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Observations and measurements are reported on the patterns and rates of growth in
time of the double-diffusive cells that form adjacent to a cooled sidewall in a salt-
stratified environment. Fluid near the wall is cooled and sinks a distance h where
its density, increased by cooling, matches that of the salt-stratified ambient. The
fluid separates from the wall, moving outwards as a cool, fresher layer beneath a
warmer, more saline region. This leads to growing double-diffusive cells that advance
outward at a rate, found by dimensional reasoning, to initially be proportional to
N0h, where N0 is the initial buoyancy frequency in the ambient and h is the intrusion’s
vertical thickness. Near the wall at the top of each cell, the sinking colder fluid is
continually replaced by selective withdrawal from the ambient ‘far field’. The fluid
being withdrawn from the ambient is always the least dense in the cell, and as
the experiment proceeds, the straining of the fluid in the ambient region reduces
the stratification. The vertical density gradient inside the cell relaxes by continuous
hydrostatic adjustment (CHA) to match the ambient and the speed of advance reduces.
Measurements of the rate of advance of the cell nose were made in tanks of different
lengths L with a range of initial salinity gradients and temperature differences. A
simple two-dimensional model is developed to describe the rate of extension of the
cells and the internal density gradient as functions of time in which the tank length
appears as an important variable. This effect does not seem to have been recognized
previously. The rates of evolution in each run involve the time scale τ = L/(CHhN0),
where CH ≈ 10−2 is a heat transfer coefficient. The mean length of the cells l̄(t)and
the internal buoyancy frequency as functions of time are given by

l̄(t)/L = t/τ − (t/2τ )2, N = N0(1 − t/2τ ).

Inversion of the first of these expressions results in t/τ = 2 − 2{1 − (l̄(t)/L)}1/2 from
which a time scale τ−1 can be estimated. The measurements from individual runs
when plotted in this way generally produce accurate straight lines as the model
predicts, from which CH is found. This should be approximately the same for each
run; the mean over all runs was found to be 9.3 × 10−3 with standard deviation
2.4 × 10−3. The velocity scale of the intrusions at the beginning of an experiment is of
order 10−2 cm s−1, for typical parameters of water at temperature 20 ◦C, cooled wall
temperature of 0 ◦C and mean salinity of 5%.
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1. Introduction
Double-diffusive convection arises when solutions with vertical gradients of two

(or more) components having different molecular diffusivities (salt and heat, or
sugar and salt for example) drive convective motions in a fluid that is overall
gravitationally stable. The laboratory experiment of Ruddick & Turner (1979) on the
growth and evolution of double-diffusive intrusions from an initially sharp vertical
front between balanced gradients of salt and sugar provide a most beautiful example of
complex, self-organizing fluid structures. The interplay between the double-diffusive
transport inside each of a stack of cells and the internal circulation pattern, and
the communication between cell pairs across diffusive interfaces is easy to admire
but difficult to understand quantitatively. The self-organizing character of this flow
impedes our efforts to derive a quantitative description of its overall dynamics–in
seeking to understand how it works, how does one begin?

Some oceanic lateral intrusions found across thermohaline fronts in the vicinity of
meso-scale eddies appear to be driven by density gradients maintained by double-
diffusive processes of this kind (Ruddick 1992). From their laboratory measurements,
Ruddick & Turner established the vertical scale of the cells as gβ(�S)/N2

0 , where
β(�S) is the relative density contrast across the front due to salinity and N0 the initial
overall buoyancy frequency. Later, Ruddick, Phillips & Turner (1999) obtained some
additional, but fragmentary, relations on the mean circulation velocity and finger flux
ratio, but did not establish further quantitative relations.

Conceptually simpler experiments have been conducted by Thorpe, Hutt & Soulsby
(1969), Chen, Briggs & Wirtz (1971), Huppert & Turner (1980), Chan, Chen & Chen
(2002) and others. These involve a region of stably stratified salt solution at initially
constant temperature, with heating or cooling then applied to one side, and this
provides a clearly identifiable and controllable driving force for the motion. In each,
a stack of cellular layers was found to develop adjacent to the heated or cooled wall,
remaining generally constant in vertical thickness and extending outwards in time.
In the case of a cooled wall, an element of fluid, initially at the ambient salinity and
temperature, is cooled by the adjacent wall and its density increases by the amount
�ρT ≈ ρ0α�T , where α is the expansion coefficient and �T the temperature difference
between the wall and the fluid. Since the diffusivity of heat is much greater than that
of salt, a cooled fluid element can be considered to retain its salinity, and it is then
denser than the ambient fluid at the same level. As it sinks down the wall, its (negative)
buoyancy decreases relative to the stratified ambient at the same level until the two
are matched at a distance h below, where

�ρT ≈
(

−∂ρ

∂z

)
0

h =
ρ0N

2
0 h

g
.

At this level, the colder, fresher fluid near the cooled wall is neutrally buoyant relative
to the ambient at the same level, so that it moves out, approximately horizontally,
and the balance above leads to the vertical height scale for the cells

h ≈ �ρT

(−∂ρ/∂z)0
=

g′

N2
0

(1.1)

where g′ = g�ρ/ρ0 ≈ gα�T . This vertical scale was confirmed experimentally by Chen
et al. (1971) and by Huppert & Turner (1980) for Rayleigh numbers up to 109.



The growth and structure of double-diffusive cells 349

25

20

15

10

5

0 5 10 15 20

Figure 1. A shadowgraph image of the developing cells after 7 min. The larger grid squares
are 5 cm on a side. Variations in refractive index resulting from salinity variations, which
diffuse only slowly, produce stronger images than do more diffuse temperature variations. The
inclined lines indicate salinity boundaries, with cooler, fresher water above more saline ambient
water.

The original position of the fluid near the wall must be re-occupied by uncooled
fluid drawn from the stably stratified environment at the same general level, as in the
‘selective withdrawal’ from a stratified reservoir, described by Imberger, Thompson &
Fandry (1976). The subsiding, chilled fluid near the wall reaches its new equilibrium
level and moves outwards, essentially horizontally but rising a little as it begins to
warm by thermal diffusion from the fluid below. When the wall is heated, rather
than cooled, the sense of the circulation in each cell is reversed. This much is clear
from the Huppert–Turner experiment – the heat transfer from the sidewall is the
engine that drives the circulation. Figure 1 is a shadowgraph image of the layers in a
typical experiment at the stage where the double-diffusive cells have formed and are
beginning to extend outward.

The fact that there is a clear, controllable energy source in these experiments
provides a starting point for a simple but quantitative description of the physical
balances involved and the flow that appears. In this paper, we describe more extensive
and detailed observations of the flow pattern, with measurements of the growth of



350 L. Malki-Epshtein, O. M. Phillips and H. E. Huppert

the cells in terms of the ambient initial stratification and the wall cooling. During the
course of these measurements, we discovered that the rate of growth of the cells was
not constant but decreased monotonically during the experiment. This is illustrated in
figure 2(a), which shows experimental data for the average length of the intrusions as
a function of time, for a single experiment partitioned into two parts by positioning
the cooling plate within the tank. This resulted in two identical experimental runs in
the parameters of temperature difference and stratification, but with different tank
lengths, one 48 and the other 147 cm long. After about an hour, the intrusions in
the short part have begun to slow noticeably, compared with those on the long side.
Therefore, the growth of the intrusions is found to depend on the length of the tank.

We further realized that as each experiment proceeded in a tank of necessarily finite
length, the entrainment of fluid from the ambient ‘far field’ into each cell produced, in
the ambient region, an increasingly stepped density profile from the initially uniform
‘far field’ stratification. Thinner layers of larger density gradient at the heights of selec-
tive withdrawal separated deeper layers of reduced gradient over levels corresponding
to the double-diffusive cells. As the experiment proceeded, these reduced gradients
(and consequently the buoyancy frequency N) continued to reduce further, as did
the rate of growth of the cells themselves, as shown in figure 2(a–c). The modification
of ‘far field’ conditions was observed by particle tracking to commence at the beginning
of the experiment and continue throughout as the cell noses approach the far end of
the tank. The size of the reservoir, the experimental tank, dictates how quickly this
density structure changes and, consequently, how fast the intrusions propagate. This
effect of finite tank length in experiments on spreading double-diffusive cells does not
seem to have been recognized explicitly before.

The relation between the initial growth rate of the cells and the two external quan-
tities: the temperature difference between the fluid and the wall, and the internal
density gradient, is evident from dimensional reasoning. Let us assume that the cell
growth is governed by the local heat transfer and cell dynamics, in which the cell
height h (which is a function of the temperature difference) and internal stratification
parameter N0 are the only relevant length and (inverse) time scales. Dimensional
reasoning then indicates that the only velocity scale is hN0, alternatively expressed as
α�T (gρ0)

1/2(dρ/dz)−1/2. The nose velocity of the cells is found experimentally to be
consistent with this scale, with a constant of proportionality of order 10−2, but it is
also found to decrease with time.

A more detailed but still simple model developed below contains only one experi-
mentally determined parameter, in essence a heat transfer coefficient, and this will
be found to provide the factor of proportionality 10−2. The predictions of the model
are found to compare well not only with the measurements of cell length, but also
with our observations of the evolution of the density field from its initially smooth
gradient towards a series of steps with thin regions of high gradient separating the
cells. In the cells themselves, and in the ambient regions at the same level, the density
gradient decreases continuously as the cells extend across the tank. These observations
will be discussed in a subsequent publication, and are also described in detail in
Malki-Epshtein (2005).

2. Experimental methods
Three different tanks were used in the experiments, all 7.5 cm wide and made of

Perspex, 1.1 cm thick, with internal lengths and depths of 50 cm × 30 cm, 200 cm ×
22.3 cm and 232.5 cm × 40 cm. Most experiments were insulated using polystyrene
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Figure 2. (a) Length as a function of time for run 19 (see table 1), which was partitioned by
the double-sided cooling plate into two tanks of length 48 and 147 cm. Both tanks have exactly
the same initial stratification and temperature difference, yet the growth in time of the average
length of the layers is clearly different. Initially both sides developed alike, having a comparable
number of layers, positioned at comparable heights, and advancing with comparable initial
velocities. As time progressed, the intrusions diverged and propagated at different speeds.
(b) The dimensionless mean length of the cells, l(t)/L, as a function of time in run 1, showing
the decrease in time of the growth rate. (c) The same data from run 1 are plotted as in equation
(4.11) with y = 2 − 2(1 − l̄(t)/L)1/2 plotted against time. The time scale of the cell growth is the
inverse slope of the best-fit line, in this instance 4250 s.
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L T0 �T Ra N0 h̄ τ v0 CH

Expt. (cm) (◦C) (◦C) (× 105) (s−1) (cm) (s) (× 10−2 cm s−1) (× 10−3)

1 48.2 20.3 20.3 7 1.47 1.1 4250 1.1 0.7
3 48.2 20 20.3 40 0.85 2.6 1810 2.7 1.2
4 48.2 20.9 26 120 0.83 2.6 1760 2.7 1.3
8 48.2 20.5 20.3 20 1.18 1.5 2250 2.1 1.2
15 48.2 22 15 40 0.75 2.8 1980 2.4 1.2
18 48.2 21.7 21.7 50 0.89 2 2660 1.8 1.0
19L 48.2 20.1 20.1 7 1.12 1.4 3130 1.5 1.0
19R 147 20.1 20.1 7 1.12 1.6 10790 1.4 0.8
21 232.5 17.5 26 10 1.21 1.4 23140 1.0 0.6
22 232.5 18 18 9 0.91 1.7 23360 1.0 0.6
23R 116.5 19.3 18 20 0.89 1.6 8800 1.3 0.9
23L 116.5 19.3 18 20 0.89 1.6 8980 1.3 0.9

Table 1. Summary of data on cell growth. The columns are, respectively: experiment number;
tank length; initial water temperature; temperature difference between water and cooling plate;
Rayleigh number; initial buoyancy frequency; mean vertical thickness of the cells; time scale τ
of the experiment found from the data plotted as in (4.11); initial velocity scale inferred from
τ ; and heat transfer coefficient inferred from τ .

blocks, but no qualitative differences in the results were found in those that were not
insulated, possibly because of the already thick Perspex walls and the generally modest
temperature differences used. For each run, an initially uniform salt stratification was
produced with a conventional double-bucket system and the gradient was measured
before the start of each experiment using a refractometer with samples extracted
at 2 cm vertical intervals by a fine syringe. A 1.8 cm wide copper plate cooled by
chilled water circulating through it was installed in the tank, usually at one end. A
few experiments were conducted with the (double sided) cooling plate at an interior
cross-section. Shadowgraph imagery was used routinely.

Most experiments were carried out in the smaller 50 cm × 30 cm tank. In a normal
run, within one or two minutes of the initiation of cold-water flow into the cooling
plate, the adjacent downwards flow could be seen to separate and move away from
the wall, forming the bottom of the outwardly growing cell. The nose of each cell
and the salinity contrast at the bottom of the developing doubly-diffusive region were
usually very clear after the first five minutes or so, and the progression of the cell
nose as it advanced was measured at frequent intervals. In the smaller tank, the nose
would reach the endwall after a time of order one hour, but in the longer tanks,
measurements were continued for a couple of hours, by which time the cell noses had
crossed about one-third of the tank. The vertical thickness h of the individual layers
was measured several times during each run; it frequently varied among the layers
by up to 15%, but the means remained more stable. In some runs, injected particles
were tracked or potassium permanganate crystals were dropped through the cells to
delineate qualitatively the nature of the internal circulation. In all, 12 satisfactory
experimental runs were made with the parameters specified in table 1. The duration
over which the cell evolution was measured ranged from 45 to 120 min, the initial
density gradients ρ−1

0 (∂ρ/∂z) ranged between (0.58 and 2.34) × 10−3 cm−1 (N0 ≈ 0.75
and 1.52 s−1), ambient-to-cooling plate temperature differences from 10 to 26 ◦C and
tank lengths as given above.



The growth and structure of double-diffusive cells 353

3. General flow characteristics
From the flow visualizations mentioned above, we confirm that the general structure

of the flow involves a stack of largely uncoupled cells, separated vertically by the
selective withdrawal layers mentioned earlier, each driven by the sinking of cooled,
denser water in an unsteady but low-Reynolds-number layer adjacent to the cold
plate. Eddies with scales of order 0.5–1.0 cm but containing little fine structure, roll
randomly down the plate to the base of each cell, then separate from the wall and
move generally outwards. Particularly in the first few minutes of the experiment, some
cooled fluid could be seen to rebound somewhat before settling. The downward volume
flux is supplied by ‘selective withdrawal’ inflow from the ambient region towards the
plate in a relatively thin layer at the top of each cell, which appears very clearly in
figure 3(a, b). Both are photographs taken at advanced stages of an experiment run in
the 232 cm tank, where the cooled wall is on the left and the intrusions are advancing
towards the right. Earlier in this experimental run potassium permanganate crystals
had been dropped both through the developing intrusions and at the far end of the
tank. In figure 3(a) the potassium permanganate has dispersed through the entire
mixing region of each cell. A second dye streak was injected a few minutes before this
photograph was taken. Between each pair of cells is the clear selective withdrawal layer
in which unstained fluid moves inwards from the far field, its boundaries remaining
sharp because of the smallness of the salt diffusivity (ca. 1.3 × 10−5 cm2 s−1 at 20 ◦C,
about 80 times smaller than that of heat, 1.47 × 10−3 cm2 s−1, and 600 times smaller
than the diffusivity of vorticity, i.e. the kinematic viscosity, ca. 10−2 cm2 s−1). The level
of the withdrawal layer can be seen in figure 3(a) to drop slightly as the fluid being
withdrawn cools by thermal diffusion from the cells above and below. In figure 3(b)
the intrusions can be seen advancing from the left. The initially straight vertical dye
streak at the far end of the tank remains sharp due to virtually no diffusion or mixing
in this region. The dye streak has been altered by the horizontal flow, which had
transported the dye along with the fluid towards the intrusions in the withdrawal layer
and away from them ahead of the cells. The resulting periodic structure can be seen,
at the bottom of the photograph, to be consistent with the positions of the intrusions
(being just out of phase). Some intrusions in the middle region were less developed
and had advanced much less than the others, and correspondingly the ambient flow
in that region was weaker and resulted in less deformation of the dye streak.

In the boundary layer along the cooling plate, the volume flux in each cell is
downward between what are essentially stagnation points at the levels of selective
withdrawal. As the cell volume increases and displaces ambient fluid, since the tank
length is finite continuity requires a general upward drift at the far end of the tank to
compensate. The internal Froude number in these experiments U/Nh ≈ 10−2 is very
small, so that the ambient density distribution, though changing slowly as a result
of the withdrawal, remains close to hydrostatic equilibrium, with less-saline fluid at
the top level of each cell. It is important to remember that the fluid being selectively
withdrawn in each cell from the ambient is always the least-saline water in that cell;
it sinks down the wall because here it is also the coldest. In a typical experiment, the
observed withdrawal layer thickness was about one third the vertical height of an
individual cell. Imberger et al. (1976) show in a similar low-Froude-number flow, that
the withdrawal layer is steady with thickness of order LG−1/6

r , where Gr = N2L4/ν2, is
the Grashof number. Applying these results to our study, with tank lengths between
0.5 and 2 m and a Grashof number of about 4 × 1012, suggests a vertical thickness of
the withdrawal layer at the far end of about 0.8 cm, which is in accordance with our
observations.
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Figure 3. The cell pattern and ambient region flow in the 232 cm tank at an advanced stage
of growth, where the cooled wall is on the left and the intrusions are advancing to the right.
Earlier in the run, potassium permanganate crystals were dropped at the far end of the tank,
and through the stack of cells where the dye has diffused throughout the double-diffusive
regions. (a) The region of the intrusions. A second dye streak was injected a few minutes
before this photograph was taken and has become zig-zagged in the flow. Between each pair
of cells, clear water is being selectively withdrawn from the ambient, and is moving to the left
towards the cooling plate. Note the absence of mixing in this part of the flow, and the gradually
decreasing level of fluid being withdrawn as it becomes cooler (by molecular conduction from
above and below) and denser. The ticks identify the locations of the cell noses at various earlier
times in the experiment. (b) The flow pattern at the far end of the tank, and the intrusions
can be seen advancing from the left. The initially straight vertical dye streak at the far end of
the tank remains sharp due to virtually no diffusion or mixing in this region. The dye streak
has been altered by the horizontal flow, which had transported the dye along with the fluid
towards the intrusions in the withdrawal layer and away from them ahead of the cells. The
resulting periodic structure can be seen, at the bottom of the photograph, to be consistent
with the positions of the intrusions (being just out of phase).
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When the boundary layer fluid separates and moves away from the wall, it is
colder but fresher than its surroundings above and below. Its salinity contrast with
the fluid just below produces the dark lines in figure 1, sloping upwards as the fluid
warms by thermal diffusion while remaining relatively fresh, since the salt diffusivity
is relatively so small. The lower side of this flow, with cool fresher water above warm
more-saline water is locally stable; the salinity contrast remains sharp and is visible
clearly in the shadowgraph imagery. The upper side, with warm saline water above
cool fresher water is unstable, producing double-diffusive fingers. In the experiment,
it was difficult to discern any long steady fresher-water fingers that might have been
present, but observations with small injected particles showed that there was a general
upwards drift from the discharge layer with rather irregular small-scale structures
superimposed. A structure of steady double-diffusive fresher sheets or fingers rising
through a stable temperature gradient has been shown by Howard & Veronis (1992)
to be dynamically unstable, and by Knoblock, Proctor & Weiss (1992) to degenerate
into chaos. On the other hand, in a flow like ours but with a heated (rather than
cooled) sidewall, Chan et al. (2002) have used particle imaging velocimetry to identify
secondary counter-rotating mean vortices in the layers, with velocities of order half
that of the overall circulation. These prior results are consistent with our inability
to discern the more regular finger structure usually observed in convecting interfaces
(see e.g. Shirtcliffe & Turner 1970).

The circulation inside each cell is fed by the ‘processing’ of an ever-increasing
volume of fluid drawn into the boundary layer and cooled, so that the cell volume
and length continually increase with time, albeit at a decreasing rate as the experiment
proceeds. In kinematical terms, when fresh-water fingers infiltrate up into a stratified
region that is at rest and connected with a large stratified ambient, the water being
displaced tends to move away horizontally. Fluid in the fingers moves vertically
upward, but the cold, fresher layer supplying them from below is a barrier to any
net vertical volume flux of the interstitial fluid among the fingers. In laboratory
coordinates, then, the macroscopic Eulerian mean velocity, averaged over a domain
large compared to the finger scale yet small compared to the cell scale, is upward
from the fresher layer and outward, away from the cooled wall. In terms of the overall
circulation, the outward flow compensates for the fluid being extracted from the ‘far
field’ near the top of the cell in the selective withdrawal.

It has already been pointed out that the internal Froude number is very small,
and the mean overall density distribution is very close to hydrostatic equilibrium, or
‘horizontally compensated’ in oceanographic terms (Rudnick & Mattin 2002). This
constraint provides an important tool for the interpretation of these observations.
In general, a sudden perturbation from equilibrium produces restoring forces that
move the system back towards equilibrium in a time scale N−1. But in a double-
diffusive situation, the temperature and salinity of a macroscopic fluid element (and
consequently its density) may vary over time scales large compared than N−1 as a
result of the differential fluxes of heat and salt, whether or not macroscopic thermal
conduction is neglected. As the density of fluid elements change, their vertical location
adjusts as they drift to maintain overall hydrostatic equilibrium. This produces a
gradual and continuing evolution of the density field, a process Ruddick et al. (1999)
call ‘continuous hydrostatic adjustment’ (CHA).

Although the field as a whole is very close to hydrostatic adjustment, local depar-
tures from hydrostatic equilibrium accompany the sloping isohalines that produce the
dark lines in figure 1 and the downwards sloping withdrawal layers in figure 3(a).
These are sites of vorticity generation. The balance of mean vorticity in a
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two-dimensional flow is governed by (Phillips 1977)
dω

dt
= −ρ−2 ∇p × ∇ρ + ν∇2ω (3.1a)

= ρ−1g(∂ρ/∂x) + ν∇2ω, (3.1b)

where the rate of generation of vorticity is represented by the term involving the
horizontal density gradient (the ‘baroclinic effect’ in meteorology) where isopycnals
slope relative to the horizontal. In the experiments, the salinity jump sloping upward
to the right in figure 1 must be a local source of clockwise vorticity, while in the
selective withdrawal layer the nearly horizontal isopycnals must converge towards
the cooling plate as the flow accelerates. Outside these structures, the smallness of
the internal Froude number implies that macroscopic motions produced by double-
diffusive fluxes are the result of CHA. This ensures that the isopycnals are essentially
horizontal and that, except for the molecular diffusion of vorticity (mainly horizontal
shear), the mean drift flow field is irrotational, or pure strain. The qualification is
important in these experiments with cell thickness h of order 3 cm and viscosity
ν of 10−2 cm2 s−1, since the vorticity diffusion time h2/2ν is less than 10 min, short
compared with the duration of the experiment. The distribution of mean vorticity
in the experiment (cf. the dye traces in figure 3) is then largely a consequence of
local generation and cancellation of vorticity of opposite signs at different levels, with
vertical diffusion between them. In the ambient or outside region, flow is induced by
the extension of the cooled convecting finger region but there is no mixing, so that
the isopycnals move with the fluid. As the ‘finger region’ extends towards the far tank
wall (not necessarily uniformly over the height of the cell), the horizontal convergence
in the outside region is balanced by vertical divergence between the bottom of the
cell and the selective withdrawal region at the top.

4. The elongation of the cells and evolution of the density field
The qualitative observations above provide the bases for a simple but quantitative

two-dimensional model whose results concerning the rates of cell growth and the
evolution of the density and temperature fields can be compared with those from the
experiment. It has three primary ingredients.

The first is the cooling-layer heat balance. Let q represent the volume flux withdrawn
from the ambient region and circulated through the cooled layer along the boundary
and let δT be its temperature decrease. The rate of heat loss per unit width of a cell,
that is advected away by the volume flux q , i.e. ρcP qδT , is usually parameterized
by the heat transfer formula C ′

HρcP w�T h, where w is the mean velocity down the
surface in the cooling layer, �T the maintained temperature difference between the
ambient fluid and the cold wall, and cp the specific heat. The heat transfer coefficient
C ′

H in turbulent free convection at relatively low Reynolds numbers is generally
of order 10−2 (Goldstein 1938, Ch. 15). With a smooth surface, the temperature
profile in the thermal conduction layer adjacent to the wall is very steep, so that
the average temperature decrease δT of the circulating, more turbulent fluid, though
proportional to the total difference across the layer, is in magnitude only about half
of it. Accordingly,

qδT = C ′
Hw�T h ∝ C ′

HwδT h,

and the volume flux in the selective withdrawal layer and down the wall boundary
layer

q ∝ C ′
Hwh. (4.1)
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Note that the smallness of C ′
H implies that the mean velocity w down the cooled wall

and the cell height h are large compared respectively with the fluid velocity in selective
withdrawal and the thickness of the withdrawal layer. Our visual observations were
consistent with this.

Secondly, consider the balance of vertical momentum down the cooled layer. This
contains a driving buoyancy term gαδT ∼ N2h, an inertial/Reynolds stress term of
order w2/h and a viscous term of order νw/δ2

x , where δx is the cooled layer thickness.
In the experiments, N, h and w in c.g.s. units are all of order unity, so that the viscous
term would be significant in the balance only if the layer thickness were of order
1mm or less, much smaller than observed. Consequently we must have N2h ∝ w2/h,
and

w ∝ Nh. (4.2)

A simple physical interpretation of this expression can be given in terms of the
recovery rate of a disturbance back to hydrostatic equilibrium. Fluid elements in the
selective withdrawal layer have a density that is in equilibrium at the top of the cell.
On approaching the wall, they are chilled and their density decreases so that their
new equilibrium level is a distance h below, as Huppert & Turner (1980) showed. The
time scale for recovery of their hydrostatic equilibrium is N−1 (the effect of laminar or
turbulent viscosity being to damp any oscillation) so that the vertical velocity w down
the cooled wall is the distance h divided by this time scale, which again gives (4.2).

The proportionality statements (4.1) and (4.2) can now be combined, and at the
same time, we incorporate the O(1) constants of proportionality into C ′

H ; writing
the resulting modified heat transfer coefficient as CH , whose magnitude is to be
determined experimentally (though we still expect it to be O(10−2)), we obtain

q = CHNh2. (4.3)

Finally, we consider the kinematics of deformation of the outer ambient fluid by
the extending finger region. It was pointed out earlier that the horizontal convergence
of the linearly stratified ambient region is balanced by vertical divergence between
the bottom of the cell and the selective withdrawal layer at the top. Although the
horizontal convergence in the ambient may not be uniform across the depth of the
cell as the active double-diffusive region deforms, the fluid being selectively withdrawn
at the top is always from the least-dense layer in the ambient region of that cell.

Suppose that, at some height z above the base of the cell, the double-diffusive region
extends a distance l(z, t) from the cooling wall, beyond which the ambient fluid is salt-
stratified and essentially non-diffusive. In this latter region, consider the deformation
following the motion of the horizontal incremental layer of length L − l(z, t) and
volume dV = {L − l(z, t)} dz. The difference in fluid salinity between the bottom and
the top of this non-diffusive layer is conserved, so that

dS =
∂S

∂z
dz =

∂S

∂z

dV

{L − l(z, t)} =
∂S

∂z

∣∣∣∣
0

dV

L
,

since at time t = 0, l(z, 0) = 0 and dV/L = dz. Thus

∂S

∂z
=

∂S

∂z

∣∣∣∣
0

L − l(z, t)

L
. (4.4)

As the double-diffusive region grows and l(z, t) increases, the ambient vertical salinity
gradient decreases, though not uniformly, since we observe that l varies with z. A
vertical integration of equation (4.4) yields S1(t), the salinity of the withdrawal layer
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relative to that at the base of the cell S0,

S1(t) − S0 =
∂S

∂z

∣∣∣∣
0

∫ �z

0

{1 − l(z, t)/L} dz.

= h
∂S

∂z

∣∣∣∣
0

(
1 − l̄(t)

L

)

= h
∂S

∂z

∣∣∣∣
0

(
1 − VDD(t)

VT

)
, (4.5)

where l̄(t) is the mean length of the doubly diffusive region at time t and VDD(t)/VT

is the fraction of the total tank volume that it occupies. Since S1 <S0 and the vertical
salinity gradient is negative, the form of (4.5) shows that S1 increases towards S0

in direct proportion to the fraction of fluid ‘processed’, regardless of the shape that
the double-diffusion region assumes. According to CHA, the mean density gradient
throughout the cell is the same as it is in the ambient region, i.e. ρ0β[S1(t) − S0]/h,
even though in the cells it is supported by both temperature and salinity gradients in
the double-diffusion region. Consequently, in each cell, the density gradients decrease
equally from the initial value in both the ambient and the double-diffusive region. We
can therefore write

N2/N2
0 = 1 − l̄(t)/L, (4.6)

throughout. Note that since q = h(dl̄/dt), we have, from (4.3),

dl̄

dt
= CHNh, (4.7)

which is in accordance with the similarity reasoning in the introduction. Differentiation
of equation (4.6) and incorporation of (4.7) gives

dl̄

dt
= −2LN

N2
0

dN

dt
= CHNh,

whence
dN

dt
= −CHhN2

0

2L
= −N0

2τ
, (4.8)

say, where the cell evolution time scale τ , which is found to be an important parameter
in the data analyses, is given by τ = L/(CHhN0). Since l̄ = 0 and N = N0 at time t = 0,

we have from (4.8) and (4.6) that

N = N0{1 − (t/2τ )}, (4.9)

so that the mean buoyancy frequency in the cell interior (and consequently, by CHA,
at the same levels throughout the tank) decreases linearly in time. Also, for the mean
length of the cells

l̄(t)/L = t/τ − (t/2τ )2, (4.10)

where l̄/L = 1 when t = 2τ , at which time also, from (4.9), the internal density gradient
in the layers vanishes (producing the stepped density gradients that are familiar in
the context of double-diffusive layers). Equation (4.10) can be inverted to give

t

τ
= 2 − 2

(
1 − l̄(t)

L

)1/2

, (4.11)

a form that we find useful in analysis of the experimental data.
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These model results are couched in terms of the mean length of the double-
diffusive cells, the volume divided by the respective height. By far the most convenient
observable is the distance of the nose from the cold plate, and it is the growth of
this quantity that was measured in the experiments. Because of the approximate
geometrical similarity observed in the shape of the double-diffusive region as it
develops, the growth of the overall length should be proportional to the growth of the
mean length, but not precisely equal to it for several reasons. One is that the region of
double-diffusion is approximately triangular for reasons discussed earlier, so that the
distance to the nose is greater than the mean. Also, as fresher colder fluid moves away
from the boundary region and enters the double-diffusion region from below as rising
cold fresh fingers or drops, some fraction of ambient fluid will be retained among
them. This tends to make the volumetric rate of increase of the double-diffusive region
greater than the rate of entry of the fresher processed fluid. On the other hand, at
the top, fluid previously chilled but which by then has become warmer, may possibly
be swept from the double-diffusive region into the withdrawal layer and recycled.
This reduces the net rate of increase of double-diffusive cell volume. It is difficult to
anticipate the net effect of these processes which work in opposite directions, but we
do notice from the experimental results that the growth rate of the cells has decreased
markedly by the time the nose length is approaching the far end of the tank, as seen in
figure 2. This suggests that these various effects approximately balance. Consequently,
and because the cooling layer thickness is small, we will interpret l̄ in the expressions
above as the distance of the cell nose from the cooling plate. On the other hand, at
the beginning of each experimental run, it did take a few minutes for the flow to
gather itself into the distinct cells that the model considers, so that a virtual time
origin is allowed for the data analyses.

A similar experimental and theoretical study was conducted by Jeevaraj & Imberger
(1991), who present an accompanying theory which takes into account the shape of
the intrusions, which they infer from velocity and temperature profiles. Their results
were interpreted as supporting the theory that the intrusion length varies as t1/4 and
is independent of the length of the tank. Our experimental results are not consistent
with their suggestions.

5. Measurements of the rates of cell growth
The most revealing way to compare the experimental results to our simple model is

by means of equation (4.11). According to this, a plot of y = 2 − 2{1 − l̄(t)/L}1/2 vs. t

should produce a straight line with slope τ−1 and an intercept at y = l̄ =0 that defines
the virtual time origin t0 for each run. An estimate of l̄(t) for any given experiment
was obtained by averaging measurements of several intrusions at each time. Most of
the experiments produced very good straight lines, as illustrated in figure 2(c) and in
figure 4 for several other runs, which is satisfying in view of the simplicity of the model.
In four of the 12 runs the experimental points wandered below the initial straight
line after 30–50 min, possibly because of unwanted heat transfer through the sides
of the tank. In such cases, the errant points from the later times in the experiments
were discarded and a least-squares fit found over the previous nearly linear set. From
the slopes of these lines, the time scale τ was found for each run, and the results
are shown in table 1. The scale of the initial nose velocity v0 for each run, estimated
directly from l̄(t), is also listed in table 1. Values of v0 were of order 10−2 cm s−1.

With use of the measured parameters L, h and N0, we calculated the ‘heat transfer
coefficient’ CH =L/(τhN0) (which includes the various O(1) proportionality factors),
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Figure 4. Least-squares fits for the ‘inverse plots’, with y = 2 − 2(1 − l̄(t)/L)1/2 plotted
against time (cf. equation (4.11)), for some representative experiment runs.

shown in the last column of table 1. Although the precise magnitude of this coefficient
is of limited interest per se, we would expect it to be essentially the same for all the
experimental runs, except for experimental errors and possibly Reynolds and Nusselt
number effects. The degree to which it agrees among the individual experimental runs
is then a useful consistency check of the whole set. The values given in the table have
a mean of 9.3 × 10−3 and standard deviation of 2.4 × 10−3. The two runs in the long
232.5 cm tank both produced low coefficients, possibly because of lateral heat transfer
or possibly from viscous thickening of the long selective withdrawal layer. Without
them, the mean is 10−2 and standard deviation 2 × 10−3, which is not very different.
Some amount of scatter in the heat transfer coefficient is to be expected since the
experiments covered a large salinity range, and many parameters such as viscosity,
thermal expansion and heat diffusivity are strongly dependent on salinity.

Figure 5 presents a summary plot of l(t)/L against t/τ , using the respective time
scales and virtual origins as determined above. Results from experiments with different
tank lengths are distinguished by different symbols; those from the longest tanks are
concentrated towards the origin. The grouping of these results and the approximate
consistency among the runs of the numerical values of CH for quite different tank
lengths and moderate ranges of N0 and h (determined by the temperature differences)
gives confidence both in the experiments themselves and also that the simple model
is robust.

Finally, the cell growth is accompanied by the reduction in the internal density
gradient and buoyancy frequency specified in the model by (4.6) and (4.9). Preliminary
measurements have confirmed the emergence of increasingly ‘steppy’ salinity and
density profiles in the far field, and, by inference, throughout the tank. These will be
the subject of more detailed investigation in a subsequent paper.

6. Some concluding remarks
It is perhaps a little surprising that such a simple model can account accurately

for the rate of cell growth and the evolution of the internal temperature and density
fields. Several factors have made this possible. The most important is that we have
restricted ourselves to those characteristics of the cells that are governed by the
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powerful constraint that the pressure field remains very close to hydrostatic in this
very low-Froude-number flow, except possibly in the cooling layer at the plate. The
vertical density profile has to be very nearly the same along the tank at all times,
no matter what combination of temperature and salinity produces it. The overall
straining of the ‘far-field’ stratified fluid tends to modify its density distribution, but
continuous hydrostatic adjustment to the shape of the internal double-diffusive region
keeps the density field close to hydrostatic equilibrium with the straining external field.
The cell shape continually adjusts. However, the result (4.5) is independent of the
shape of the double-diffusive region. It asserts that the salinity of the fluid being
extracted from the ‘far field’ and processed in the cooling layer increases in direct
proportion to the volume of fluid already processed. Its immediate corollary, (4.6), is
the crucial link in the logic that binds together the evolution of overall state to the
heat and momentum balances in the cooling layer driving the flow.

Secondly, the heat balance in the cooling layer involves two temperature differences–
that between the cooling plate and the ambient fluid outside it and that between the
fluid entering and leaving the cooling region. These temperature differences both vary
throughout each experiment, but fortunately it can be argued reasonably that they
remain proportional. As a result, they drop out of the cooling layer heat balance and
do not appear explicitly in (4.1), although they do, implicitly, through h. However,
an alternative and simpler approach makes these considerations irrelevant. If one is
prepared to accept the similarity argument in the Introduction that the cell growth
is governed by local dynamics, then we have immediately that l̄(t) ∝ N(t)h (though
we do not have the association of the proportionality constant with the heat transfer
coefficient). With the kinematical expression (4.6), the principal results follow.

One minor problem with the experiment was that occasionally two adjacent cells
would coalesce during a run to produce a thicker cell that would continue to evolve.
The initial thickness of the cells was governed in (1.1) by the ratio of the density
increase due to cooling by �T , and the ambient density gradient. As we have seen,
both of these quantities decrease in time; the density gradient decreases as (1 − t/τ )2

and the density increase from cooling does so apparently less rapidly, possibly resulting
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in a gradual increase in the thickness scale, and, apparently, the observed occasional
readjustment.

The Huppert & Turner (1980) experiment was designed to elucidate the flow
produced by a melting iceberg in an otherwise uncontained stratified environment. As
L → ∞ in (4.10), the speed of advance of the cells becomes constant and l̄(t) → CHhN0t .
The heat flux per unit area across the cooled wall remains C ′

HρcpN0h�T , though
in the oceanographic context additional effects of differential current velocities and
windage may also play a role in the double-diffusive cell patterns. On the other hand,
for appropriate parameters, the experimental results may be applicable directly to a
compositionally stratified magma chamber with cooler walls, in which the time scale
for layering to develop is simply τ , as given in § 4.
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