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The behaviour of an inviscid gravity current which is released from behind a lock
and then propagates over a horizontal boundary at the base of a stratified ambient
fluid is considered. An extension of the shallow-water formulation for a homogeneous
ambient to the stratified case is developed, without using any additional adjustable
parameters. Attention is focused on the initial ‘slumping’ stage of a rectangular current
which is typified by a constant speed of propagation. The analytical results are in
good agreement with, and give a firm theoretical interpretation of, the corresponding
experiments and numerical simulations of Maxworthy et al. (2002). Finite-difference
solutions of the Navier–Stokes equations, using a different technique from that used
by Maxworthy et al. (2002), are also presented and provide both good agreement
with their results and further validation of the present shallow-water approach. The
differences between currents in a homogeneous and stratified ambient, and possible
implementation of the results to other configurations, are discussed.

1. Introduction
Gravity currents occur whenever fluid of one density flows primarily horizontally

into fluid of a different density. Many such situations arise in both industrial and
natural settings, as reviewed by Simpson (1997) and Huppert (2000). Commonly
the current is driven by compositional or temperature differences, to lead to a
homogeneous current, or by suspended particulate matter, to lead to a particle-driven
current (Bonnecaze, Huppert & Lister 1993; Bonnecaze et al. 1995; Huppert 1998),
and combinations of both particle and compositional or temperature differences can
also occur (Hogg, Hallworth & Huppert 1999). Currents may propagate in either
a rectangular, two-dimensional or cylindrical, axisymmetric configuration, or may
be otherwise influenced by sidewall and/or topographic constraints. Some of these
processes have now been fairly well investigated. A typical investigation considers the
instantaneous release of a constant volume of heavy fluid from behind a lock into a
large reservoir of a less dense homogeneous fluid above an impermeable horizontal
boundary. Our aim here is primarily to evaluate the effects of a stratified ambient on
the propagation of high Reynolds number currents resulting from the instantaneous
release of a finite volume of fluid of constant density in a rectangular two-dimensional
geometry. Applications of our work include areas such as oceanography, atmospheric
winds and environmental control.

A study of the prototype problem has been recently performed by Maxworthy
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Figure 1. Schematic description of the system: (a) the geometry; and (b) the density profiles in the
current (solid line) and ambient, for various values of S (dashed lines).

et al. (2002, referred to herein as MLSM). They considered the propagation of a
saline current released from behind a lock over a horizontal bottom into a linearly
stratified saline ambient in a rectangular container whose upper boundary was open
to the atmosphere. The investigation was a combination of laboratory and numerical
experiments. The numerical solutions, obtained from the full Boussinesq formulations,
were in very good agreement with the measurements. Attention focused on the speed
of propagation of the nose during the initial stage, for which a quite general data
correlation was obtained, as we shall detail below.

This leaves open some important points, including: the interpretation of the re-
ported experimental/numerical correlations in terms of fundamental concepts; the
possibility of predicting the observed behaviour using a convenient shallow-water
(SW) approximation (in extended formulation); and the behaviour in circumstances
which were not covered by these experiments. The object of this paper is to study
these matters.

The system under consideration is sketched in figure 1: a deep layer of ambient
fluid, of density ρa(z), lies above a horizontal surface at z = 0. Gravity acts in the
negative z-direction. In the rectangular case the system is bounded by parallel vertical
smooth impermeable surfaces and the current propagates in the direction labelled x.
At time t = 0 a given volume of homogeneous fluid of density ρc > ρa(z = 0) ≡ ρb
and kinematic viscosity ν, initially at rest in a rectangular box of height h0 and length
x0, is instantaneously released into the ambient fluid. A two-dimensional current
commences to spread. We assume that the Reynolds number of the horizontal flow,
ReN = hNuN/ν, where the subscript N denotes values associated with the ‘nose’ of
the current, is large and hence viscous effects can be neglected. In the experiments
of MLSM, ReN was estimated as typically 103 and hence the inviscid approach is
appropriate. (After a significant spread and decay of both hN and uN viscous forces
become important, but this phase is outside the scope of the present work.)

The corresponding flows with a homogeneous ambient, in particular in the rectangu-
lar configuration, have been extensively studied both experimentally and theoretically.
Theoretical investigations successfully using the shallow-water approximation have
been conducted. Further simplifications in the form of ‘box models’ have also been
developed for obtaining quick estimates of the global behaviour. Numerical experi-
ments based on simulations using the ‘full’ equations of motion (in the Boussinesq
or Navier–Stokes formulations) have also been used recently for acquiring flow-field
details which are not easily measured in laboratory experiments or incorporated into
the simplified theory, see Klemp, Rotunno & Skamarock (1994), Härtel, Meiburg &
Necker (2000) and Hallworth, Huppert & Ungarish (2001).
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The structure of the paper is as follows. In § 2 the model equations of motion,
based on shallow-water approximations and the appropriate boundary conditions, are
developed and some results are obtained. A comparison with the results of MLSM is
performed in § 3. Finite-difference solutions of the full Navier–Stokes equations and
additional comparisons are discussed in § 4. We present a summary of our results and
some concluding remarks in § 5.

2. Formulation and shallow-water approximation
The configuration is sketched in figure 1. For the rectangular case we use an {x, y, z}

Cartesian coordinate system with corresponding {u, v, w} velocity components, and
assume that the flow does not depend on the coordinate y and that v ≡ 0.

Initially, the height of the propagating current is h0, its length is x0 and the density
is ρc. The height of the ambient fluid is H and the density in this domain decreases
linearly with z from ρb to ρo. (The linear variation is taken here for simplicity of
analysis, but is not essential; the subscripts b, o refer to bottom and open surface
values respectively.)

It is convenient to use ρo as the reference density and to introduce the reduced
density differences and ratios between them

ε =
ρc − ρo
ρo

, εb =
ρb − ρo
ρo

, (2.1)

and

S = εb/ε, (2.2)

from which it follows that

ρc = ρo(1 + ε), ρa = ρo

[
1 + εS

(
1− z

H

)]
, (2.3)

where S represents the magnitude of the stratification in the ambient fluid, and we
shall consider only 0 6 S 6 1. The homogeneous ambient is recovered by setting
S = 0. (MSLM used the parameter R, the inverse of S , to express the stratification in
the ambient fluid, but we find S to be more convenient.) We also define the reference
reduced gravity,

g′ = εg, (2.4)

where g is the gravitational acceleration, and we keep in mind that the effective
reduced gravity which actually drives the current is smaller than the quantity defined
in (2.4) because of the stratification. It is convenient for purposes of interpretation to
keep in mind the following picture, also sketched in figure 1(b): S = 0 corresponds
to a homogeneous ambient of density ρo and a current of fluid of density ρc. For
0 < S < 1 the density of the ambient is stratified (increases linearly) from the same ρo
at the top to a larger density at the bottom. The extreme situation S = 1 is achieved
when the density of the ambient at the base matches that of the current.

We shall use a one-layer approximation which is expected to capture many of the
important features of the flow, although it filters out internal waves in the ambient,
and is the simplest shallow-water model. In the ambient fluid domain we assume that
u = v = w = 0 and hence the fluid is in purely hydrostatic balance and maintains
the initial density ρa(z). The motion is assumed to take place in the lower layer only,
0 6 x 6 xN(t) and 0 6 z 6 h(x, t). As in the classical inviscid, shallow-water analysis
of a gravity current in a homogeneous ambient, we argue that the predominant
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vertical momentum balance in the current is hydrostatic and that viscous effects in
the horizontal momentum balance are negligibly small. Hence the motion is governed
by the balance between pressure and inertia forces in this horizontal direction. As in
the situation with a homogeneous ambient, an order-of-magnitude analysis indicates
that the perturbation of the upper free surface introduced by the flow can be neglected
when ε� 1, as assumed here.

A relationship between the pressure fields and the height h(x, t) can be obtained.
In the motionless ambient fluid, which is open to the atmosphere, the pressure does
not depend on x, and the hydrostatic balances ∂pi/∂z = −ρig, where i = a or c, and
use of (2.3) yield

pa(z, t) = −ρo
[
1 + εS

(
1− 1

2

z

H

)]
gz + C, (2.5)

pc(x, z, t) = −ρo(1 + ε)gz + f(x, t), (2.6)

where the constant C reflects the constant pressure at the top of the ambient at z = H .
Pressure continuity between the ambient and the current on the interface z = h(x, t)
determines the function f(x, t) of (2.6) and we obtain, after some algebra,

pc(x, z, t) = −ρo(1 + ε)gz + ρog
′
[
h− S

(
h− 1

2

h2

H

)]
+ C, (2.7)

and consequently

∂pc

∂x
= ρog

′ ∂h
∂x

[
1− S

(
1− h

H

)]
. (2.8)

The expressions for pa, pc and ∂pc/∂x are given in some detail because they highlight
the essential difference between the stratified and the homogeneous formulations. The
contribution of the stratification to the horizontal pressure gradient, and to the
whole set of SW equations of motion, is in the square-bracket term of (2.8), and the
contribution of the stratification to the vertical pressure head which drives the ‘nose’
is in the square-bracket term of (2.7).

As expected, the effect of stratification on the gravity current, as reflected by the
horizontal pressure gradient, increases as S increases. However, for a given value of S
there is an additional contribution proportional to h/H which tends to diminish the
influence of stratification. Indeed, for a density which increases from z = H to z = 0,
at a deeper level the current encounters a larger density (i.e. a smaller driving force)
than at a higher level. Figure 2 illustrates the behaviour of the normalized reduced
pressure, defined as Pi = (pi + ρogz − C)/ρog

′h (i = a, c), in the current and ambient
for typical values of S with h/H as a parameter.

The fact that ∂pc/∂x is not a function of z makes the subsequent derivation of
the SW equations a straightforward extension of the homogeneous case. Indeed, the
next step is to consider the z-average of the horizontal momentum equation, which,
on account of (2.8) and in conjunction with volume continuity, produces a system of
equations for h(x, t) and for the averaged longitudinal velocity, u(x, t).

2.1. Governing SW equations

It is convenient to scale the dimensional variables (denoted here by asterisks) by

{x∗, z∗, h∗, H∗, t∗, u∗} = {x0x, h0z, h0h, h0H,Tt,Uu}, (2.9)

where

U = (h0g
′)1/2 and T = x0/U. (2.10)
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Figure 2. The normalized reduced pressure as a function of the scaled height z/h: Pa (solid lines)
and Pc (dashed lines) for S = 0, 0.5 and 1. (Here h/H = 0.5 and the curvature of Pa increases with
h/H .)

Here h0 and x0 are the initial height and length of the current, U is a typical inertial
velocity of propagation of the nose of the current and T is a typical time period
for longitudinal propagation for a typical distance x0. The scaling used here does
not take into account the stratification; this will be reflected in the magnitude of
the dimensionless results. Note that the horizontal and vertical lengths are scaled
differently, which, as pointed out by Ungarish & Huppert (1999), removes the initial
aspect ratio h0/x0 from the SW analysis in the homogeneous situation, and this
applies also to the stratified case considered here.

The equations of motion can be conveniently expressed either for h and the com-
bined variable (uh) in ‘conservation form’, or for the original variables in ‘characteristic
form’, as follows.

2.2. The governing equations

In conservation form the equations can be written as

∂h

∂t
+

∂

∂x
(uh) = 0, (2.11)

and

∂

∂t
(uh) +

∂

∂x

[
u2h+ 1

2
(1− S)h2 + 1

3
S
h3

H

]
= 0. (2.12)

In characteristic form these become[
ht
ut

]
+

[
u h

1− S + S(h/H) u

] [
hx
ux

]
=

[
0
0

]
. (2.13)

For completeness, we also formulate the corresponding equations for the axisym-
metric case. The current is released from a cylindrical lock of height h0 and radius r0,
and the latter replaces x0 in the scalings. Here we use a cylindrical coordinate system
{r, θ, z} with corresponding {u, v, w} velocity components, and assume that the flow
does not depend on the angular coordinate θ and that v ≡ 0. In conservation form
the equations can be written as

∂h

∂t
+
∂

∂r
(uh) = −uh

r
, (2.14)
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and
∂

∂t
(uh) +

∂

∂r

[
u2h+ 1

2
(1− S)h2 + 1

3
S
h3

H

]
= −u

2h

r
, (2.15)

which in characteristic form become[
ht
ut

]
+

[
u h

1− S + S(h/H) u

] [
hr
ur

]
=

[ −uh/r
0

]
. (2.16)

Note the existence of a non-zero right-hand-side in (2.16), in contrast to (2.13), which
makes the development of the theory different for the axisymmetric situation. This
will be detailed in a separate publication.

2.3. Characteristics and boundary conditions

The characteristic paths and relationships provide useful information for the solution
of the system, including a proper definition of boundary conditions for the interface
height h at the ends of the current domain. The stratification contributes to the
pertinent results as follows.

Consider the equations of motion (2.13). Following the standard procedure for
deriving the characteristic relationships, we calculate the eigenvalues of the matrix
of coefficients of the space derivatives of the variables, which provide the speeds of
propagation as

λ± = u±
[
h

(
1− S + S

h

H

)]1/2

, (2.17)

and the corresponding eigenvectors

(±a(h), 1), (2.18)

where

a(h) =

[
1− S + S(h/H)

h

]1/2

. (2.19)

Consequently, the relationships between the variables on the characteristics with
dx/dt = λ±, are

a(h) dh± du = 0. (2.20)

The initial conditions are zero velocity and unit dimensionless height and length at
t = 0. Also, the velocity at x = 0 is zero, and an additional condition is needed at the
nose x = xN(t).

2.4. The nose velocity

The boundary condition for the velocity at the nose is essential for a proper physical
definition and mathematical closure of the problem. The appropriate condition for the
homogeneous ambient has been well studied, both theoretically and experimentally
(Benjamin 1968; Huppert & Simpson 1980; Rottman & Simpson 1983). There is
strong evidence that the velocity of the nose is proportional to the square-root of the
pressure head (per unit mass), and that the factor of proportionality, defined as the
Froude number Fr, varies in a quite narrow range with the ratio hN/H . We argue
that this result reflects a local, quasi-steady integral property of the current head
and hence it is expected to remain valid also for a stratified ambient. We do not
pursue a theoretical proof of this argument; rather, we use it as a base to develop
measurable results (in particular, the velocity of the nose), and claim that agreement
with experiments vindicates the assumption.
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We define the effective pressure head as given by the difference between the pressure
at the furthest point in the current and that in the ambient ahead of the current
at the bottom (z = 0). Using the previously derived expressions for pa and pc when
h = hN , see also figure 2, we obtain the effective pressure head (scaled by ρog

′h0) as[
hN − S

(
hN − 1

2

h2
N

H

)]
(2.21)

and consequently,

uN = Fr h
1/2
N ×

[
1− S

(
1− 1

2

hN

H

)]1/2

. (2.22)

The term in the square brackets of (2.22) is equal to 1 in the non-stratified case
(S = 0), and smaller than 1 for S > 0. This term expresses the explicit slow-down
of the head due to stratification effects. We notice that the expression in the square
brackets is actually [ρc − ρa(z = 0.5hN)]/ερo. Thus, formally, the head reacts to the
density difference at the middle of its height, which is larger than zero (and hence
induces motion) even in the extreme case when ρc = ρb (i.e., S = 1). Again, the
stratification effect decreases as S decreases and when hN/H increases (in both cases,
the square-bracket term becomes closer to 1).

We now assume, and later vindicate by comparisons with numerous independent
results, that the behaviour of Fr in the stratified case is approximated well by the
well-known homogeneous situation, as follows. Benjamin (1968) proved that Fr is
a decreasing function of hN/H . Experiments confirmed this qualitative behaviour,
but also indicated that the theoretical value of Fr, derived by Benjamin (1968) for
a highly idealized motion, needs some modifications (a reduction of typically 20%)
in real circumstances. To reconcile theory with practice, Huppert & Simpson (1980)
developed the following simple well-known curve-fit type correlation which we shall
also use here:

Fr =

{
1.19 (0 6 hN/H 6 0.075)

0.5H1/3h
−1/3
N (0.075 6 hN/H 6 1).

(2.23)

The scatter of the data used to obtain this formula suggests an estimate of ±5% for
the error in this correlation, though later experiments and calculations by Rottman
& Simpson (1983) suggest that, in some circumstances, the values for small hN/H are
about 15% smaller than predicted by (2.23). These discrepancies appear because in real
gravity currents various departures from the idealized model are unavoidable, such
as the complex three-dimensional structure of the head, time dependence, turbulent
mixing, entrainment, friction, etc. Although each one of these effects is expected to
be small, their accumulated contribution may be significant. It is therefore unlikely
that a more accurate general one-parameter simple fit can be obtained. We therefore
adopt (2.23) as a prototype correlation in the following work, but it will be evident
that the essence of the analysis and conclusions are not affected by small details of
the functional form of Fr(hN/H).

This closes the SW formulation. In general, the resulting system requires a numerical
solution for the partial differential equations, but in the rectangular case some
insightful results can be obtained by simpler, mostly analytical analysis, which we
now proceed to develop.
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Figure 3. Schematic description of the current during the initial slumping stage.

2.5. The slumping phase results

A classical rectangular gravity current displays an initial ‘slumping’ stage of propa-
gation with constant velocity and, accordingly, with constant hN . Such a behaviour
is also expected for the stratified current, as indicated by the fact that (2.20) admits
a non-trivial solution with dh = du = 0. This has been confirmed by numerical com-
putation performed in the framework of the present investigation. More importantly,
MLSM observed this situation in all their experiments, and hence the results can
serve for a stringent comparison.

The value of hN during the slumping phase can be calculated as follows. In
the current fluid domain sketched in figure 3, we follow a forward-propagating
characteristic λ+ from a point in the still unperturbed domain where u = 0 and h = 1
to a point in the domain where the velocity and the height have the constant values
uN and hN . The connection between the variables at these points (F and G in the
figure) is given from integrating (2.20) as∫ 1

hN

a(h) dh− uN = 0. (2.24)

The integral is a function of hN , denoted I(hN), with S and H entering as parameters,
and can be performed analytically, as presented in the Appendix §A.1. On the other
hand, uN is given by the Froude condition (2.22)–(2.23), and is also a function of hN ,
with S and H entering as parameters. These substitutions transform (2.24) into

uN = I(hN) = Fr(hN) h
1/2
N

[
1− S

(
1− 1

2

hN

H

)]1/2

, (2.25)

a nonlinear equation for hN , with S and H as parameters, whose numerical solution
is straightforward. In the relevant domain hN ∈ (0, 1) the last term increases with hN
from zero, while I(hN) decreases with hN to zero, and we found that there is a simple
and unique root for a prescribed pair of S and H . For each hN(S,H) which satisfies
(2.25), we can calculate the corresponding uN(S,H). This is the value of (2.25) when
the equation is satisfied.

The results are presented in figure 4. As expected, the stratification hinders the
propagation, i.e. uN decreases when S increases for a fixed value of H . The reaction
of the current to this hindrance is to pile up behind the front as reflected by the
increase of hN with S , but this is not a very pronounced feature. We note in passing
that all the lines of uN intersect at S ≈ 0.88 which may indicate some eigenvalue of
the system, but this issue has not been pursued.

The interesting case of S = 1 (i.e. ρc = ρb) and shallow current (when Fr is constant
according to (2.23), H > 7.4), admits, somewhat surprisingly, an analytical result of
(2.25). Using (A 7), substituting S = 1 and keeping in mind that Fr is now a constant,
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Figure 4. hN and uN as functions of S for various H .

(2.25) can be rewritten as

1

H1/2
(1− hN) =

√
0.5Fr

1

H1/2
hN. (2.26)

For Fr = 1.19 this yields the results

hN = 0.543, uN =
0.457

H1/2
. (2.27)

This velocity in dimensional form reads 0.457[(ρc− ρo)gh0/ρo]
1/2(h0/H)1/2, which can

be explained in terms of our previous considerations as follows. Since at the bottom
the current and the ambient have the same density, ρa(z = 0) = ρb = ρc, the current
reacts to ∆ρ = ρa(z = 0.5hN) − ρb = 0.5(ρc − ρo)hN/H . But uN ∼ (∆ρghN/ρo)

1/2, in
accordance with the original result.

Equation (2.22) indicates that for general S the dependence of uN on the stratifica-
tion is proportional to [1 − S(1 − 0.5hN/H)]1/2. However, hN is not known a priori.
Therefore, to estimate the behaviour of the current from the given initial conditions,
it is necessary to use an approximation for hN , and the foregoing results, see figure 4,
indicate that hN ≈ 0.5. Figure 5 displays the velocity of the head re-scaled with the
density difference at z = 0.5hN and also with this value approximated as 0.25. We
observe that the results are lines almost parallel to the S-axis, which is a strong
confirmation to our conjecture about the contribution of the stratification for a given
H .

This suggests that the effective Froude number (based on the initially given value
of h0) can be conveniently defined, using dimensional variables, as

Fre =
uN

(g′eh0)1/2
, (2.28)

where the ‘effective’ reduced gravity is given by

g′e =
ρc − ρa(z = 0.25h0)

ρo
g. (2.29)

In the slumping stage the Froude number Fre varies over a rather small range: it
increases from 0.5 to 0.9, approximately, as the thickness of the ambient H increases
from 1 to ∞, and is roughly independent of the density factor S . This number seems
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Figure 5. Rescaled uN as a function of S for various H . (a) uN/A with

A = [1− S(1− 0.5hN/H)]1/2; (b) uN/B = Fre with B = [1− S(1− 0.25/H)]1/2.

to capture well the process under investigation. Furthermore, we show that a practical
approximation for Fre is provided by the homogeneous Fr correlation (2.23).

To estimate the slumping distance, xs, we observe that there are two phases during
which the speed of propagation is constant. First, the entire current is flattened to
a rectangular profile of height z = hN and, by continuity, of length 1/hN . Next, a
depression wave propagates from the origin towards the nose, with velocity uN + λ+.
The position of the nose when it is reached (and presumably affected) by this wave is

xs =
1

hN

(
1 +

uN

λ+

)
. (2.30)

Using the previous results for hN , uN and λ+ we find that the stratification decreases
the slumping distance. Equation (2.30) predicts that, for S = 0, xs = 2.3 for H = 1
and increases to 3.9 when H > 7.4; and for S = 1 the corresponding values of xs
are 1.9 and 2.8. However, these results must be treated with care because there are
experimental indications that the slumping distance of a current is a delicate feature
involving quite complex wave interactions, and it seems that the SW approximation
(and in particular the one-layer model result (2.30)) significantly underpredicts the
slumping distance for the homogeneous ambient current (see Rottman & Simpson
1983, figure 11). In the stratified case internal waves in the ambient are also involved.
In any case, the available experimental and numerical data suggest that (2.30) provides
a lower bound for this property in both stratified and homogeneous situations. This
whole aspect needs more investigation and is left for future work.

3. Comparison with and interpretation of MLSM’s results
MLSM observed in all their experiments a significant stage of initial motion with

constant velocity, and used the results to show that the (dimensional) velocity of the
head scaled with (εbgHh0)

1/2 is independent of the initial aspect ratio h0/x0 and is a
function of only S and H (recall, here H is the height of the ambient scaled with h0)
during this slumping stage. This observation is expressed in our notation as

uN(εgh0)
1/2

(εbgHh0)1/2
= χ(S,H), (3.1)
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where uN and H are dimensionless. MLSM determined an accurate experimental fit
for χ(S,H) which is given in the Appendix §A.2. This is actually a Froude ‘number’,
denoted Fr in MLSM, but we use a different notation to avoid confusion with our
Fr.

We now show that the present SW theory results provide a theoretical interpretation
of the experimentally obtained correlation (3.1). The considerations developed in the
previous section indicate the existence of this constant-velocity slumping phase, and
prove, using (2.22) and the present results for hN(S,H), that the left-hand-side of (3.1)
is given by

1

S1/2

(
hN

H

)1/2

Fr(hN)

[
1− S

(
1− 1

2

hN

H

)]1/2

, (3.2)

which is a function of S and H only and can be identified as the theoretical form of
χ(S,H). This expression is independent of h0/x0 since, as previously mentioned in § 2.1,
this parameter has been scaled out from the present SW dimensionless formulation.

The first conclusion is that there is a perfect functional agreement between the
present SW results and the experimental data of MLSM. Moreover, a quantitative
comparison can be easily performed, and the results are presented in figure 6.
The display uses the same axes and parametric values as figure 7 of MLSM. The
laboratory and numerical experiments of MLSM were performed for 0.3 6 S 6 1 and
H = 1, 1.5, 2 and 3, and hence a comparison is relevant only for this range. We recall
that the fitted curves are an accurate summary of the experimental data (with one
exception detailed below) and hence the comparison in figure 6 is essentially between
our theory and the data of MLSM.

The conclusion is that, for the relevant parameter range, the qualitative agreement
is excellent, and the quantitative agreement can be considered very good. In detail,
the closest agreements are for h0/H = 1/3 and 1, with less good agreement for
h0/H = 1/2 and 2/3; the reason for this behaviour is at present not clear. The
largest discrepancies are for values of S close to 1, but a detailed inspection of
the experimental data reveals some scatter for this value of S , and actually the
discrepancy here is at most 10%. Otherwise, the discrepancy between our theory and
the experimental data is typically 5%; the worst agreement is for H = 2 (about 8%);
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on the other hand, for H = 1 the discrepancy is almost zero. The agreement improves
as S decreases, which reconfirms the semi-empirical evaluation of (2.23) on the basis
of data taken from homogeneous currents. The discrepancies can be attributed to the
various simplifications introduced in the SW formulation, and in particular the use
of the one-layer model for non-large values of H and the neglect of internal waves in
the ambient, and of mixing. Overall, we think that this is about the best agreement
that can be expected from this type of modelling.

We emphasize that the present results were obtained by straightforward calculations
without use of any additional adjustable parameters. (We employed the semi-empirical
correlation (2.23) but this is a well-known ingredient of the SW approximations.)
Consequently, we claim that the agreement with the experimental results of MLSM
serves both as an interpretation of the observations and as a confirmation of our
formulation.

It is remarkable that, as pointed out by MLSM, (3.2) (for a fixed H) is an
almost perfect linear function of log S for 0.3 6 S 6 1, but we could not find any
theoretical argument to suggest this exact functional form. We speculate that this
represents merely a good approximation, whose validity outside the range covered
by the experiments of MLSM is questionable. For small values of S this functional
approximation is bound to fail because (3.2) indicates that χ ∼ S−1/2, not ∼ log S , for
S → 0. Indeed, for S = 0.10 the logarithmic fits of MLSM deviate by more than 15%
from the present results, and for S < 0.05 the deviation is larger than 30%.

MLSM define the function χ as the Froude number of the current, and we
introduced the definition (2.28) for the effective Froude number. The former definition
has the advantage of linear dependence on log S , but the disadvantage that it varies
strongly with S in the range of interest and becomes invalid in the limit of the
homogeneous ambient, S = 0. The latter definition has the advantage of small
variation with S over the entire range, including the extreme cases S = 1 and 0.

4. Numerical results
We use a numerical finite-difference code which is a modified version of the software

developed for the solution of an axisymmetric gravity current presented by Hallworth
et al. (2001). The objectives are (a) to test the ability of the numerical solver to provide
results for the stratified ambient, and (b) to obtain additional data for the verification
of the present SW theory outside the domain covered by the data of MLSM.

For numerical convenience we introduce the density function φ(r, t) by

ρ(x, t) = ρo[1 + εφ(x, t)], (4.1)

where ε is the reduced density difference defined by (2.1). We expect 0 6 φ 6 1, with
φ = 1 in the domain of the ‘pure’ dense fluid and 0 6 φ 6 S in the domain of the
ambient fluid.

We employ the following dimensionless balance equations:

conservation of volume

∇ · v = 0; (4.2)

momentum balance

Dv

Dt
=

1

1 + εφ

[
−∇P − φẑ +

1

Re
∇2v

]
, (4.3)

where P is the reduced pressure (defined in dimensional form by P = p+ ρogz);
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density transport

∂φ

∂t
+ ∇ · (vφ) = D∇2φ. (4.4)

The relevant dimensionless parameters, in addition to ε, are the Reynolds number,

Re = UL/ν, (4.5)

and the dimensionless diffusion coefficient D = 1/Pe = 1/(σRe), where Pe and σ are
the Péclet and Schmidt numbers, respectively. Here L and U are the scaling length
and velocity. In the numerical computations we employ L = x0 (the dimensional

length of the lock) and U = (g′x0)
1/2. The scale for time is L/U.

We are interested in flows with large values of Re, small ε and very small D.
Actually, the typical physical value of D is negligibly small (recall that σ � 1 for
saline solutions in water), but here a non-vanishing D is used in the solution of
(4.4) as an artificial diffusion coefficient for numerical smoothing of the large density
gradients of the moving interface.

In the two-dimensional lock-release problem in a bounded channel, three geometric
parameters (in addition to x0 which is the reference length) appear: the height of the
lock, h0; the height of the ambient fluid, H; and the total length of the channel, xw.

The initial conditions at t = 0 are

v = 0 (0 6 x 6 xw, 0 6 z 6 H) (4.6)

and

φ =

{
1 (0 6 r 6 1, 0 6 z 6 h0)
S(1− z/H) elsewhere.

(4.7)

The boundary conditions for t > 0 are

v = 0 (on the bottom and sidewalls); (4.8)

w = 0, and no shear (z = H); (4.9)

and

n̂ · ∇φ = 0 (on all boundaries). (4.10)

These conditions contain some simplifications, in particular (4.9), which is the
frictionless ‘rigid lid’ approximation for the free surface. In practical situations the
free upper surface may have a height perturbation of magnitude ε during the flow.
In addition, we assume that the lock is removed instantaneously and without any
perturbation to the fluid, and that the flow is laminar.

We note in passing that the SW model can be regarded as a solution of the
foregoing equations with ε = Re−1 = D = 0, under the assumptions that v = 0 and
φ retains its initial value outside the domain 0 6 x 6 xN, 0 6 z 6 h(r, t), while inside
this domain φ = 1, u = u(x, t), and the left-hand side of the vertical momentum
equation is negligibly small. The scaling here is, for numerical convenience, slightly
different from the more insightful one which was used for the SW formulation, but
the results are presented with the scaling (2.9) and (2.10).

The foregoing system of equations and boundary conditions was solved by a
time-marching, finite-difference discretization method. The details are described by
Hallworth et al. (2001) and will not be repeated here. The addition of stratification
did not create any special numerical difficulties.

Briefly, the method is based on forward-time discretization of the velocity compo-
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nents, with implicit pressure terms. For each time step the continuity equation for the
‘new’ velocity field yields an elliptic equation for the ‘new’ pressure field.

The spatial discretization is performed on a staggered grid with il radial intervals
and jl stretched axial intervals. The variables P and φ are defined at mid-cell positions
denoted (i, j), u is defined at positions (i± 1

2
, j) and w is defined at (i, j ± 1

2
). Central

spatial differences were used, with the exception of forward and backward differences
for the advection terms in the density transport equation (4.4), which was treated by a
MacCormack method to avoid spurious oscillations associated with the discontinuity
of φ at the interface between the current and the ambient. For this purpose we
also used artificial diffusion, i.e. a larger value of D than dictated by molecular
diffusion. This is justified by the fact that in the physical salt-water system used in
the laboratory experiments, the value of the Schmidt number σ = 700, and hence the
resulting diffusion layer during the time of propagation of the current considered here
is very thin, beyond the resolution of feasible numerical grids. The truncation errors
are second order in both time and space, and the space and time steps were chosen
with the aim of achieving accuracies of about 1% in the velocity and φ fields. Two
different grids and various time steps were used to verify convergence. The major
computational effort was invested in the solution of the discretized Poisson equation
for Pi,j at all grid points for each time step, by a bi-conjugate gradient method.

The simulations discussed here were obtained for a channel of length xw = 4,
the typical grid had 160 horizontal and 200 stretched vertical intervals, and the
typical time step was 2× 10−3. Hereafter we use again the scaling given by (2.9) and
(2.10).

First, for the verification of the numerical code, results pertinent to the configuration
of experiments 6 and 19 of MLSM were computed (H = 3, h0/x0 = 0.25 in both
cases, and S = 0.42 and 0.71, ε = 0.071 and 0.080, respectively). In the computations
we used the value Re = 7.7× 104 (defined as g

′1/2
x

3/2
0 /ν) which is compatible with the

experiments. The velocity of propagation predicted by the present numerical results
was close to constant, and using it we calculated the values of χ, see (3.1), as 0.43
for experiment 6 and 0.26 for experiment 19. The experimental values reported by
MLSM (in appendix A, column Fr) are 0.44 and 0.26, which we consider in excellent
agreement with the present computations. (We rounded the results to two digits to
reflect the expected accuracy in both experiments and computations.)

Next, we performed runs for a configuration with H = 5, h0/x0 = 0.333, ε = 0.07
and various values of S . We used the computational value Re = 105. We recall that
MLSM considered only H 6 3 and values of h0/x0 different from 0.333.

Results for currents with S = 0.5 and 0.8 are displayed in figure 7. In both cases the
propagation in the computed range is at constant velocity, in accordance with the SW
theory prediction. The computed values of the speed of propagation for S = 0, 0.5
and 0.8 are 0.61, 0.46 and 0.32, respectively, and the SW approximation for these cases
predicts the velocity uN = 0.73, 0.53 and 0.37. The SW results are about 15% larger
than the numerical results, but the effect of stratification is accurately captured: the
increase of stratification from S = 0 to 0.5 and 0.8 causes a decrease of uN of about
25% and 48% in the numerical results, almost exactly as predicted by the SW theory.
(We note again that discrepancies of this order of magnitude between numerical and
SW results are acceptable on account of the approximate background of the latter
approach, see also Klemp et al. 1994, § 4. It appears that the SW approximation with
the nose condition (2.23) provides less accurate uN for large values of H , which can
be attributed to more prominent viscosity and mixing effects. This topic, however,
requires a separate investigation.)
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Figure 7. Numerical results: contour lines of the density function φ at various times, for S = 0.5
and 0.8. (Recall that initially, in the dense fluid φ = 1, while in the ambient φ = 0 at the top and
φ = S at the bottom.)
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5. Concluding remarks

The shallow-water analysis presented here seems to capture well the effects of
stratification on the propagation of the gravity current, at least for the initial ‘slumping’
phase. The present shallow-water results for the velocity of propagation of the
nose are in good agreement with the experimental results of MLSM in both the
parameter dependences and the quantitative values. The finite-difference Navier–
Stokes results developed here provide additional reliable support for our investigation.
The numerical results, for parameters outside the range covered by MLSM, are also
in fair agreement with the shallow-water results.

The analysis proves that, essentially, the stratification reduces the speed of prop-
agation compared with motion in a homogeneous ambient with the same density
at z = H . Roughly, the effective pressure head that drives the nose of the current
is proportional to the density difference at the middle height of the nose, but the
Froude number correlation between the velocity and the pressure head is not affected
by the stratification. The dependences on the stratification are nonlinear and there is,
apparently, no simple way to scale out this influence from the governing equations.
Nevertheless, we are able to suggest an ‘effective’ Froude number which is the ratio
of the speed of propagation to a reference velocity based on h0 and a simple estimate
of the ‘effective’ reduced gravity, see (2.28)–(2.29). This ratio varies in a quite narrow
range for all the configurations of interest, and therefore is, in our opinion, a good
representative synthesis of the process. Practically, the value of this ‘effective’ Froude
number is approximated well by the correlation of Fr as a function of hN/H in a
homogeneous ambient case.

The SW analysis provides a straightforward method for obtaining uN in the slump-
ing phase in a rectangular geometry, via the solution of a simple nonlinear equation
(2.25). For the case of a deep current in an ambient whose density at the bottom is
equal to that of the current (H > 7.4, S = 1) we obtained the result uN = 0.457/H1/2.
This is to be compared with uN = 0.746, which is predicted for the homogeneous
ambient (S = 0) counterpart.

The incorporation of the stratification in the SW equations (in both rectangular and
axisymmetric geometries) and in the nose Froude condition developed in § 2 indicates
that existing software for the solution of the SW equations with a homogeneous
ambient can be extended to study the situation of a stratified ambient with only
moderate additional programming effort. We suggest that similar extensions can be
readily performed in ‘box-model’ solvers; the main change in the formulation is to
multiply the classical nose velocity by the slow-down factor given in (2.22). Although
this may complicate the subsequent analytical solution, the modification of numerical
‘box-model’ software is straightforward.

We considered only linear stratification in the ambient, but a more complex situation
can be treated in a similar way. The nonlinear terms which are expected to appear in
the velocity of the characteristics may, however, introduce new effects and difficulties
which have no counterpart in the present study.

That our one-layer model, which neglects the influence of internal wave generation
and propagation in the ambient, agrees so well with experimental and numerical
data suggests that the energy imparted to the internal waves is considerably less
than the potential energy transferred into the gravity current. Evidently, further
research is necessary to provide a deeper physical understanding of the interaction
between the internal waves of the ambient and the propagation of the current which
seems to appear at a later stage of motion, as indicated by the experiments of
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MLSM. This may necessitate the use of a two-layer SW model which, although
straightforwardly derivable from the present formulation, introduces mathematical
and physical complications which require special analysis (Klemp et al. 1994; Zemach
2002). On the other hand, there is evidence that in some circumstances the ‘long
time’ behaviour of a gravity current influenced by additional circumstances (such
as particle-driving and rotation), after the completion of the slumping stage, can be
approximated by a rather sophisticated small perturbation to the self-similar solution,
as detailed in Hogg, Ungarish & Huppert (2001); this possibility is also an interesting
topic for future study.

We thank Professor T. Maxworthy for providing us with a preprint of MLSM and
for very useful discussions. The research was supported by NERC and by the Fund
for Promotion of Research at the Technion.

Appendix. The functions I and χ
A.1. The function I(hN)

From the definitions (2.19), (2.24) and (2.25) we obtain

I(hN) =

∫ 1

hN

[
1− S + S(h/H)

h

]1/2

dh. (A 1)

Consider first 0 < S < 1 and write

I(hN) = (1− S)1/2

∫ 1

hN

√
1 + c2h

h
dh, (A 2)

where

c =

√
S

(1− S)H
. (A 3)

Letting

η(h) =

√
1 + c2h

h
,

we can easily verify that∫ √
1 + c2h

h
dh = − η

(c2 − η2)
+

1

c
arctanh(η/c) ≡ f(η).

With η1 = η(1), ηN = η(hN), we obtain

I(hN) = (1− S)1/2[f(η1)− f(ηN)]. (A 4)

An approximation for small c2 can be obtained by using a Taylor expansion of
(1 + c2h)1/2 in the right-hand side of (A 2). The integration of the leading terms gives

I(hN) ≈ 2(1− S)1/2
[
1 + 1

6
c2 − h1/2

N (1 + 1
6
c2hN)

]
. (A 5)

The approximate values are larger than the exact ones, but the relative error is
bounded by c4/8. Thus, for c < 1 this approximation provides some quick insight
into the influence of the stratification on the value of I(hN).

Consider next the straightforward evaluation of (A 1) for the limiting values of S .
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For S = 0 (homogeneous ambient) we obtain

I(hN) =

∫ 1

hN

√
1

h
dh = 2(1− h1/2

N ). (A 6)

For S = 1 (maximal stratified ambient) we obtain

I(hN) = H−1/2

∫ 1

hN

dh = H−1/2(1− hN). (A 7)

The typical behaviour of I(hN) (0 < hN < 1) is displayed in figure 8. For fixed S
and H , I increases monotonically from zero as hN decreases from 1. For a fixed hN it
decreases with both S and H , i.e. it is bounded by (A 7) and (A 6).

A.2. The experimental fit

MLSM showed that their experimental data, reduced according to the left-hand side
of (3.1), are accurately described by the empirical fit

χ(S,H) = a(H)− c(H) log S, (A 8)

where the coefficients for the values H = {1, 1.5, 2, 3} are given by

a = {0.266, 0.229, 0.205, 0.147}, and c = {0.912, 0.916, 0.846, 0.774}.

REFERENCES

Benjamin, T. 1968 Gravity currents and related phenomena. J. Fluid Mech. 31, 209–248.

Bonnecaze, R. T., Hallworth, M. A., Huppert, H. E. & Lister, J. R. 1995 Axisymmetric particle-
driven gravity currents. J. Fluid Mech. 294, 93–121.

Bonnecaze, R. T., Huppert, H. E. & Lister, J. R. 1993 Particle-driven gravity currents. J. Fluid
Mech. 250, 339–369.

Hallworth, M. A., Huppert, H. E. & Ungarish, M. 2001 Axisymmetric gravity currents in a
rotating system: experimental and numerical investigations. J. Fluid Mech. 447, 1–29.
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