Typical results of the SL shape and internal angular velocity are presented in
figure 9. As the stratification (value of S) increases, the lens becomes thicker and
shorter and the retrograde angular velocity in the interior decreases. The S = 1 case,
despite the singularity, does not display any qualitative dissimilarity with the other
cases. The agreement between the analytical approximate results and the numerical
solution of the SL is good. The approximations were developed for small values of C
and C2H ; in figure 9(b) these parameter are not so small, C = 0.4 and C2H = 0.48,
yet fair agreement is obtained for h in all cases (this also implies agreement for rN )
and for ω for S � 0.5 (in figure 9a, C = 0.3 and C2H = 0.18 and the agreement is
very good for all the predicted variables in the full range of S). We conclude that the
analytical result captures well the parametric behaviour of the flow field. The stability
of the lens and its dissipation by viscous and mixing effects (expected to be governed
by localized three-dimensional instabilities) are important features that deserve future
investigation.

3.2. Results and comparisons for axisymmetric and rotating cases

The effect of stratification on the propagation of a typical rotating axisymmetric
gravity current, as predicted by the SW formulation, is shown in figure 10. The
predictions for the interface are shown in figure 11. As expected, the Coriolis effects
hinder, and eventually stop, the radial propagation. The Coriolis-influenced interface
develops a downward inclination of the frontal region, and the height of the nose
decays to zero in a relatively short time. As expected, when S increases, both the speed
of radial propagation and the maximum radius of spread are significantly reduced.
The interpretation of this trend is as follows.

The increase of S decreases the effective reduced gravity that drives the nose, g′
e,

defined (approximately) by UH as

g′
e =

ρc − ρa(z = 0.5hN )

ρo

g = g′
[
1 − S

(
1 − hN

2H

)]
. (3.35)
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The approximation is based on the observation that the nose reacts to the density
difference at about half-height. Thus, the initial radial propagation is expected to
decrease with S, as in the case of a two-dimensional current, simply because the
driving density difference decreases with S. On the other hand, the Coriolis-centrifugal
forces are not influenced by the axial stratification. This suggests the introduction of
an effective Coriolis dimensionless parameter, see (3.4)

Ce =
Ωr0

(g′
eh0)1/2

= C
[
1 − S

(
1 − hN

2H

)]−1/2

. (3.36)

During the initial propagation, the typical value of hN is 0.5, then it decreases, and
hence the effective Ce is larger than the formal C for S > 0 all the time. Moreover,
eventually the Coriolis effects reduce hN to zero and the propagation stops. This
further enhances the effect of stratification because the nose is brought down to
encounter levels of larger and larger density. We expect that at this stage of slow
radial propagation the dynamic behaviour switches to the equilibrium mode, i.e. the
SL balances become relevant, in particular the maximum rN predicted by (3.21) and
(3.24); indeed, for hN = 0 we obtain Ce = Cm, see (3.18). Note that Ce is associated
with the dynamic propagation, and Cm with the equilibrium lens.

An inspection of the SW results presented in figure 10 confirms this interpretation.
Moreover, figure 10 indicates that no special behaviour appears when S = 1, although
the SL radial momentum balance (3.15) has a singularity at rN in this case. We infer
that this is a local singularity which does not alter the behaviour in the interior. The
analysis of these and similar SW results for different values of C and H lead to the
following conclusions: the maximum radius of propagation attained by the current
exceeds the radius of the SL; the excess varies from about 30% for S = 0 to about
20% for S = 1. The time at which the maximum propagation is attained is given
(approximately) by 1.7/C for S = 0 and decreases (slightly) as S approaches 1. The
interval Ct ≈ π/2 from release to the maximal propagation corresponds to about a
quarter-revolution of the system. The fact that the stratification has little influence
on this time interval is an interesting outcome, that can be explained by the fact that
as S increases, both the maximum radius and the velocity of propagation decrease,
so that the (mean) ratio of distance over velocity remains unchanged. The prediction
that the maximum SW radius is larger than that of the SL indicates that some
contraction and oscillations are expected after t = 1.7/C, for any S. In the stratified
case the classical oscillations of the bulk of dense fluid about the steady-lens form are
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0.8, 0.6, and 0 (non-rotating).

expected to combine with oscillations of the isopycnals in the ambient. The Ekman
layers develop in about one revolution of the system, and hence are not expected to
have an influence during the propagation to maximum radius that is attained in a
shorter time interval. Eventually, these layers and other dissipative mechanisms will
smooth out the discontinuity of ω between the lens and the ambient.

We conclude that our interpretations capture well the combined effects of rotation
and stratification. (Recall that the analysis is for small values of C in general, and
for small C

√
H when S is close to 1.) The interaction between the nose and the

internal waves is expected to develop as in the two-dimensional case, but complicated
by the effects of curvature and Coriolis (inertial waves). Typically, the velocity of
axisymmetric currents decays faster than that of two-dimensional currents, and the
rotation enhances this trend. We therefore speculate that the major stage of inertia-
dominated propagation will be close to its end before the internal waves become
influential. This is consistent with the numerical and experimental results presented
below, but this topic requires a great deal of additional investigation that must be
left for future work.

To corroborate the SW prediction, we perform now some comparisons with the NS
numerical solutions. The configuration is the axisymmetric counterpart of the two-
dimensional computation for Run 19 considered above, i.e. the same values of
ε = 0.0804, S = 0.72, H =3 and lock aspect ratio h0/r0 = 0.25. The outer wall of
the computational domain was at rw = 8, a grid of 320 × 200 intervals was used and
Re = 3.85 × 104. Runs for non-rotating, and for rotation with C =0.6 and 0.8 were
performed.

The predictions of rN as functions of t are shown in figure 12. The propagation
calculated via the SW model is slightly faster than that obtained from the NS
computation (owing to viscous and mixing effects), but the agreement is still very
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good. The difference between the non-rotating and rotating systems is evident: the
Coriolis effects drastically limit the propagation. It is clear that as C increases the
maximum radius of propagation decreases and is attained in a shorter time.

To be specific, the SW predicted maximum rN of 1.80 and 1.60 for C = 0.6 and
0.8, respectively, is attained at t = 3.0 and 2.1 (in both cases at tC ≈ 1.6). The
corresponding NS results attain quasi-maximum radii of 1.8 and 1.6 at t = 3.0 and
2.5. By quasi-maximum we mean that the typical head of the current vanishes (this
is inferred from the shape and behaviour of the interface between the dense fluid
and the ambient); the rim of the current still advances very slowly, but its motion
seems to be dominated by viscous and diffusion effects. The fact that the NS (and
experimental) currents lack a sharp maximum radius of propagation, and actually
display a slow spread of the rim after the end of the inertia-Coriolis propagation has
been observed and reported also for non-stratified circumstances (Verzicco, Lalli &
Campana 1997; Hallworth et al. 2001). Viscous effects could be expected to be
important when the radial motion of the edge becomes slow and the height there is
small, and this explains the reason for and the trend of the discrepancy with the
inviscid SW results for t > 1.6/C, approximately. Otherwise, the agreement with the
SW model is very good concerning the radius and time of propagation of the major
motion and the influence of the dimensionless parameters.

The present configuration is subcritical from the beginning of the motion, see
figure 2. Yet we observe that the stratification waves have no significant effect on the
motion in the time intervals (or distances of propagation) considered here. Indeed,
in the two-dimensional case, see figure 7, the interaction developed at t = 12, after a
propagation of about five lock lengths, whereas in the present rotating axisymmetric
cases the maximum radius is reached at t ≈ 3 and the propagation is about one
lock length. In the axisymmetric non-rotating case some hindering of the nose shows
up in the NS computation at t = 12, but this is not a clear-cut wave effect like in
the two-dimensional counterpart. The mean thickness of the axisymmetric current
decreases like 1/rN , and at t = 10 is about one tenth of its initial value, while the
area of contact with the bottom is about ten times larger then that of the lock. This
evidently enhances the relative contribution of viscous friction, and it is difficult to
distinguish between this effect and wave hindering of the nose at these times. In any
case, the wave–head interaction in the axisymmetric current does not develop sooner
than in the two-dimensional counterpart.

The dramatic effect of rotation and the complex shape of the interface are illustrated
in figure 13. Contour lines of the density function of value φ = 0.72, obtained from
the NS simulations, are plotted at various times for the non-rotating case and for the
rotating with C = 0.6 case. At t = 2, the difference between the cases is small, but
afterwards the Coriolis effects dominate the second case. The non-rotating current
spreads out for a long time, while the height of the head is reduced gradually (the
effective Reynolds number decays like (uN/rN ) and at t =14 the viscous effects are
already important and hinder the propagation). In contrast, the bulk of the rotating
current spreads out very little and during a relatively short time only; the bulk of
dense fluid even thickens at t = 4 (this indicates a reverse motion in the centre).
Similar features have been reported for a non-stratified ambient; the stratification
enhances the differences between the non-rotating and rotating cases in the sense that
the maximum radius of propagation decreases with S.

Corresponding SW predictions are shown in figure 14. There is fair agreement
in the global behaviour, in particular concerning the effect of the rotation on the
behaviour of the current. The negative radial velocity in the rotating current at t = 3
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Figure 13. NS predictions: the interface of axisymmetric gravity currents for various times,
in (a) non-rotating and (b) rotating with C = 0.6. In both cases S = 0.72 and H = 3.

has no counterpart in the non-rotating situation. The NS simulations produce, as
expected, more complex profiles than the SW approximations, but the same type of
discrepancy was noted for the non-stratified ambient too, see Hallworth et al. (2001).

The predicted behaviour of the angular velocity in the rotating current is displayed
in figure 15. The NS simulations show that the current has a distinct signature
of negative ω during its propagation. There is, again, fair agreement with the SW
approximations. The discrepancies can be attributed to the differences in the local
height of the interface, deviations from the one-dimensional motion and the friction
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for various times, in (a) non-rotating and (b) rotating with C = 0.6. In both cases S = 0.72 and
H =3. The steady lens interface profile is shown by the dashed line.

on the boundary and interface. Again, similar discrepancies have been detected in
the non-stratified cases. The SW results predict that the expansion is completed
at t ≈ 1.6/C = 2.7. Indeed, at t = 2 and 3 we observe the typical negative angular
momentum, but at t = 4 we find a significant increase of ω in the dense fluid. This
change can be attributed to the reverse (contraction) radial motion of the current.
This reverse motion in the dense fluid is also clearly confirmed by the ascent of the
interface near the centre at t = 4, see figure 13.

The motion of the interface at the centre provides a convenient detector of the
expansion–contraction oscillations that appear in the bulk of the dense fluid. This is
illustrated in figure 16. In addition to the S =0.72 case discussed above, we also show
the lesser stratified S = 0.43 and the non-stratified S = 0 counterparts (in all cases
H = 3 and C = 0.6). In all cases, the height of the interface at the centre first decreases
and reaches a minimum at t ≈ 2.7; this corresponds to the maximum expansion which
is expected to occur, according to the SW estimate, at t ≈ 1.6/C = 2.7. Afterwards,
up and down oscillations appear, and the period of this motion depends on the value
of S. In the non-stratified case, the inertial period Tp = π/C = 5.2 (in dimensional
units, π/Ω) is expected to be relevant. The experiments of Hallworth et al. (2001)
(for a non-stratified ambient) detected oscillation with the period of TpC = 3.0. On
the other hand, the period of the internal gravity waves is 2π(h0/r0)(H/S)1/2, i.e. 3.2
for S = 0.72 and 4.1 for S = 0.43. We thus see that the oscillations in the stratified
cases display shorter periods, in qualitative agreement with the foregoing estimates.
Because of possible interactions between the waves and viscous damping, a detailed
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Figure 15. The angular velocity for C = 0.6, H = 3, S = 0.72 configuration. NS prediction
contours, and SW prediction (including SL) profiles for various times.

quantitative comparison is outside the scope of this work. However, we note that
the time interval between the first minimum and the first peak is (approximately)
1.6, 2.1 and 2.4 for S =0.72, 0.43 and 0, respectively; the first two correspond to the
half-period of the internal waves, the last one to the half-period of the inertial modes.
Moreover, the initial amplitude of the internal waves is larger, because the isopycnal
of the interface tends to return to the initial position of equilibrium h = 1 (and the
initial displacement is about 0.55 in the present cases), while the inertial oscillations
tend to be driven by the displacement from the SL equilibrium (which is about 0.15
in the present cases).

To summarize, the SW approximation for the axisymmetric rotating current in
a stratified ambient is consistent with the NS simulations for the initial period of
propagation (until Coriolis or viscous forces become dominant). The discrepancies
between the SW and NS results are similar to these obtained for the situation of a
homogeneous ambient in corresponding cases. In other words, the incorporation of
the stratification in the present SW model does not reduce the intrinsic accuracy of
this type of analysis for the cases under consideration.

Experimental verifications of these predictions are also important, in particular
that concerning the stability of the rotating current. It is known that strong three-
dimensional instabilities develop for surface gravity currents in a rotating system,
and eventually the central core breaks into smaller, non-axisymmetric structures, see
Griffiths & Linden (1981). These effects have been reproduced numerically for a non-
stratified ambient by Verzicco et al. (1997). However, there are indications that for
bottom currents and small C, as considered here, the growth of the instabilities is slow,
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or even suppressed by the Ekman layer at the bottom. In these cases the axisymmetric
flow approximates well the mean real behaviour (except for the rim of the current
where some azimuthal waves develop) (see Saunders 1973; Hallworth et al. 2001).
Unfortunately, no relevant experiments have been published for a stratified ambient.
Here, we briefly present a comparison with some preliminary results of a recent
experiment performed at the large turntable (13 m diameter) Coriolis laboratory in
Grenoble. The cylindrical lock had a radius r0 = 100 cm and typical height h0 = 30 cm,
and was filled with saltwater. The ambient saline was linearly stratified, of typical
height 80 cm, and angular velocities Ω =0.1 and 0.05 s−1 were used. The dense fluid
(current) was marked by fluorescein and tracer particles were mixed in. The experi-
ment was started by lifting the lock (by motor) in about 2 s to a position slightly
below the open surface of the ambient. Motion was marked by a vertical laser
sheet. The detailed analysis of the data is still underway (Hallworth et al. 2004). The
propagation results of one experiment are shown in figure 17, and compared with the
SW prediction. The agreement is excellent, and this is very encouraging because, in
the setting considered, the stratification was at the extreme S =1. Here, the maximum
radius is achieved in about 0.25 revolution of the system (t ≈ 8).

4. Box models
Box models have been successfully used in the investigation of homogeneous and

particle-driven currents in various configurations, as quick approximations to the
features predicted by the SW theory and to determine the essential parameter in-
fluences. Here, we extend these models to the current in a stratified ambient, 0 � S � 1,
in both two-dimensional and axisymmetric (non-rotating) configurations. The main
simplifying assumption is that the interface is a flat horizontal surface, z =hN (t).
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predictions for H = 3 and two values of S, (a) two-dimensional and (b) axisymmetric.

Consider the two-dimensional case. Volume continuity now reads hN (t) = 1/xN (t).
Substituting this relationship into the nose propagation condition (2.17), it can be
expressed as

dt =

{
Frh

1/2
N ×

[
1 − S

(
1 − 1

2

hN

H

)]1/2
}−1

dx, (4.1)

with Fr given by (2.18), which can be integrated subject to xN (0) = 1. Actually, t

is a quadrature of dx/uN (x) from 1 to xN (t) and the result is straightforward. The
difference from the homogeneous case is contributed by the term in the square
brackets in (4.1). This complicates the analytical solution (except for the S = 1 case),
but is insignificant if numerical quadrature is used. Here, we used the trapezoidal
method.

In the axisymmetric case, volume continuity now yields hN (t) = 1/r2
N (t). A similar

substitution provides t as a quadrature of dr/uN (r) from 1 to rN (t).
A comparison for typical configurations between the box model and SW predictions

of the propagation is presented in figure 18. The agreement is initially good, but
eventually the box model results lag more and more behind the SW; this trend is
more pronounced in the axisymmetric geometry. The box model captures well the
influence of the stratification represented by the parameter S. We therefore conclude
that the present model is a reliable extension of the similar box-model approximations
for homogeneous currents, and can be used, with due care, as a first and quick estimate
of the flow. The wave–nose interactions and rotation of the frame are not incorporated
in this model.

Ungarish & Huppert (1999) showed that Coriolis effects can also be incorporated in
box-model approximations, but in this case the horizontal interface must be replaced
by an inclined one, i.e. the ‘box’ is a cone cylinder. This geometry allows the current to
attain hN = 0 at a finite radius of propagation. An extension for the stratified ambient
seems feasible, but the details are not straightforward and this topic is not pursued
here.

5. Concluding remarks
The shallow-water one-layer analysis for a constant-volume gravity current released

instantaneously from behind a lock into a linearly stratified ambient, in both rect-
angular and axisymmetric (with and without rotation) geometries has been performed.
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The SW equations of motion were integrated numerically by a Lax–Wendroff scheme.
The results were compared to Navier–Stokes simulation and to laboratory experiments
of Maxworthy et al. (2002) and Hallworth et al. (2004). A simplified box-model
solution was also developed.

The one-layer SW formulation presented here is a versatile tool for the analysis of
these problems. It seems to capture well the effects of stratification on the propagation
of the gravity current, at least for the initial period of propagation. The solution by
the Lax–Wendroff scheme is relatively easy to program, and the results are obtained
in several CPU seconds. This is in contrast with the Navier–Stokes finite-difference
solver which requires a considerable programming effort, and long computations and
data processing on powerful computers.

The present shallow-water results do not reproduce the internal gravity waves
and their possible interaction with the motion of the head. When the nose velocity is
subcritical (i.e. smaller than that of the mode-one wave), this interaction will eventually
hinder the propagation significantly below the SW predictions. However, we showed
that this interaction occurs only after the nose has propagated two wavelengths
from the lock, and that the SW results describe accurately the propagation in this
period of motion. We developed simple yet fairly accurate formulae for predicting
the current type (sub- or supercritical) for a given configuration, and the position
where wave–nose interaction becomes important. The Navier–Stokes solver predicted
correctly the head–wave interactions in the tested cases. Whether and how these
internal gravity waves can be incorporated in the SW formulation is a topic for future
work. Our idea is to regard the present SW current as an ‘obstacle’ encountered by
the stratified media to analyse, and subsequently superpose, the resulting waves. The
intrinsic time-dependent nature of this problem makes it a challenge.

Special attention was given to axisymmetric configurations, in particular in rotating
frames, for which no previous results are available. Again, the SW theory provides
satisfactory answers and insights. There are indications that the internal gravity waves
are less important in this geometry because the current decays with the square of the
radius and is already slow when the interaction occurs.

The effects of stratification on axisymmetric rotating gravity currents have been
elucidated. This provides a useful extension of the classical Rossby adjustment
axisymmetric problem to the stratified ambient circumstances. We showed that steady-
state lens structures are feasible, as in the homogeneous case, and presented the
pertinent approximate and numerical results that extend the classical S = 0 results to
0 � S � 1. For the maximal stratification S =1 case, the lens interface has a singularity
of infinite slope at the rim, but the angular velocity remains regular. In this case,
the aspect ratio is in agreement with that of a lens created by slow injection of
non-rotating fluid at a neutral level (Gill 1981; Griffiths & Linden 1981; Hedstrom &
Armi 1988). For the cases considered in our study, the energy of the lens is considerably
smaller than in the initial state (i.e. the cylinder of dense fluid in the lock). The
time-dependent rotating current released from behind a lock propagates by about
30% further than the radius predicted by the steady lens solution. This indicates
some oscillatory adjustment motion and perhaps instabilities by which the initial
energy excess is dissipated. The study of Stegner, Bouruet-Aubertot & Pichon (2004)
for the homogeneous ambient provides some clues to the expected behaviour; the
detailed investigation of the stratified counterpart is a topic for future work, for
which the present results will provide the essential reference states. In general, as
stratification increases, the relative importance of the Coriolis effects increases. This
has been expressed by an effective dimensionless Coriolis parameter, Ce, which seems
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to capture well the combined effects of rotation and stratification on the maximal
radius of propagation. It is, however, remarkable that for any value of S, the maximum
radius of propagation is attained in about 0.3 revolutions of the system.

The SW results for the axisymmetric and rotating currents are in good agreement
with Navier–Stokes simulations and recent experimental data (preliminary results),
which provides credence to the methodology and encouragement for future work.
We hope that the progress in theory will stimulate more research, in particular
experimental verifications, on this fascinating topic.
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Appendix. Navier–Stokes numerical simulation (NS) approach
Here we present some details of the NS formulation and finite-difference solution.

We focus attention on the more complex axially symmetric rotating configuration;
the two-dimensional case follows by a straightforward modification.

We introduce the dimensionless density function φ(r, t) defined by

ρ(r, t) = ρo[1 + εφ(r, t)], (A 1)

where, again, ρo is the dimensional density of the ambient at the top open surface.
We expect 0 � φ � 1, with φ = 1 in the ‘pure’ dense fluid domain. In the ambient, φ

varies between 0 and S.
The dimensionless governing equations are as follows.
(i) Continuity of volume

∇ · v = 0. (A 2)

(ii) Momentum balance in the radial (horizontal), azimuthal and axial (vertical)
directions

Du

Dt
− 2C2v − C2 v2

r
=

1

1 + εφ

[
−∂p

∂r
+ φεC2r +

1

Re
∇2

cu

]
, (A 3)

Dv

Dt
+

uv

r
+ 2u =

1

1 + εφ

[
1

Re
∇2

cv

]
, (A 4)

(
h0

r0

)2
Dw

Dt
=

1

1 + εφ

[
−∂p

∂z
− φ +

1

Re

(
h0

r0

)2

∇2w

]
. (A 5)

(iii) Dense component transport

Dφ

Dt
= D∇2φ, (A 6)

where we have used the notations

∇2f =
1

r

∂

∂r
r
∂f

∂r
+

(
h0

r0

)−2
∂2f

∂z2
, ∇2

cf = ∇2f − f

r2
. (A 7)
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The relevant dimensionless parameters in these equation, in addition to the reduced
density difference ε and the initial aspect ratio h0/r0, are the Coriolis to inertia ratio
parameter C, see (3.4), the Reynolds number

Re = (g′h0)
1/2r0ρo/µ, (A 8)

and the dimensionless diffusion coefficient D = 1/Pe= 1/(σRe), where Pe and σ are
the Péclet and Schmidt numbers, and µ is the dynamic viscosity, assumed constant
in the flow field.

We are interested in flows with large values of Re, moderately small C, small ε and
very small D. The typical physical value of D is negligibly small (recall that σ � 1 for
saline solutions in water), but here a non-vanishing D is used as an artificial diffusion
coefficient for numerical smoothing.

The Ekman number can be defined in terms of the previous parameters as

E =
µ

Ωh2
0ρo

=

[ (
h0

r0

)2

CRe

]−1

(A 9)

and is assumed small; E1/2 is the typical (dimensionless) thickness of the rotational
horizontal viscous layers which develop after about one revolution of the system.

The parameter (h0/r0) represents the ‘shallowness’ of the current, and is assumed
small. In the axially symmetric lock-release problem simulated here, two more
geometric parameters appear: the initial ratio of the total height of the ambient
fluid to the height of the dense fluid in the lock (or the dimensionless total height
of the fluids), H , and the initial length ratio (or the dimensionless radius of the
container), rw. The former may assume various values (but evidently must be at least
1, and typically is large), and the latter is assumed sufficiently large not to interfere
with the motion of the current for the time period of interest.

The initial conditions at t = 0 are

v = 0 (0 � r � rw, 0 � z � H ), (A 10)

φ =

{
1 (0 � r � 1, 0 � z � 1),

S(1 − z/H ) elsewhere.
(A 11)

The boundary conditions for t � 0 are

v = 0 (on the bottom and sidewalls), (A 12)

w = 0 and no shear (z = H ), (A 13)

u = 0 and regularity (r = 0), (A 14)

and

n̂ · ∇φ = 0 (on all boundaries). (A 15)

These conditions contain some simplifications, in particular (A 13) which is the
frictionless ‘rigid lid’ approximation for the free surface. The initial interfaces (between
the ambient and dense fluids, and also the free surface of the ambient fluid) deviate
from the horizontal by an amount εC2r2/2. The free surface will also have an
additional O(ε) deformation during the flow. The neglect of these departures from
the horizontal is justified for the small values of ε and C2 used in this investigation.
In addition, we assume that the lock is removed instantaneously and without any
perturbation to the fluid. (In real situations, such as laboratory experiments, the lock
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lifting is expected to introduce a small delay in the initial motion, which is a slight
source of discrepancy between theory and measurements.)

The foregoing system of equations and boundary conditions, subject to the axial-
symmetry assumption, is solved by a time-marching-finite-difference discretization
method. The details are described in Hallworth et al. (2001).

Briefly, the method is based on forward-time discretization of the velocity
components, with implicit Coriolis and pressure terms. The continuity equation for
the new velocity field yields an elliptic equation for the new pressure field.

The spatial discretization is performed on a staggered grid with il radial intervals
and j l axial intervals, as sketched in figure 19. The variables p and φ are defined
at the mid-cell position denoted (i, j ); u and v are both defined at the positions
(i ± 1/2, j ) (to allow straightforward implementation of the Coriolis coupling) and w

is defined at (i, j ±1/2). Both the r and z grid coordinates are stretched by the simple
mapping functions r(R) and z(Z). The grids Ri = (i + 1/2)δR and Zj = (j + 1/2)δZ
are uniform in the domain (0 � R � rw, 0 � Z � H ) with intervals δR = rw/il, and
δZ =H/jl. The truncation error is O(δR2 + δZ2). Dummy cells were added for
easy implementation of boundary conditions. An illustration of the finite-difference
approximation approach is(

1

r

∂

∂r
r

1

1 + εφ

∂p

∂r

)
ri ,zj

≈ 1

ri

1

r ′
i δR

(
Yi+1/2,j − Yi−1/2,j

)
, (A 16)

where

Yi+1/2,j = ri+1/2

1

1 + εφi+1/2,j

1

r ′
i+1/2δR

(pi+1,j − pi,j ) (A 17)

and r ′
i is the derivative of r(R) at Ri (substituting i − 1 in place of i yields Yi−1/2,j ).

This method of central differences was employed for all terms, except for the
advection terms in the transport equation for φ, (A 6). The interface between the pure
and the dense fluids is represented by a sharp gradient in φ which may causes strong
oscillations in numerical finite-difference schemes. To avoid this spurious effect, in
the solution of (A 6) we implemented MacCormack’s explicit method, see Anderson,
Tannehill & Pletcher (1984), i.e. we used at each time step a predictor–corrector
relationship which combines forward and backward differences of the advection
terms in two half-steps. Comparisons of computed results confirmed the smoothing
effect of this approach.

The combination of the foregoing time and space discretization are the core of
the computer code used in this work. For each time step, the discretized form of the
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Poisson equation for the ‘new’ pressure variables p+
i,j , 1 � i � il, 1 � j � j l must be

solved. This yields, after the implementation of the boundary conditions, a block tri-
diagonal linear system which was solved by a bi-conjugate gradient iterative algorithm,
see Press et al. (1992). The computations use real-8 variables. The typical grid has
il = 320 constant radial intervals and j l = 200 slightly stretched axial intervals and
the typical time step was δt =10−3.

The choice of the numerical grid parameters was motivated by the compromise
between accuracy and computational limitations. Essentially, the mesh intervals are
considerably smaller than the expected typical corresponding geometrical dimensions
of the simulated current (e.g. the length of the ‘head’, the average thickness, and even
the Ekman-layer thickness (estimated as 3E1/2). The outer wall is far enough from
the current to avoid perturbations from the reflected mode-one internal gravity wave
during the simulated time interval. We therefore expect that the numerical results
provide an acceptable simulation of an observable gravity-current process, at least
during the initial period. Eventually, when the current becomes thin (say, of about 10
axial intervals) and the interface is very irregular, the numerical errors may become
significant and even dominant.

The two-dimensional version of the foregoing formulation in a rectangular non-
rotating x,z-coordinate system is obtained as follows: (a) set v ≡ 0, C = 0, and replace
r with x; (b) delete the curvature terms; and (c) change the regularity boundary
condition on the axis, (A 14), to w =0. This case was presented in HU (the scaling
here is slightly different).
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