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ABSTRACT

The propagation and dispersion of compositional and particle-driven gravity currents intruding into a
uniform ambient flow are analysed. Both two-dimensional (line source) and axisymmetric (point source)
releases are investigated. Appropriate theoretical models to describe both the fluid motion and resulting
deposit density distribution are developed. We show that the behaviour of the current depends on a non-
dimensional parameter that represents the ratio of the advected flux of the ambient flow to the downward
particle flux to the boundary. Relationships for the maximum upstream penetration distance are derived in
terms of that parameter. The theoretical results are compared successfully with data from laboratory experi-
ments for the upstream and downstream lengths of the current as functions of time, the final density of
deposit on the floor and the maximum upstream penetration of the current. A few numerical examples are

discussed.

INTRODUCTION

Particle-laden flows play an important role in many
different natural and industrial situations. Due to the
density difference between the particles and surround-
ing fluid, the particulate matter i5 not only advected
with the flow but also sediments through it. This relat-
ive motion both influences the evolution of the flow
and also determines the deposition pattern of the par-
ticulate matter.

Most studies of particulate flows have concentrated
on situations in which the ambient fluid is quiescent,
and much has recently been uncovered about the flow
of particle-laden gravity currents intruding into a less
dense, otherwise quiescent ambient (see, for example,
Simpson, 1997 or Huppert, 1998 for reviews of these
situations). The aim of the present contribution ig to
consider the advection by and sedimentation from
a particle-laden current intruding into an ambient
which is moving with a uniform horizontal speed far
from the current. Such a flow could result in a channel
from an applied horizontal pressure gradient, or could
represent tidal motions in the ocean, or winds in the

atmosphere. The results will thus be relevant to pollu-
tion discharge in channels (Huppert, 1997), turbidite
formation in the oceans (Dade & Huppert, 1994) and
the dispersion of either ash from a volcanic cloud
(Ernst et al, 2001) or metalliferous particles from
hydrothermal plumes (Baker ez al., 1995).

The chapter considers two different geometrical situa-
tions: two-dimensional and axisymmetric. Put another
way, we consider the influence of a uniform ambient
flow on a line release and a point source release of par-
ticulate matter. The resulting flow could be followed
(in all probability) by solvingthe relevant shallow-water
equations. Instead we develop simpler, but powerful
‘box-models’ in which hesizontal variations within the
current at any particulargdne are ignored (Huppert &
Simpson, 1980; Dade & Huppert, 1994). There is gen-
erally good agreement between the results of such
box models and the more rigorous shallow-water
approach (Hallworth e al., 1998). In addition, the link
between such integral models and the shallow-water
equations has been recently uncovered by Hogg er al.
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(2000). In the box-model formulation, the presence of
an ambient flow can be eliminated by considering a
frame of reference that translates uniformly down-
stream with velocity U. Within that frame the current
spreads as if in a quiescent medium, in either a two-
dimensional or axisymmetrical fashion as appropri-
ate. However, especially in the axisymmetric situation,
the radial spreading in a uniformly translating frame
can lead to rather complicated patterns when viewed
in the fixed frame (of the stationary floor).

Here we first consider the evolution of composi-
tional currents where the density difference is due to a
dissolved component, such as salt. This sets up part of
the theoretical framework needed to analyse particle-
driven currents, which are then described in detail.
Experimental verification of the quantitative theoreti-
cal results is then presented, followed by a similar
treatment of theoretical aspects of the axisymmetric
situation. The main conclusion of our study, along
with a brief summary and some practical applications,
appear in the discussion and conclusions.

TWO-DIMENSIONAL BOX MODEL

The dynamics of large-scale intrusions of dense fluid,
spreading over an impermeable, rigid horizontal bound-
ary, are modelled by balancing inertial and buoyancy
forces. Such a theoretical approach has been employed
by a number of investigations of buoyancy-driven
phenomena in both laboratory and natural environ-
ments (Simpson, 1997). It is necessary to include the
influence of viscous forces only when the current has
spread over a considerable distance and becomes
sufficiently thin that an appropriate Reynolds number
is less than 2.25 (Bonnecaze et al., 1993). The motion
of buoyancy-driven intrusions is predominantly hor-
izontal since the vertical accelerations are negligible.
This observation has been exploited in the develop-
ment of mathematical models of the flow which suc-
cessfully reproduce the experimental measurements
(e.g. Rottman & Simpson, 1983; Bonnecaze et al.,
1993). However it is possible to derive a simpler repres-
entation of the flow which avoids the need for numer-
ical solution of partial-differential equations and yet
produces results in good agreement with the experi-
ments. The intrusion is analysed on the assumption
that at all times the salt concentration, or particle dis-
tribution, and the height of the current are uniform in
the horizontal direction (e.g. Dade & Huppert, 1994;
Hallworth et al., 1998). The resulting description is
termed a box-model representation because the shape

of the current is represented by an evolving series
of rectangular boxes. In the following subsections,
following Hallworth ez al. (1998), we derive the box
models appropriate to compositional and particle-
driven flows in the presence of a uniform mean flow,
which inhibits propagation upstream and promotes
propagation downstream.

Compositional currents

We consider the instantaneous intrusion of a finite
volume V of fluid with a density p, into an ambient
fluid of lower density p,. The intruding fluid spreads
in a two-dimensional manner along the horizontal
boundary underlying the ambient fluid, its motion
being driven by gravity acting on the density differ-
ence. The ambient fluid flows uniformly in a hori-
zontal direction. The gravity currents spread in both
the downstream (x) and the upstream (y) directions, as
indicated in Fig. 1(a).

On the assumption that there is no entrainment of
ambient fluid into the gravity current, the conserva-
tion of volume may be written as

I=x+y=Alh, (1)

where / is the total length of the current, 4 is the
volume per unit width and /4 is the thickness of the
current, which is assumed to be uniform along the cur-
rent in this box-model formulation. Conditions on
each of x and y (or more accurately, their rates of change)
link the frontal velocity with both the ambient velocity
and the local wave velocity based on the excess density
of the current. (These are the Froude number con-
dition which was studied theoretically by Benjamin
(1968) and experimentally by Huppert and Simpson
(1980).) Hence we may write that

gl S i R . B B

dt dr
(2a,b)

where g’ = (p, — p,)g/p,, is the reduced gravity of the
current, U is the mean velocity experienced by the cur-
rent in the x direction and Fr is the Froude number
which is assumed constant and equal to 1.19 (Huppert
& Simpson, 1980). Previous studies have suggested
that the velocity U is a factor of 0.6 times that of the
vertically-averaged ambient flow (Simpson & Britter,
1980 and see the experimental section below).
Integrating Eqs (1) and (2), subject to the initial con-

ditions that x = y = 0, we obtain
x=Ut+ yt% and y==Ut+ yt-%,

(3a,b)
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where
2agisy
Y = 3(3Fr)3(g’4)s. )

By differentiating Eq. (3b) we predict that the max-
imum distance upstream that the current propagates
is given by tFrX(g’A/U?), which except for the pre-
multiplicative constant can be quite simply obtained
by dimensional analysis.

Inspection of Eq. (3a, b) indicates that there is a
timescale

T, = (y/U)?, ®)

which corresponds to when the buoyancy-related
and ambient velocities are comparable. For times less
than 1, the current propagates mainly due to buoy-
ancy, and the effects of the external flow make a
smaller contribution; for times in excess of T, external
flow effects are more important than the buoyancy.
In the experiments described below, this timescale is
approximately 200 s, whereas a typical duration of an

3 03 g3 0

Ambient flow velocity (cm s'l)

experimental run was around 60 s, beyond which the
gravity current became too thin and weak to be dis-
tinguished against the background flow. (After this
time the Reynolds number of the current was also too
small for the above theory to be appropriate: using
the results in appendix B of Bonnecaze et al. (1993),
obtained by balancing forces, we can evalyate the
appropriate Reynolds number as (4%/y>v)t~3, where
v is the coefficient of kinematic viscosity. Bonnecaze
et al. (1993) show that viscous forces dominate the
flow when this Reynolds number falls below a value
of approximately 2). It was thus impossible for us to
test robustly both of the terms of Eq. (3) (in the form
written).

It is therefore worthwhile concentrating on the
alternative representation

lEx+y=2yt% and

which evaluate the evolution of the length and twice
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the displacement of the centroid from its initial posi-
tion. Introducing the lengthscale

= VU2 (7)
and the non-dimensional variables

L.=1, Z,=(x-yll. and T.=t,

(8a,b,¢)

we plot all our experimental data in Fig. 2 and com-
pare these to our theoretical predictions

L,=2T; and Z. =2T,  (%a,b)

We note that the non-dimensionalization of the exper-
imental data which allows it to be collapsed so success-

into an ambient flow. The theoretical
025 03 predictions are shown as solid lines in
G each graph.

fully requires the velocity U to be 0.6 U, the value of
the mean ambient flow. The statement that a gravity
current only experiences 0.6 of the mean flow has been
suggested previously by Simpson and Britter (1980)
and in this study we find Turther strong experimental
evidence of this relationship (see below). We note that
Eq. (9) indicates that the total length of the current
increases as the two-thirds power of the time while
the centre of the current propagates downstream at
0.6 times that of the ambient velocity.

Particle-driven currents

The development of a box model for the propagation
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of a monodisperse particle current is similar to that
for a compositional current. However its density is
progressively reduced due to particle sedimentation,
which in turn leads to a reduction in flow speed. The
Froude number conditions are now written as

dx r AL
i U +Fr(g,0h)> and

Y U+ Frigioht,

dr
(10a, b)

where ¢ is the volume fraction of particles and g;) =
(p, — p,elp, is the reduced gravity of the particulate
phase which has density p.. The sedimentation of par-
ticles from the vertically well-mixed current though a
basal viscous boundary layer is modelled by a con-
stant settling velocity, ¥, on the assumption that the
deposited particles are not re-entrained

d(o4) _
Rk s (11)

The system of Egs (10) and (11), together with an
expression for the conservation of mass (Eq. 1), are
integrated subject to the initial conditions x=y =0
and ¢ = ¢,. Identifying the dimensionless length and
timescales

10Fr(g" 0, 4%): |
s (g,,¢0 ) and = S5A
% LV
(12a,b)

which are then used to define L, Z and 7T as the non-
dimensional variables for the length, twice the dis-
placement of the centroid and time, we obtain the
relationships (in terms of the variable of integration s)

o EIS

— =(1-L2)?2 (13a

o ) )
L 1

T:J il (13b)
0 1-s2
and

7 =AT, (13¢c)

which are graphed in Fig. 3 along with our experi-
mental data.

In these expressions there remains a single non-
dimensional parameter

s 1004
Ly,

(14)

In contrast to the compositional situation (see above),
the current ceases (¢ = 0) when /=1/_, a value that is
independent of the ambient flow speed, though we see
from Eq. (13b) that this length takes (theoretically) an
infinite time to achieve. The magnitude of A represents
the influence of the mean flow on the runout of the
gravity current and is proportional to the ratio of the
mean flow to the settling velocity of the particles.
More precisely, if we re-write 4 as the product of the
runout length /_ and the height of the fluid layer when
this length is attained, A = /4_[_, then the parameter A
may be seen to represent the ratio of the horizontal
flux of fluid, Uh_, to the vertical settling flux of par-
ticles, V. /_. When the settling flux is large compared to
the flux of the mean flow (and thus A is much less than
unity), the evolution of the gravity current is only
weakly affected by the motion of the ambient. Con-
versely, when A is much greater than unity, the gravity
current is strongly influenced by the mean flow.

The distribution of the deposit arising from these
particle-driven gravity currents may be calculated
from the box model analysis on the assumption that
the particles sediment out of the current uniformly
along its length. When there is no ambient flow, the
gravity current propagates symmetrically in the
upstream and downstream directions until it attains
the maximum length (7). In contrast, when there is an
ambient flow, the centroid of the current is advected
downstream (cf. Eq. (13c)). Thus the resulting deposit
is asymmetric about the initiation line of the two-
dimensional current and extends over a considerable
distance downstream. The deposit, expressed as the
integrated mass flux per unit area delivered to the
bottom while the current is overhead, is given by

s

n@)=mVJ odr, (15)
’\

where the limits of this integral correspond to the
times at which deposition starts and finishes, denoted
by ¢, and ty respectively. We reiterate that a box model
of the gravity current is being used in which there
is uniform sedimentation along its entire length.
Furthermore the length of the box is increasing whilst
its centroid is advected downstream. Therefore at a
particular location deposition starts when a front of
the current first passes and ceases when the rear of the
current is swept by. Substituting Eq. (12a, b) into
Eq. (15), we obtain the implicit relationship

WX P w0 3% 94

, (16)
el

s
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where L, and L, are the values of the dimensionless
length L at non-dimensional times of 7' and Ty which
correspond to the dimensional times 7, and 7.

We plot some illustrative profiles of the deposit as a
function of position for a range of values of A in Figs 4
and 5. As notes above, when there is no ambient flow,
U = A =0, the deposit distribution is symmetric about
the point at which the suspension of particles is
released. However, as the magnitude of the ambient
flow increases relative to the settling velocity of the
particles, the profiles become increasingly asymmetric.

Using this simple model of the deposit, we can
straightforwardly calculate numerically the maximum
upstream distance, d,, over which the current pro-
pagates, as a function of A. We present the results in

Fig. 6 and find very good agreement between the
theoretical curve and the experimental observations
(except at A = 0, corresponding to zero flow, the situ-
ation in which the maximum upstream point is not as
sharply defined, as is seen from Fig. 4). From Egs (12c¢)
and (16) it is possible to calculate asymptotic repres-
entations of this maximum upstream distance in the
regimes A << 1 and A >> 1. Using these expansions we
may formulate an approximate composite expansion
which is given by

d. “Te(flogA - eI A

4y
L 1+ A

which is indistinguishable from the full numerical
solution.

. amn
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EXPERIMENTS

Experimental set-up

The experimental apparatus used is shown schematic-
ally in Fig. 1(a). A 9.4-m long Perspex channel having
a rectangular cross-section 26-cm wide and 50-cm
high was filled with water to a depth H of 28.7 cm. A
uniform ambient flow was established by pumping the
water at a fixed rate in a continuous loop via a hose
connecting inlet and outlet diffuser boxes situated at
either end of the channel, thereby giving a working
flow section of 8.4 m. Each diffuser box comprised
a flared section packed with 1-cm diameter plastic
balls and a horizontally aligned honeycomb section,
designed to introduce and withdraw the flow evenly
across the whole cross-sectional area of the channel.
Profiles of the flow velocity as a function of depth were
measured at several distances along the medial plane
of the working section using a Sontek acoustic
Doppler velocimeter (Lane et al, 1998). This non-
intrusive device focuses an acoustic beam on a 0.5-cm?
fluid sample volume and digitally translates the
reflected signal into three mutually perpendicular
velocity components, which we orientated to coincide
with the major axes of the channel. Both the vertical
and horizontal cross-stream velocity components were
negligible. The horizontal downstream velocity com-
ponents at various positions are presented as velocity
profiles in Fig. 1(b). Each profile displays a fairly uni-
form velocity, U, averaging 2.9 cm s~ in the interior of
the flow which reduces in value to zero at the channel
floor through a lower boundary layer, approximately
2-cm thick. A reduction in flow velocity is also appar-
ent as the free surface is approached. Integration of
these flow profiles yielded an average volumetric flux

as a function of A = 10UA/( Vxl;:).
The calculation of the theoretical
curve is described in the text.

of 1850 cm®s™!, which corresponds to a Reynolds
number of approximately 7000.

The conventional lock-release method of instanta-
neously initiating a gravity current of fixed volume
into a stationary ambient fluid was impossible to
achieve in the present situation without severely dis-
rupting the ambient flow. An alternative release mech-
anism was therefore designed whereby a fixed volume
of dense fluid, initially held in a reservoir above the
midpoint of the channel, was allowed to drain rapidly
(in less than 1 s) into the flow stream through a 3-cm
diameter tube positioned just beneath the free surface.
The emergent jet of dense fluid inevitably entrained a
significant volume of ambient fluid during its descent
and subsequent lateral deflection upon impinging on
the solid channel floor.

On testing our release mechanism in quiescent
ambient conditions we found that the jet split equally
and extended roughly 30 cm either side of the central
release position before buoyancy forces began to dom-
inate the motion. Entrainment of ambient fluid during
the early momentum-dominated phase was measured
to cause a dilution of the released fluid by a factor of
approximately 20. This estimate was achieved by trap-
ping a released current between vertical barriers, posi-
tioned either 50 or 100 cm on either side of the entry
point. When confined in this manner, the dense flow
eventually settled to forma layer of constant composi-
tion. By measuring the height of this layer, its volume
could be calculated and compared with the initial vol-
ume. In each case our measurements indicated that the
released fluid was diluted by a factor of 20 + 2 through
entrainment of ambient fluid during an initial phase
in which the dynamics of the jet is dominated by the
momentum of the intruding fluid, rather than its
buoyancy.

In the calculation of the length and time scales for
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the compositional currents (Eqgs (5) and (7)), the initial
area, A, does not occur separately from the initial total
buoyancy, g’4. The buoyancy is conserved under mix-
ing and so the dilution described above does not affect
the non-dimensionalization. However for the particle-
driven currents, the initial area does occur separately
from the total buoyancy (in Eq. (12) for example) and
so a knowledge of the initial dilution is vital for the
scaling of these experimental results.

Measurements were made of the horizontal distance
to the front of the current from the release point as
functions of time in both the downstream (x) and
upstream (y) directions by marking the position of the
nose of the current at 3-second intervals. In the case of
particle-driven gravity currents, the final distribution
of sedimented particles was measured by recovering
the mass of particles within a 5-cm-wide strip across
the width of the tank at various distances from the
release point.

Compositional currents

Compositional currents of different initial densities
were generated by releasing 2 litres of water contain-
ing 50 g, 200 g and 400 g of dissolved salt into the
ambient flow, resulting in initial values of g’ of 17.1,
64.4 and 121 cm s™= respectively. Solutions of each
concentration were also released into a quiescent
ambient for comparison. The currents released into a
uniform ambient flow advanced both upstream and
downstream, but were markedly asymmetrical. In the
downstream (x) direction, the current was noticeably
thicker than its counterpart in a static environment,
and propagated with an increased velocity. As dis-
tance from the release point increased, the velocity of
the current gradually decreased to a value approach-
ing 0.6 times the mean ambient velocity (see above).
In the upstream () direction, the current was signific-
antly retarded by the opposing ambient flow, and
eventually came to rest. Prior to final arrest, the cur-
rent profile was observed to undergo a transition from
the typical head and tail of a gravity current intruding
quiescent surroundings into a much thinner wedge-
shape within the lower boundary layer. Once in this
form, dense fluid was continually stripped away from
the upper surface of the arrested wedge by the action
of interfacial eddies.

In Fig. 2, we plot the relationships (9) and note that
the agreement between the theoretical predictions and
the experimental data is good. Hence the relationships
(3) for the upstream and downstream position of the
current can be used with confidence.

Particle-driven currents

Particle-driven gravity currents were generated by
releasing well-mixed suspensions of silicon carbide
particles in water. These particles are fairly mono-
disperse, non-cohesive and have a density p,=3.217 g
cm™. As a precaution, a small amount of Calgon was
added to the suspension to prevent particle agglomera-
tion. Three different particle sizes were used, with
mean diameters of 23, 37 and 53 um. Details of the size
distribution with each grade are reported in Huppert
et al. (1991). For each particle size, experiments were
run with four different initial particle masses of 50 g,
100 g, 200 g and 400 g suspended in 2 litres of water.
Upon release, the particle-driven gravity currents
propagated with decreasing velocity in both the x and
y directions while simultaneously depositing a sedi-
ment layer over the channel floor until all the part-
icles had settled out, whereupon the current ceased
to exist.

Velocities of the current at any point achieved by
each flow were observed to increase monotonically
with increasing initial mass of suspended sediment,
and the current attained progressively longer max-
imum distances from the release point with decreasing
particle diameter. The currents released into an ambi-
ent flow were markedly elongated in the downstream
direction. The development of an arrested wedge of
dense fluid in the upstream direction was not as notice-
able as that seen in the compositional currents, since
particles quickly sedimented from thinned flows which
are formed in the slow moving lower boundary layer
of the opposing stream.

We plot in Fig. 3 the theoretical curves (Egs 13b, ¢)
and the experimental data, non-dimensionalized
according to the scaling suggested by the box model.
We note that the non-dimensionalization collapses the
experimental data and that there is very good agree-
ment with the theoretical predictions, again con-
firming the power of the box model approach. The
relationship (13c) suggests that the position of the
centroid should depend linearly on A7. However, as
noted above, we are uncertain as to the exact value of
U to use in the definition of A, although previous
smaller studies (Simpson & Britter 1980) have indic-
ated that U = 0.6U, where U is the mean velocity in the
channel. Figure 3(b) presents experimental data on
the position of the centroid against A7/U. From the
gradient of the fitted curve we find that U= 1.8 cm s7!
which corresponds to U= 0.62U. In our experiments,
the velocity in the boundary layer attains 62% of the
mean ambient velocity at a distance of approximately
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7 mm from the floor. Most of the currents were con-
siderably thicker than this. It is our opinion that the
ratio of around 0.6 (between U and U) is independent
of the thickness of the current as long as this is con-
siderably larger than the thickness of the boundary
layer.

Once all the particles had settled out, the final length
of the deposited layer was recorded, and its mass dis-
tribution measured by ‘vacuuming up’ the sediment
using a siphon tube within a 5 cm X 25 cm rectangular
‘pastry cutter’ placed over the layer at specific inter-
vals. The mixture was collected in a beaker, the water
decanted and the particles dried and weighed to deter-
mine the mass of deposit per unit area. As a check on
the sampling method, the total mass of sediment was
recovered by integrating the measured deposition
profile and was generally found to be within 1% of the
initial value. We compare some of the experimentally
measured deposit profiles with the theoretical predic-
tions for four values of A in Fig. 5. The agreement is
seen to be very good and in particular the asymmetry
predicted by the theory is accurately reflected by the
data.

AXISYMMETRIC CURRENTS

We now develop a theoretical model of the radial
spreading of an intrusion of relatively dense fluid
within a uniform ambient flow. In the absence of an
ambient flow, the dense fluid propagates radially away
from its source. Its rate of propagation may be mod-
elled using a box-model approach which has been
demonstrated to yield good agreement with experi-
mental measurements for both compositional currents
(Huppert & Simpson, 1980) and particle-driven cur-
rents (Dade & Huppert, 1995; Bonnecaze et al., 1995).
In this section we extend the box-model analysis to
incorporate the effect of a unidirectional flow. The
spreading of dense fluid is no longer radial and we
calculate the locus of points which correspond to
the position of the front of gravity current. The gravity
current never reaches positions outside this locus.

Axisymmetric models of gravity currents may be
equally well applied to flows within an angular sector,
provided that the boundaries of the sector have only a
negligible influence. (This is equivalent to requiring
that the lengthscale associated with the gravity cur-
rent be much larger than that of the boundary layer.)
Hence this study may be applied to discharges of dense
fluid at the boundary of a relatively wide channel flow,
such as a river or an estuary.

Guided by the success of the approach outlined
above, in the following we develop box models of
gravity currents driven by a compositional difference
or the suspension of particles in the presence of a mean
flow. Our emphasis is to establish the extent of the
region within which the intrusion will propagate and,
for particle-driven gravity currents, to calculate the
distribution of the deposited sediment.

Compositional currents

We consider the instantaneous intrusion of a finite
volume of fluid with a density, p, into an ambient fluid
of a lower density, p,. The intruding fluid spreads
along the horizontal boundary underlying the ambient
fluid, its motion being driven by gravity. The ambient
fluid flows uniformly in a horizontal direction. We
define horizontal coordinate axes such that the x-axis
is aligned with this uniform flow and the y-axis is per-
pendicular to the flow. As in the two-dimensional case,
it is convenient to formulate the equations governing
the evolution of the flow in a frame of reference which
moves with the velocity of the centroid of the intru-
sion. In this frame the gravity current spreads radially
in the form of a uniform disk whose radius and height
change with time. Denoting the radial distance from
the centroid by r, the conservation of fluid volume of
the current may be expressed by

r’h=7V, (18)

where / is the height of the current and ¥V is twice the
volume per unit (radian) angle, which remains con-
stant during the evolution of the current. (The total
volume is wV.) The rate of radial expansion of the
gravity current in this moving frame is given by

dr 1

e [ 2 4 2

T Fr(g'h)2, (19)
where g" = (p,. - p,)g/p,, is the reduced gravity of the
current and Fr is the frontal Froude number, which
is assumed constant. Substitution of Eq. (18) into
Eq. (19) and integratioi, subject to the initial con-
dition that r = 0 at 7 = 0, yields

r= (2Fr(g’V)21)e. (20)
Denoting the position of the centroid by X we write
=t 21

where U is the velocity experienced by the gravity
current in response to the ambient flow. (For the
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two-dimensional gravity currents it was established
that Uwas 0.6 of the mean flow.) At this stage it is con-
venient to identify the following time and length scales
which may be used to non-dimensionalize the relation-
ships (20) and (21),

t,=2Fr(gV)IU?  and  r,=2Fr(g'V)U.

(22)

The timescale ¢, corresponds to the time at which the
velocity of the gravity-driven motion and the uniform
flow are comparable, while the lengthscale r, is the
downstream distance moved after this time. Writing
the dimensionless variables as R, = 1/r,, X’a = X/r, and
T, = tlt, we find that

R=T: and X,=T, 23)
Hence the boundary of the spreading gravity current,
expressed in terms of a fixed frame of reference in
which X, and Y, are dimensionless horizontal co-
ordinates, is given at any particular time by

(X,-X)*+Y2=R2 24)

We may therefore determine the boundary of the
region within which the current propagates. In para-
metric form it is given by evaluating the full derivative
of Eq. (24) with respect to T, and setting dX,/dT, and
dY,/dT, to zero, which yields

X=1-1 and YP=g-1 (25)

where (X, Y) are non-dimensional co-ordinates. In
these non-dimensional variables the region is given by
the parabola

Y2=X+1. (26)

Particle-driven currents

A conceptually similar model may be developed to
describe the gravity-driven flow of a particle-laden
intrusion within a uniformly flowing ambient. This
motion, however, is complicated by the sedimentation
of particles from the current to the lower boundary
which progressively reduces the density, and hence
the buoyancy-induced propagation velocity is also
reduced. Box-model equations for the conservation of
fluid volume and the rate of radial propagation may
be formulated in a frame of reference moving with
the centroid. They yield

r’h=V 27)

and

dr sl
5 et (28)

Particle settling is modelled in an analogous manner
to the two-dimensional case

d
— (Vo) = —V.or.
e (V) S or (29)
Thus from Eqs (28) and (29) we find that
V 4
(&] =1- —Sr—l’ (30)
o 8Fr(g,00/ )

where ¢, is the initial volume fraction of particles.
Hence we use the length and timescales

ol—

il
8Fr(g,007) | 4y
r=|— and e
i v, N

@31

to non-dimensionalize the governing equations. The
lengthscale r, corresponds to the radius of the particle-
driven intrusion at which the volume fraction van-
ishes. Defining the dimensionless variables as R, =
rlr,, X, = Xlr,, T,=1tlt, and ® = ¢/¢, and integrating
the equations of motion, we obtain

R,=tanh'T,, (32a)
® = sech*T, (32b)

and
X,=AT, (32¢)

In these expressions there remains a single dimension-
less parameter,

k-4UV 3
g r;Vx’ ( )

which measures the magnitude of the horizontal flux
of fluid against the vertical settling flux. (It is ana-
logous to the parameter A introduced above.) These
equations govern the temporal evolution of the radius
and volume fraction of particles of the particle-laden
cloud in a frame moving with the centroid. In a fixed
frame of reference, the perimeter of the cloud is given
by

X-AT)*+ Y2= R, (34)

The region within which the gravity current propag-
ates can now may be calculated. It corresponds to the
region within which particles are deposited from the
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X

Fig. 7. The boundary of the region within which the particle-
driven gravity current propagates for A = 0.5, 1, 2.

current. The boundary of this region, in parametric
form, is given by

sech?t
X =- o + AT (35a)
and
i
hég |2
¥ = (tanht = %J (35b)

We plot these loci in Fig. 7. The maximum upstream
distance, X, , propagated by the current may be cal-
culated by finding the value of the parameter t for
which Y =0 (Eq. 35b) which is then substituted into
(Eq. 35a). The distance, X,,, may be evaluated in the
regimes of weak (A << 1) and strong (A >> 1) ambient
flows relative to the initial buoyancy-induced speed
of propagation. We find that

X,=-1+1+mIn2-In}) —%7»2+ oY (A<<1)

m-

(36a)

1 It 1
“a*m”’(x&] O
(36b)

The distribution of the deposit arising from the flow of
the particle-driven intrusion may be calculated in a
manner analogous to the two-dimensional case. It is
assumed that the particles sediment out of the flow
uniformly throughout the area covered by the particle-
laden cloud. Therefore at a dimensional location (x, y)
the deposit measured in mass per unit area is given by

7}.
n, y) =1, ppqu)OJ @ dr, (37

T,

5

where 7' and T are the dimensionless times at which
sedimentation starts and finishes at this particular
location. If the dimensionless position, (X, Y), falls
outside of the locus given by Eq. (35a, b) there is no
deposit. Conversely if the position lies within the locus
the deposit is given implicitly by

R
4Vpp . Rg ?

n&X,Y)= r,z [R,) indierod | (38)
Z R

s

where the terms within the square bracket are evalu-
ated at the upper and lower limits of R,and R, which
are the dimensionless radii of the intrusion corres-
ponding to the times T, and T, respectively. In Fig. 8
we plot contours of the deposit, noting that the degree
of asymmetry is a function of the parameter A.

DISCUSSION AND CONCLUSIONS

We have investigated the flow and dispersion of small,
heavy particulate matter in a uniform horizontal flow.
We analysed the current using the box model approx-
imation which yields a simple analytic formulation.
We considered both two dimensional (line source) and
axisymmetric (point source) releases of the particles
and experimentally verified our quantitative results
for the former geometry.

In the two-dimensional situation the flow varies
with the parameter A = 10UA/(I2 V), as given by Eq.
(14), which represents a ratio of the advective flux of
the flow to the downward particle flux within the flow.
The maximum upstream penetration is given (to a
high degree of approximation) by Eq. (17). The part-
icle concentration within the current as a function of
time and position is given by Eq. (13) and the final
deposition density by Eq. (16). In the situation where
the particle dispersion is unconfined (axisymmetric),
the governing parameter is k=4UV/(r37VS) and the
horizontal extent of the current is given by Eq. (35)
with the deposit density represented by Eq. (38).

The upstream penetration against the main flow
can have important (and to some people surprising)
consequences. Ms Mary-Louise Timmermans (HEH’s
graduate student) tells us that when she and her med-
ical father visited Dawson City, Yukon in Northern
Canada, he was approached by the town authorities
about an outbreak of disease which seemed to occur
after the town’s sewerage outlet was discharged into
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Fig. 8. (a) Contours of the distribution of the deposit

per unit area and the (thicker) bounding curves for
(a)A=0.5,(b) A =1and (c) A = 2. The deposit has been
non-dimensionalized with respect to 4¥p,/r3. The contours
are shown at intervals of 0.1 in the range 0—0.6 for (a) and
(b), and 0-0.4 for (c).

the town river but downstream of the water-supply
intake. Ms Timmermans had no difficulty in explain-
ing the problem!

In order to give some quantitative feeling for our re-
sults, consider now the following examples. For each
of them consider the particulate matter to be 20 um in

diameter and have an excess density of 1 g cm, which
implies a settling velocity in water of 0.022 cm s
A suspension of such particles with concentration 5%
by volume and cross-section (in the two-dimensional
situation) of 100 m? leads to a length-scale [ of
1.1 km. In a uniform flow (such as the tides, for example)
of 10 cm s7!, A =0.25 and the particle-laden current
propagates upstream over a distance d, of 200 m. If,
instead, a total of 10°> m?® of suspension of volume con-
centration 5% is instantaneously released from a point
source in the same uniform flow the radial scale r is
180 m, A = 0.2 and the upstream penetration length is
120 m.
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