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Sedimentary cover enclosing salt rocks is gravita-
tionally unstable. Salt diapirs are formed owing to the
fact that salt, being less dense than the overlying sedi-
mentary rocks, tends to rise into the region occupied by
these rocks. Diapirism in a viscous medium has been
studied sufficiently (see, for instance, [1-4]). However,
the rheology of sedimentary overburden is complicated
and can be described by the model of a brittle or per-
fectly plastic medium. This work investigates the early
stages of salt diapirism and analyzes the gravitational
instability of a viscous salt layer overlapped by a per-
fectly plastic layer of sediments under horizontal com-
pression or extension. Recent investigations in the
region of salt tectonics have placed special emphasis on
diapirism resulting from extension or compression of
brittle overburden rocks (for instance, [5]). Effects of
non-Newtonian power-law rheology on the medium
instability were studied in [6-10]. However, these
works either do not analyze the gravitational instability
or do not show essential features characterizing the
rheologically stratified medium instability. In the
present work, we report the results of analytical inves-
tigations without the use of rigorous mathematical for-
mulations.

1. Let us consider a structure consisting of a per-
fectly plastic layer (with a density of p, and an effective
viscosity of W, in the domain [0; &,]) overlying a layer
of viscous liquid with a density of p, and a viscosity of
L, in the domain [-h,; 0]. The equations of moment,
mass, and continuity conservation were used for
describing the medium motions. The stress tensor T;;
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(i, j = x, 2) is related to the deformation velocity tensor
g;; by the non-Newtonian power law [11]

-n

T[/ = CE " E,’j,
where x and z are the horizontal and vertical coordi-
nates, the constant C is determined from thermody-
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namic conditions, n is the power, and € = (g, + €., +
1

2{—:3(Z )2 is the second invariant of the deformation veloc-
ity. The effective viscosity | of the power-law liquid is
I-n

determined in this case as t=0.5Ce " .In two limiting
cases, namely a viscous liquid and a perfectly plastic
material, the power is equal to 1 and e, respectively.

It is assumed that the structure of layers is subject to
horizontal extension (or compression), i.e., the basic

flow, for which €, =y (or —y in the case of compres-
sion) and v is a constant value, is specified in this case.
Besides, €,, = —€,, (due to incompressibility of the
medium), and €, = €, = 0 (since we consider pure
shear flow).

At the interface of two layers (z = 0), the conditions
of continuity of velocity, shear stresses, and normal
stresses are specified with due regard for the forces
appearing due to the difference in densities and viscos-
ities near the interface. For modeling various rheologi-
cal situations at the upper boundary of the structure,
both no-slip (adhesion) and stress-free conditions were
considered. The no-slip conditions are specified at the
lower boundary.

In order to study the growth of minor perturbations
of the interface between the layers, let us represent
physical variables (for example, the vertical velocity W)
in the following form:

W(x, z,1) = w(o)exp(ikx + pt), (D

o 2m . .
where ¢ is time, k = T is the wave number, L is the

wavelength of perturbations, and p is the growth rate of
perturbations. The stability problem is reduced to the
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Fig. 1. The growth rate of diapirs p vs. the wave number &
for different values of the ratio of effective viscosities v: (a) 1;
(b) 0.15(c) 1072 () 1073 (e) 10 at Iy /hy = 1 and py — py =
300 kg m™ in the case of rigid upper boundary of the struc-
ture.

analysis of the growth rate of perturbations p for vari-
ous values of the wavelength of perturbations L or the
wave number k, the ratios of effective viscosities of the

Ho

layers v = PT , the ratios of layer thicknesses Z—', and
; 2
the difference of densities p, — p,, It is clear from (1)
that if the p value is such that its real part is positive,
then the layered structure will be unstable. If such p val-
ues are absent, then stability will take place. In order to
illustrate the results of the analysis of a stratified system
instability, the following values of parameters charac-
terizing the salt complex were chosen: h, + h, = 10 km;

B +0,=2x10"Pas;p, =2.5% 103kgm>;and p, =
2.2 x 10? kg m™? are the densities of sedimentary over-
burden and of salt, respectively.

2. Let us consider the case when extension or com-
pression of the medium is insignificant (y < 1077 s7').
In this case, the gravitational instability plays a crucial
role in the development of medium deformations. The
no-slip conditions are specified' at the upper boundary
of the layered structure. The p versus k dependence is
presented in Fig. | for various values of the ratio of the
salt viscosity [, to the effective viscosity of sedimen-
tary overburden ;. The sinuosity of curves character-
izing the growth rate of perturbations in the structure is
determined through the solution of a hyperbolic equa-
tion describing velocity perturbations. It is seen from
Fig. 1 that when the effective viscosity of the upper
layer does not exceed that of the lower layer by very
much, the instability of the layer structure is governed
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Fig. 2. The predominant wave number &* vs. the ratio of
layer thicknesses h/h, for different values of the ratio of
effective viscosities v (a) 1; (b) 0.1; () 1075 (d) 107%
(e) 107* at Py — P2 = 300 kg m™ in the case of rigid upper
boundary of the structure. The arrows indicate a stepwise
change in k*.

by viscous motions; i.e., there exists a mode of maxi-
mum instability and the growth rate of perturbations
diminishes at large and small wavelengths of these per-
turbations. However, when the effective viscosity of
sedimentary overburden exceeds that of salt by several
orders of magnitude, the situation changes and the
instability is governed by plastic deformations; i.e., the
curves of perturbation growth acquire a strong sinuosity
and, for small wavelengths, the growth rate of perturba-
tions asymptotically approach the following constant:

p = 0.25(p, —py)g(hy + hy)/ (1, +1s).

Thus, short-wave perturbations in this structure will
grow exponentially and increase by a factor of 2.7 dur-
ing 870 ka. In addition, as can be seen from Fig. 1, the
growth rate of perturbations p has a maximum value
that does not differ substantially from values of this
indicator at other peaks of the growth rate curve.
Hence, the initial perturbation of the salt—overburden
interface can produce an assemblage of diapirs with a
variable wavelength rather than diapirs with a clearly
predominant wavelength, as in the case of the instabil-
ity of viscous layer systems. This fact can serve as an
explanation for the spatially inhomogeneous distribu-
tion of salt diapirs.

The predominant wave number corresponding to the
maximum value of the growth rate of perturbations first
diminishes and then increases again as a consequence
of a series of jumps (Fig. 2). These jumps are associated
with the sinuosity of the perturbation growth curve and
occur at the moment at which the second, third, etc.,
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Fig. 3. The growth rate of diapirs p vs. the wave number k in the case of a stress-free upper boundary of the layered structure

for v = 0.1, hy/h, =1, py — pp =300 kg m™, and different values of the deformation velocity of the basic flow y: (@) 10~

(b) 1079571 () 1078 571 (@) 10714 571,

peaks of the curve become maximum (i.e., higher than
the neighboring peaks). Since the length of troughs is
governed by the predominant wavelength of perturba-
tion, the predominant wave number increase can
explain the reason for small interdomal distances in
some salt provinces (for example, diapiric uplifts in
Iran [12]).

3. Further, the influence of extension or compression
on the gravitational instability of the layered structure
has been studied. Figure 3 illustrates the curves of per-
turbation growth in the medium under horizontal com-
pression in the case of a stress-free upper boundary of
the structure of the layers. The values of the growth rate
of perturbations p are positive for small values of the
compressive deformation velocity y. The maximum
value of the indicator p increases with the growth of .
At large values of the deformation velocity, the system
passes to the resonance state characterized by a linear
dependence of the growth rate of perturbations on the
ratio of effective viscosities v [8]. We found the asymp-
totic expression for the growth rate of perturbations at
minor values of v and wavelengths:

p = (Y/v)sin(k[h, + h,]).

The indicator p can assume both positive and negative
values depending on the ¥ sign (i.e., extension or com-
pression applied to the layered system) and on the sign
of the sine function. It attains maximum values p,,,, =
abs(Y)/v at the wave numbers k[h| + hy| =1t/2+ m, m =
1, 2, ..., o=. Hence, the instability appearing under hor-
izontal extension or compression of the layered structure
replaces the gravitational instability for the deformation
velocity values of the basic flow yexceeding 1016 5!,
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Thus, considering that the effective viscosity of the
sedimentary overburden exceeds that of salt by far, one
can conclude that the gravitational instability of a rheo-
logically stratified structure is governed by the behavior
of a perfectly plastic material. Although the rheology of
a sedimentary complex is much more complicated than
the rheology of a perfectly plastic material, the investi-
gation of a simple rheologically stratified structure rep-
resents a substantial step towards the understanding of
deformation processes in sedimentary rocks.
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