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1. The Earth

Since antiquity there has been consideration and speculation about the Earth on which

we live. How did it form; how does it evolve; how can its riches be exploited? It was rel-

atively easy to understand some of the fundamentals of the enveloping atmosphere, of

order 10 km thick, because of its optical transparency. Some of these fundamentals and

the ensuing consequences are described in Chapters X and Z by Linden and McIntyre.

Satisfactory investigations of the oceans, which cover 70% of the globe to a mean depth

of 4 km, were more difficult. Some of these are described in Chapter Y by Garrett. The

“solid” Earth, of mean radius 6371 km, whose volume and mass greatly exceed that of

either the atmosphere or the oceans (see Table 1), has been the most difficult to examine.

In large part this is because almost all of the globe is inaccessible to direct observation.

Inferences have to be drawn from observations at (or near) the Earth’s surface, appro-

priately combined with theoretical reasoning. Fluid mechanics plays a considerable and

ever increasing role in this investigation.

The relatively new subject of geological fluid mechanics is concerned with applying

fundamental fluid-mechanical concepts to following the motion of the fluid material that

upon either solidification or sedimentation become the rocks that make up the Earth. A

full understanding of the subject comes from a combination of theoretical analysis, data

from laboratory experiments and field observations; and this breadth of essential input
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is partly what has made development of the area so exciting in the last decades of the

millennium.

Much of the subject is motivated by the motions of: magma – the geologist’s term for

fluid rock when within the Earth; or lava – the name for magma erupted from volcanoes

at the surface of the Earth; or particulate suspensions in either the oceans or atmosphere

due to a variety of natural processes including volcanic eruptions. Both chemically and

physically, magma (and lava) can vary enormously from one location within (or on) the

Earth to another. The major constituent, silica, can be as low as 45% or as high as 75%,

which might be compared with the very much smaller range of the major constituents of

the atmosphere, nitrogen and oxygen, or those of the oceans, water and salt. The viscosity

varies over many orders of magnitude with both composition and temperature. A silica-

poor, high-temperature magma may have a viscosity as low as 5 x 10−6 m2 s−1, while a

silica rich, low temperature magma may have a viscosity of 108 m2 s−1 or even more as

it finally solidifies. In detail, many magmas are no doubt non-Newtonian, and the values

above are but constructs. However, much can be learnt from purely Newtonian models

of magma and lava flows and much, but definitely not all, of the material presented in

this chapter is developed on the basis of Newtonian fluid mechanics, which is a good

approximation in many cases.

An extensive terminology for magmas and lavas has developed, based mainly on their

chemical composition. Some understanding of this (not always uniquely defined) termi-

nology is necessary to read the geological literature. For the purposes of this chapter,

however, it suffices to define two of the most common types. Basalts are magmas derived

from the Earth’s mantle and are composed of approximately 50% silica, have tempera-

tures between 1100 and 1250◦C, densities between 2.60 and 2.75 g cm−3 and viscosities

between 0.003 and 0.1 m2 s−1. Rhyolites are magmas that can become granite on
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solidification within the Earth and originate from melting of the continental crust or

by chemical evolution of basalt. Rhyolites have a silica content of between 70 and 75%,

have temperatures between 700 and 1000◦ C, densities of approximately 2.3 g cm−3 and

viscosities between 1 and 108 m2 s−1.

The formation of the Earth (and the other terrestrial planets) was a by-product of the

formation of the Sun. The Sun, along with a number of stars, was formed by gravitational

instability of the dense, rotating interstellar molecular medium. It is commonly believed

that the terrestrial planets then grew by agglomeration of so-called planetesimals, which

formed in the solar nebula and ranged in size from a few metres to a few thousands of

kilometers. Calculations indicate that by this process a body of 1023 kg can result in

about 105 years. Of the order of 100 such planetary embryos then merged in the next

108 years to form the early Earth. During this period giant impacts occurred between

bodies of similar mass, which caused melting and reconfiguration of the Earth to great

depths. One of these giant impacts is believed to have resulted in the orbital injection

of material from which the Moon formed. These processes ceased about 4.5 x 109 years

ago, the date recognized as the ‘birth’ of the Earth as we know it today.

It is generally believed that after each giant impact the Earth was left molten. Cooling,

by radiation into space, first formed an outer crust, though no geological record remains

of this early crust. The current continental crust formed later, beginning around 4 x 109

years ago, and is now typically between 25 to 40 km thick. Oceanic crust, which is much

younger and has been frequently recycled, is only about 5 km thick. At the base of the

crust lies the Mohorovičić discontinuity (known after its discoverer) or Moho for short. Its

existence was identified by its ability to reflect and scatter seismic waves, an important

tool in the investigation of the physical and chemical properties inside the Earth. The

region between the Moho and a depth of 670 km is known as the upper mantle. At this
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depth a phase transition occurs and below this, to a depth of 2920 km, extends the lower

mantle. The mantle is rich in silicates with the most common upper mantle mineral being

olivine, which at its simplest is a solid solution of magnesium and iron silicate. Below the

mantle is the iron-rich liquid outer core, as first announced by Jeffreys in 1926 (see figure

1). At the centre of the Earth there is a solid inner core which is closer to pure iron than

even the outer core and currently extends to a radius of 1221 km. The existence of this

solid inner core was first suggested in 1936, from seismic evidence, by Inge Lehmann,

who died recently in her 105th year. This differentiation into a core dominated by iron

and a mantle dominated by silica occurred when the Earth was molten and the heavy

iron ‘sank’ to the centre.

Of course virtually no part of the Earth is static – from the inner core to the outer

stratosphere it is almost all in motion, in some parts quite vigorous. The temperature

of the actual centre of the Earth is currently somewhere between about 5000 and 6500◦

C (which represents a fascinatingly large range of uncertainty about a particular and

important geophysical quantity). The temperature at the boundary between the inner

and outer cores is thought to be about 250◦ C lower. It has been suggested that this

temperature difference drives convection in the inner core, though there is as yet no

observational evidence for this. As a consequence of the slow cooling of the Earth, the

iron-rich, liquid outer core cools and part of it solidifies to form almost pure iron at the

inner/outer core boundary to release fluid depleted in iron and hence less dense than its

surroundings†. This is an archetypical situation for compositional convection (Huppert &

† Solidification takes place at the hotter surface of the boundary of the outer core, rather

than at the approximately 1500◦ C cooler boundary with the mantle because of effects due

to pressure. The amount of iron produced at the inner/outer boundary exceeds by about four

orders of magnitude the total iron and steel production of mankind on the surface of the Earth;

nevertheless the radius of the inner core increases at a rate estimated to be only about 1mm/year.
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Sparks 1984) as described in Chapter W by Worster. The rising plumes, which may break

up into blobs, drive strong convective motions in the rotating outer core and maintain the

Earth’s magnetic field, as described in Chapter P by Moffatt (and further in §6). Driven

partly by heat losses from the core and partly by heat generation from radioactive decay

in the interior of the mantle, there is a complicated, unsteady bulk motion in both the

lower and upper mantle with typical velocities of a few centimetres a year – about as fast

as one’s fingernails grow.

These motions lead to an important concept in understanding the Earth, the theory of

plate tectonics, which was developed in its full form in the mid 1960s. Nineteenth century

scientists, notably Alfred Wegener, had developed the rudimentary notions of continental

drift, but the suggestion that the solid rocks of the Earth behave like a fluid seemed so

implausible that the notion of continental drift was not initially accepted. However, the

idea that the hot crystalline rocks of the mantle could flow in convective currents slowly

began to be appreciated, partly due to the influence of the great British geologist Arthur

Holmes. The major breakthrough came in the mid 1960s with proof, from the magnetic

signatures of volcanic rocks on the sea floor, that continents could spread apart at the

mid-ocean ridges by sea-floor spreading. The concept of plate tectonics rapidly evolved

as it was recognised that only the outermost 100 km or so of the Earth (the lithosphere)

was cold and rigid, whereas the bulk of the Earth’s mantle was sufficiently hot that,

despite its crystalline nature, it could convect and flow. The Earth’s surface is broken into

lithospheric plates which are constantly moving apart and (elsewhere) colliding together

as a consequence of motion driven both by their own high density compared to the deeper,

hotter Earth and by convection in the Earth’s interior. Volcanoes and earthquakes are

found to be mostly located in great zones marking the plate boundaries. This Chapter

is not the place to detail the excitement in the mid 1960s as the theory evolved, nor to
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describe exactly how plate tectonics works. An excellent account, however, can be found

in Gubbins (1990). The additional point to note here is that there also exist in the mantle

and the crust much more rapid, smaller scale fluid motions of enormous importance. The

investigation of these motions are central to this Chapter.

Much of the above introduction is treated at length in standard books on Earth Sci-

ences. Interested readers might like to dip into Anderson (1989), Brown, Hawkesworth

& Wilson (1992) or Press & Siever (1986). A short description of how some of the cur-

rent physical facts about the Earth were determined, with an unashamed bias towards

contributions made by Cambrige geophysicists, is contained in Huppert (1998a).

One important way by which an Earth scientist learns about the physics and chem-

istry of the interior of the Earth is from volcanic eruptions. The episodic eruption of

magma periodically at the Earth’s surface immediately indicates that some parts of the

‘solid’ interior must be molten. Investigations have shown that there are large storage

reservoirs of (at least partially) liquid rock known as magma chambers at depths of be-

tween a few to perhaps tens of kilometres beneath all volcanoes, both those that erupt

on the continents and the many more numerous volcanoes on the floor of the oceans. The

chambers may range in horizontal dimensions from hundreds of metres to more than a

hundred kilometres and in vertical dimensions from tens of metres to many kilometres.

Each magma chamber, which may contain as much as 105 km3 of molten rock, possibly

with a considerable crystal content, all at temperatures from 800◦C to over 1200◦ C, acts

as the energy source for the overlying volcano. Many interesting and important physical

and chemical processes occur in a chamber, some of them leading to an eruption. The

purpose of this chapter is to present a description of some of the fundamental processes

that occur in these situations. An earlier review, from a different perspective, of the role

played by fluid mechanics in geology is contained in Huppert (1986).
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2. Fluid processes in magma chambers

The central problem in magma chamber dynamics is the determination of the physical

(and chemical) evolution of a large body of cooling and crystallizing, multi-component

liquid. This section aims to build a physical understanding of the fundamentals of magma

chamber dynamics by describing sequentially a range of fluid processes.

2.1. Conduction

The cooling of magma against surrounding country rock is one important aspect of many

processes. As an introductory, very much simplified, problem consider the half-space z > 0

at uniform temperature T+ suddenly brought at time t = 0 into contact with the half-

space z < 0 at a lower uniform temperature T−. Each half-space could be either solid or

liquid – but the effects of any motion are neglected if it is liquid. The temperature T (z, t)

must then adjust purely by the conductive transfer of heat. Assume, for simplicity, that

the thermal diffusivity of the material of each half-space is identical and denoted by κ.

The situation is then described by the one-dimensional thermal conduction equation

Tt = κTzz (2.1)

with initial and boundary conditions

T = T− (z < 0) and T = T+ (z > 0) (t = 0) (2.2a,b)

T → T− (z → −∞) and T → T+ (z →∞) (∀t > 0) (2.3a,b)

T and Tz continuous at z = 0 (t > 0) . (2.4a,b)

Because there is no specified length-scale in the problem, the solution of the partial

differential system (2.1)–(2.4) cannot be a function of the two independent variables z

and t separately but there must be a similarity solution in terms of one variable which is a

suitable combination of z and t. In this case a suitable similarity variable is η = 1
2z(κt)

−1
2 ,
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which transforms (2.1)–(2.4) into the ordinary differential system

d2T

dη2
− η

dT

dη
= 0 (2.5)

T → T− (η → −∞) and T → T+ (η →∞) (2.6a,b)

T and Tη continuous at η = 0 . (2.7a,b)

The solution of (2.5) to (2.7) (in terms of η) is

T (η) = 1
2 (T+ + T−)− 1

2(T+ − T−)erf (η) , (2.8)

where erf (x) = 2π−
1
2

∫ x

0
e−u

2

du is the error function. The relationship (2.8) indicates that

the temperature of the boundary, T (0, t), immediately adjusts to the mean temperature

of the two half-spaces and remains at that value. This statement is one of the best known

quantitative relationships amongst geologists.

Consider now the slightly more complicated problem where the half-spaces z > a and

z < −a are initially at T−, while the material in −a < z < a is initially at T+ (> T−).

Because of the introduction of the length scale a, the solution is not expressible in terms

of one similarity variable, but nevertheless can easily be determined to be (Carslaw &

Jaeger 1980, p. 54)

T (z, t) = T− +
1

2
(T+ − T−)

{
erf

a− z

2(κt)
1
2

+ erf
a+ z

2(κt)
1
2

}
, (2.9)

which is graphed as a function of z for various values of κt/a2 in figure 2. The time scale

for the temperature evolution by conduction is given by tc = a2/κ, values for which are

given in Table 2 for various values of a with κ = 0.01 cm2 s−1, a representative value

for magmas and surrounding country rocks. The variation is seen to be considerable.

This simple model is of some applicability to the cooling of either lavas or of relatively
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long, thin intrusive sheets of magma in what are called dykes or sills by geologists†. But

consideration of further physical processes is needed before it is applicable to (thicker)

magma chambers. Two of the main ones are the effects of convection and crystallization

in the magma, both of which are dominant processes in real magma chambers.

2.2. Thermal Convection

In order to analyze some of the important effects of purely thermal convection in magma

chambers, Jaupart & Brandeis (1986) carried out a series of experiments in which a layer

of initially hot silicone oil was confined between two rigid horizontal boundaries whose

temperature at t = 0 was suddenly decreased and maintained constant, at typically some

20◦ less than the initial temperature of the isothermal oil. Based on an initial temperature

difference ∆Ti ' 20◦C, the initial Rayleigh number Rai = αg∆Tid
3/κν was of the order

of 108, where g is the acceleration due to gravity, α and ν are the coefficients of thermal

expansion and kinematic viscosity respectively and d =10 cm was the distance between

the boundary plates. At such high Rayleigh numbers the resulting convective motions are

turbulent (c.f. Linden, Chapter L) and the heat transfer is dominated by the convective

component. Convective plumes penetrated the fluid from a layer near the upper surface,

leading to an almost isothermal interior while a thin, stagnant, thermally stable boundary

layer evolved at the base.

With the employment of the famous four-thirds flux law for turbulent convection (Lin-

den p. ??) and the equation of this heat loss to the rate of decrease of heat in the interior,

the thermal balance, in terms of the uniform temperature T (t) of the interior, becomes

cd
dT

dt
= −0.12k

(
αg

κν

) 1
3

(T − TB)
4
3 , (2.10)

† Solutions to a whole series of conduction problems are presented in Carslaw & Jaeger (1980)

and reviewed in the context of the Earth sciences by Jaeger (1968).



10 H. E. Huppert

where TB is the (maintained constant) temperature of the boundaries and c is the specific

heat per unit mass. Nondimensionalising temperature with respect to the initial temper-

ature difference and time with respect to the conduction time based on the thickness of

the layer to introduce the variables

θ(τ) = [T (t) − TB]/∆Ti and τ = κt/d2 ≡ t/tc , (2.11a, b, c)

we can write the solution of (2.10) as

θ(τ) = (1 + 0.04Ra
1
3
i τ)

− 1
3 , (2.12)

a relationship which is in good agreement with the experimental data. The large constant

before τ shows that the conduction time-scale is much too long for this turbulently

convecting system and the appropriate time scale is not tc but tv = 25(d2/κ)R
− 1

3
i (see

Table 2).

The development of the stagnant boundary layer at the base can be determined by

solution of the conduction equation with appropriate boundary conditions. An approxi-

mate solution is given in Jaupart & Brandeis (1986). For our purposes it suffices to state

that because it results from the solution of the diffusion equation, the thickness of the

boundary layer δ scales with (κtv)
1
2 , i.e. δ/d ∼ R

− 1
6

i . Thus for a typical magma chamber

a stagnant lower boundary layer may occupy of order 1% of the depth.

2.3. Crystallization and compositional convection

As a magma cools in a chamber it begins to solidify, preferentially at the colder bound-

aries, but also in the warmer interior. Magma is comprised of many chemical components,

with those taken into the solid being almost always different from those in the neigh-

bouring fluid. This generally means that the density of the depleted fluid close to the

solidifying interface is different (either greater or less) than that of fluid nearby. This

buoyancy difference (due to crystallization) leads to what is called compositional con-
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vection, as described in greater detail in Chapter W by Worster. Because the density

difference due to the compositional differences is generally very much larger than that

due to the associated thermal differences, compositional convection is generally much

more vigorous than, and dominates, any thermal convection present. The convection can

mix the magma, carry small crystals along with it, and introduce strong chemical stratifi-

cation, with almost non-interacting regions of magma, by the processes of double-diffusive

convection (Huppert & Turner 1981a; Linden, Chapter L).

Exactly how the magma evolves depends on the geometry of the chamber and on the

sign of the density difference of the released fluid. Even in the simplest case of cooling

an initially uniform layer at a horizontal boundary leads to a 2x3 matrix of possibilities

(Huppert & Worster 1985). The cooled boundary can be at the top of the layer, lead-

ing to an unstable thermal field, which is liable to thermal convection, or at the base

of the layer, which results in a stable thermal field. In addition, the released fluid can

be either positively or negatively buoyant or, as a somewhat special case, of equal den-

sity to the neighbouring fluid. Each of these six cases needs, and has been subject to,

special investigation. The analyses include incorporation of the effects of mushy layers

(chapter W) and thermodynamic non-equilibrium. In each case the quantitative pre-

dictions of the mathematical models have been in good agreement with the results of

specially designed laboratory experiments using aqueous systems such as solutions of

KNO3, Na2CO3 or NH4Cl (Huppert 1990, which contains numerous colour photographs

of such experiments). Possibly the most surprising result, which has direct application

to the interpretation of rock layers found at the base the frozen remains of some magma

chambers, is that the cooling from above of a layer of fluid which releases less dense fluid

on crystallization can lead to the evolution of a crystal layer on the floor of the container

(Kerr et al. 1989). This is because undercooling in the interior of the fluid due to non-
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equilibrium effects at the crystallizing interface near the top of the layer (which must

occur, at least to some extent, for crystallization to proceed) drives further crystallization

at the base, as depicted in figure x.y of Worster.

If the cooling and crystallization takes place at a vertical side wall, the released fluid

flows either up or down through the crystal mush, depending on the sign of its buoyancy,

to form a separate layer at the top or bottom. With time, a strong vertical stratifica-

tion can result, as described by Turner & Campbell (1986). The horizontal temperature

gradient then couples with the vertical compositional gradient to lead to the inevitable

double-diffusive layering (Linden, ch L), with vigorously convecting, almost uniform lay-

ers separated by thin interfaces across which there are (relatively) large changes in tem-

perature and composition.

An interesting laboratory experiment, whose results are directly applicable to effects

due to the sloping retaining walls of magma chambers, illustrate many of the above

features. Huppert et al. (1986b) cooled an initially aqueous solution of Na2CO3 at an

inclined plane, which was inserted into the container to divide the fluid into two geomet-

rically identical halves. Upon crystallization on the upper surface of the inclined plane,

the released, less dense fluid rose, mixed in with fluid of the upper region and induced a

vertical stratification, which with time broke up into a series of double-diffusive layers.

Crystallization on the lower surface of the plane also resulted in the release of less dense

fluid, which could not rise because of the constraint of the impermeable plane above it.

This fluid wound its way through the porous mushy layer to be deposited as a separate,

ever growing layer at the top. As time proceeded the density of the released fluid de-

creased and hence displaced downwards fluid at the top of this layer by the ‘filling box’

mechanism (Linden p. ??). The resultant crystal shape on the two sides of the plane were
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quite different. The geometry of the two regions was identical, but the convective effects

caused the solidification processes above and below the plane to be very different.

These general ideas on generating a stable stratification in magma chambers can be

applied to understanding the interpretation of compositionally zoned volcanic products.

In large magnitude explosive eruptions, tens to hundreds of km3 of magma can be erupted

in a few hours or days, often emptying a considerable proportion of the magma chamber.

Such volcanic products are typically zoned in a systematic way in both chemical com-

position and inferred magma temperature. This indicates that the top of the chamber

contained cool evolved magma, typically enriched in silica and volatiles, and the chamber

was then stratified, with hotter and more silica poor magma occurring at depth (Sparks

et al. , 1984). Such zoning is very common and can be satisfactorily explained by sidewall

crystallization and compositional convection.

2.4. Replenished chambers

Replenishment of a magma chamber by new, hotter magma from below can revitalise

the motions and initiate new processes. New magma can enter in batches in the form of

solitary waves due to compaction deeper in the Earth, as described in §6 and Spiegelman

(1993), but continuous ‘seepage’ of new magma may also be possible.

A particular situation, which illustrates how a new, and possibly counter-intuitive,

process can arise in a replenished magma chamber, and indicates the dominant role of

fluid mechanics, was considered theoretically by Huppert & Sparks (1980) and tested

experimentally by Huppert & Turner (1981b). In the 1970’s geologists had accumulated

reliable evidence that the erupted output from many basaltic magma chambers was

typically composed of approximately 50% silica and about 6 to 9% magnesium oxide

(MgO). Different lines of argument suggested that the input magma had slightly less
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silica (c. 48%) but double or even triple the MgO content (about 12 to 18%). What is

the reason for this large difference in MgO content?

Huppert & Sparks (1980) considered the illustrative case of a chamber filled with

magma containing around 9% MgO at a temperature around 1250◦C. New magma from

deeper in the mantle, composed of 18% MgO at a temperature around 1400◦C, is episod-

ically intruded into the base of the chamber. This new magma, although hotter than the

resident magma, is more dense owing to compositional differences, and hence forms a

separate layer at the base. The bottom layer gradually cools because of its contact with

the colder, upper layer, while remaining distinct because of the compositional difference.

As it cools, the lower layer crystallizes to form small olivine crystals, which preferentially

extract MgO from the melt, and thereby becomes less dense. The olivine is (mainly)

kept in suspension in the melt by the vigorous convection in the lower layer. As the

temperature difference between the layers approaches zero, the vigour of the convection

eases, the relatively heavy olivine crystals fall to the base, the density difference across

the double-diffusive interface vanishes and the MgO-depleted liquid rises into the main

interior of the chamber, leaving behind a layer of compacted olivine crystals.

Huppert & Turner (1981b) modelled the essentials of this process in the laboratory, by

feeding into a large reservoir a hot, heavy layer of aqueous KNO3 beneath a colder, less

dense layer of NaNO3. As the lower layer cooled beyond the solidification point, crystals

of KNO3 grew in the presence of strong compositional convection in the lower layer.

The density of the saturated aqueous KNO3 decreased (at a rate in good agreement with

theoretical calculations) until it reached that of the upper layer, at which point the liquid

of the lower layer rose to mix with that of the upper – leaving behind the KNO3 crystals.

These processes were consistent with evidence from old solidified magma chambers,

such as on the island of Rum, off northwest Scotland, which displayed distinctive alter-
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nating layers of crystals representing solidification of magmas at alternatively high and

low temperatures (and hence high and low MgO contents). There are numerous other

geological examples of this process and the concept of a density trap, as it is sometimes

referred to by Earth scientists, is frequently invoked in describing observations in the

field.

The details of the injection of relatively heavy magma into a less dense ambient from

either a point or line source to form a turbulent fountain, can be investigated using well-

known concepts of turbulent plume theory (Turner, 1979 Ch. 6; Linden §??). When the

Reynolds number of the input, Rei, is very large and viscous effects can be neglected

in both input and ambient fluid, of density ρi and ρa respectively, the height of rise of

the fountain, hf , is determined from the specific momentum and buoyancy fluxes at the

source,

Ms = w2
i r

2
s and Bs = wig

′
ir

2
s (2.13a,b)

as

hf = 2.5M
3
4
s B

− 1
2

s = 2.5wi(rs/g
′
i)

1
2 , (2.14a,b)

where wi is the input vertical velocity at the source of radius rs of fluid with initial

reduced gravity g′i = (ρi − ρa)g/ρa. Campbell & Turner (1986) conducted a series of

experiments, backed up by dimensional arguments, to investigate the influence of the

viscosity of the input and ambient fluid, denoted by νi and νa respectively. They found

that when Rei ≥ 400 mixing between input and ambient fluid is controlled exclusively

by the Reynolds number of the ambient Rea = wirs/νa (and the value of Rei has no

significant influence). Mixing between the fluids, and the height of the fountain, both

relative to the values at infinite ambient Reynolds number, is reduced by 10% (50%) as

Rea decreases below 70 (30).

For a magma chamber fed by a simple vertical conduit of radius rm, the steady ef-
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flux can be calculated by balancing two quantities: the potential energy available to the

magma of density ρm to rise because of its positive buoyancy with respect to the sur-

rounding country rocks of density ρcr and the energy lost due to dissipative effects as

the magma flows with mean velocity w along the rough sidewalls of the conduit. On the

assumption that the flow in the conduit is turbulent this leads to an efflux rate

Q = πwr2m = 2π(g′cr/f )
1
2 r

5
2
m , (2.15a,b)

where g′cr is the reduced gravity of the surrounding country rock relative to the magma

and f is a friction coefficient, which typically lies between 0.01 and 0.08. Combining

(2.14b) and (2.15b), we obtain (within the Boussinesq approximation)

hf = 5

(
ρcr − ρm
ρm − ρa

) 1
2 rm

f
1
2

, (2.16)

where ρa < ρm < ρcr. With the insertion of typical values in (2.16), hf ∼ 25rm, which

might vary between 25 m and 250 m. Thus for small conduits (and hence relatively small

effluxes) effects due to the input fountain are also small. Only when the conduit radius

(and associated Reynolds number) is quite large do fountains, and the associated mixing

between input and ambient magmas, play an important role.

Input of magma less dense than the ambient occurs in some situations and for these

cases the form of the flow of input magma has been investigated as a function of the

Reynolds numbers of the input Rei and ambient Rea (Huppert et al. 1986). For suffi-

ciently low values of Rei and Rea (each less than about 10), the input rises as a laminar

conduit. With an increase in either Reynolds number the conduit becomes unstable and

entrains ambient magma. For sufficiently large Reynolds numbers the input becomes

turbulent and considerable entrainment can occur.

These ideas have been applied to understanding the observed mixing of basaltic mag-
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mas, the origin of some economic ore deposits, such as platinum sulphides (Campbell,

Naldrett & Barnes, 1983) and the difficulty of erupting pure, unevolved mamgas.

2.5. Melting

Because temperature increases with depth within the Earth and relatively little heat is

lost from a magma as it ascends, molten magma may enter a chamber at a temperature

above the melting temperature of some of the components of the surrounding rock.

Melting of the surrounding rock may then take place at the roof, base or sides of the

chamber and the melting process will be strongly influenced by whether the melt is more

or less dense than the ambient magma, or of identical density (which is rather unlikely).

An important example occurs following the input of basaltic magma at around 1300◦C

into the granitic continental crust, which leads to a (granitic) melt that is about 0.4 g

cm−3 less dense than the basaltic ambient.

As a fundamental example of melting, consider a heat flux Hi incident on a planar

surface of a solid with melting temperature TM (as sketched in figure 3a). Denoting the

position of the surface at time t as z = s and the temperature of the solid as z → ∞ as

T∞, the temperature profile θ(z, t) in the solid and the rate of melting are determined

from

θt = κθzz (z > s) (2.17)

θ(z, t) = TM (z = s) and θ → T∞ (z →∞) . (2.18a,b)

(on the assumption that the surface remains planar). A solution of (2.17) and (2.18),

known sometimes as the ablation solution, valid away from t = 0, is given by

θ(z, t) = T∞ + (TM − T∞) exp[−V (z − s)/κ] , (2.19)

where V = ds/dt is the assumed constant melting rate. Equating the difference in heat
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fluxes across the interface to the rate of latent heat release (Worster X),

Hi − kθz|z=s = LV , (2.20)

where L is the latent heat per unit mass of solid, and substituting (2.19) into (2.20), we

determine that the melt rate

V =
Hi

ρ[L+ c(TM − T∞)]
≡ Hi

L∗
. (2.21a,b)

This relationship along with (2.19) represents a long-time solution; solutions satisfying

particular initial conditions are discussed in Huppert (1989).

Consider now a semi-infinite, flat, solid roof, of melting temperature TM , overlying

a hot fluid, initially of depth D and at temperature T0 (> TM ), the bottom of which,

at z = 0, is thermally insulated (as sketched in figure 3b). If the density of the melt is

greater than that of the original fluid and is miscible with it, the melt will mix with the

fluid and the melting is determined entirely by thermal processes. The heat flux incident

on the base of the melting roof is given by (c.f. 2.10)

Hi = 0.12k(
αg

κν
)1/3(T − TM)4/3 ∼ Γ∆T 4/3 , (2.22a,b)

where T is the temperature of the hot underlying fluid, Γ ≡ 0.12k(αg/κν)1/3, ∆T =

T0 − TM and (2.22b) is correct only initially, but gives a good indication of the scale of

Hi for considerably longer. Combining (2.21) and (2.22), we obtain

ṡ = Γ∆T 4/3/L∗ , (2.23)

which indicates that, at least initially,

s = (Γ∆T 4/3/L∗)t . (2.24)

The heat gained by the melt is taken from the fluid into which it mixes, which indicates
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that ∆Tδs ∼ −DδT and thus the nondimensional temperature of the lower layer

Θ ≡ (T − T0)/∆T ∼ −s/D ∝ −t , (2.25a,b)

i.e. Θ increases linearly with time. A more accurate quantification of this process is

presented by Huppert & Sparks (1988a), who also describe laboratory experiments in

which a wax roof was melted by a hot, aqueous salt solution to yield data on melt

rates and fluid temperature which are in very good agreement with their theoretical

predictions.

If the released melt is less dense than that of the hot fluid layer, it forms a separate

layer beneath the roof, as sketched in figure 4. Initially heat is transferred by conduction

across the melt layer as depicted in figure 4a. As the Rayleigh number of the layer

increases, however, convection sets in. If the Rayleigh number becomes sufficiently large,

as it does in natural situations, the convection becomes turbulent and the heat transfer

can be analyzed using the four-thirds formulation. For illustrative purposes, we consider

only the vigorously convecting state, as depicted in figure 4b. [The conductive state is

analyzed fully by Huppert & Sparks (1988a).] We seek to determine the temperatures

T2 and T of the melt and fluid layer, respectively, the interfacial temperature T1 and the

thickness of the melt layer s as functions of time. For simplicity we shall assume here

that the various phases all have the same values of physical parameters such as specific

heat, thermal diffusivity, etc.

Because the upward heat flux from the hot fluid layer must equal that from the base

of the melt layer

T1 = 1
2 (T + T2) . (2.26)

This heat flux flows primarily into the base of the roof and, under most circumstances, a

very small portion of it is used to raise the temperature of the melt layer through which
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it passes. With the neglect of this effect

T2 = 1
2 (T1 + TM ) = 2

3TM + 1
3T . (2.27a,b)

Conservation of heat in the hot fluid layer requires

ρcD
dT

dt
= −Γ(T − T1)

4/3 = −(
1

3
)4/3Γ(T − TM)4/3 ,

which, subject to

T = T0 (t = 0) , (2.29)

(where T0 is the temperature of the layer when vigorous convection sets in at t = 0) has

the solution

T = TM + (β1 + β2t)
−3 , (2.30)

in terms of the two constants

β1 = (T0 − TM )−1/3 and β2 =

(
1

3

)7/3

Γ/(ρcD) . (2.31a,b)

The ablation relationship (2.21) indicates that

ṡ = Γ(T2 − TM)4/3/L∗ , (2.32)

which has the solution

s(t)/D = ρc[β−3
1 − (β1 + β2t)

−3]/L∗ . (2.33)

As t→∞, both T and T2 → TM while s→ ρcD(T0 − TM)/L∗. Expressed alternatively,

after sufficient time has elapsed all the available heat in the hot fluid layer has been used

to melt a specific finite thickness of the roof (and a negligibly small amount has been

conducted away).

To make the model directly applicable to natural situations, Huppert & Sparks (1988a)

evaluated the effect of allowing the lower fluid layer to crystallize and its viscosity to in-

crease as the temperature falls. They used these results in two companion papers (Hup-
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pert & Sparks 1988b,c) which discuss the generation of granite by the melting of the

continental crust due to the input of hot basaltic magma. The melting can be quite

rapid, particularly if the crustal rocks are close to their melting temperature. The gener-

ation of large volumes of silicic magma, ready for eruption, can thus be accomplished in

periods of decades when relatively hot crust is invaded by basaltic magma (rather than

the tens of thousands of years previously conjectured by some geologists). The layer of

rhyolite magma both grows and cools with time. The rhyolite magma must continually

crystallize as it forms, with melting confined to the boundary of the system. The funda-

mental fluid dynamical concepts have also been applied quantitatively to the melting of

ice sheets by basalt lava eruptions (Hoskuldsson & Sparks 1997).

Melting for the floor of a container has been considered by both Huppert & Sparks

(1988c) and by Kerr (1994). Further research is needed on this topic to analyze the

effects of melting a multi-component solid (cf. also the interesting comparisons between

this section and section X.Y of Worster).

2.6. Volatiles

Dissolved gases or ‘volatiles’, particularly water and carbon dioxide, can play an impor-

tant role in magmatic systems, both in magma chambers and, more centrally, in conduits

feeding a volcanic eruption (as described in the next chapter). This is a consequence of

the fact that smallish (but definitely non-zero) amounts of H2O, CO2, SO2 and the like

can be dissolved in magma. Due to a variety of processes, which include the most impor-

tant ones of pressure release and crystallization, the magma can first become saturated

and then release the dissolved volatiles as a gaseous phase (cf. opening, i.e. releasing the

pressure in, a bottle of champagne). Because the density of gas is so much less than that

of the liquid from which it originated (by approximately three orders of magnitude), the

bulk density of gas plus liquid drops dramatically, or the pressure on the surrounding
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walls increases considerably, or, if the container is open, the volume increases rapidly (as

in the champagne situation). All three of these can occur in various combinations.

Central to the argument is the solubility relationship, which can be expressed as

ns = ks p
1/2 , (2.34)

where ns is the mass fraction of water, for example, in the magma at saturation, p the

pressure and ks a solubility constant, of the order 0.0014 bar−1/2. For a system which

crystallizes entirely anhydrous crystals, the dissolved water becomes driven into an ever

decreasing liquid mass and the saturation level will decrease, as given quantitatively by

ns = ks(1−X) p1/2, where X is the mass fraction of the crystalline phases. If the total

mass fraction of water, N , exceeds ns the difference will exsolve as gas, initially in the

form of very small bubbles at nucleation sites. With the use of the perfect gas laws and

the assumption of thermodynamic equilibrium, the bulk density ρb of gas plus liquid plus

crystals can be expressed as

ρ−1
b = RT (N − ns)/P + (1−N + ns)/ρ , (2.35)

where ρ(P, T,X) is the density of the crystals plus melt, T is the temperature and R the

universal gas constant. Values of ρb as a function of X for various values of N for p = 1.5

kbar (∼ 500 m depth) are graphed in figure 5. For this value of p a magma with less than

approximately 2.3% by weight of water crystallizes (to up to 50% by weight) without

becoming saturated. For a range of higher water contents, at a specific crystallization level

Xc (related directly to temperature), the magma becomes saturated. For X > Xc water

exsolves and the bulk density drops precipitously. Even for temperatures sufficiently high

that no crystallization has yet taken place, it follows by extrapolation from figure 5 that

a maximum of approximately 5.4% of water can be dissolved (at that pressure).

The replenishment of a magma chamber by relatively heavy, wet undersaturated magma
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can be investigated using these concepts (Huppert, Sparks & Turner 1982). Turbulent

transfer of heat from the new lower layer to the upper layer leads to crystallization and

exsolution of volatiles in the lower layer. As figure 5 shows, initial water contents of only

a few per cent are sufficient for the bulk density of the lower layer to fall significantly,

possibly to become equal to that of the upper layer and thereby lead to overturning and

intimate mixing between the two different magmas. There are numerous petrographic

observations of hybrid rocks associated with volcanic eruptions worldwide which can be

explained by such a mechanism of mixing. For example, one of the most common volcanic

rock types on Earth is formed at island arcs where plates collide. The magma is called

andesite and is intermediate in composition between basalt and rhyolite. Commonly, an-

desites are mixtures of basalt and rhyolite. The mechanism just described provides a

possible explanation for this mixing.

The fundamental ideas and the subsequent eruption which such mixing can trigger

was demonstrated experimentally by Turner, Huppert & Sparks (1983), who repeated

the experiment performed by Huppert & Turner (1981b) and described in §2.4, but added

a small amount of HNO3 to the lower layer and some CaCO3 to the upper layer. These

chemicals were held separate by double-diffusive effects operating in the two layers until

the interface between them broke down. Subsequently, the acid and base produced CO2

which bubbled vigorously through the system and frothed out of the simple volcanic

crater made of perspex which Turner et al had placed over the top of the container.

3. The propagation of magma through the crust

An increase in pressure in a magma chamber beneath a volcano, due either to local

processes, such as discussed at the end of the last section, or to large-scale tectonic

movement, can cause the magma to rise through the Earth’s crust and erupt at the
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surface. The magma flows in conduits or dykes in a manner controlled by elastic, fluid

dynamic and thermodynamic effects. Basaltic magmas, such as those in Hawaii, in Iceland

and along the mid-ocean ridges, are relatively low in both volatile content and viscosity

and produce non-explosive eruptions of comparatively dry magma. The dry magma often

comes to the surface through long (between 1 and 10 km), relatively straight fissures,

which are of order one metre in width and may extend from between 10 to 100 km

in the other horizontal direction (figure 6). Silicic magmas, on the other hand, such as

those erupted on the continents and from descending lithospheric plates, tend to have

relatively high volatile content and viscosity. They hence tend to produce more explosive

eruptions, such as occurred at the Soufriere Hills volcano on Montserrat, Mt Pinatubo

in the Phillipines, Redoubt in Alaska and Unzen in Japan. The magma conduits from

chamber to surface tend to be of roughly circular cross-section and the erupted material

is a complicated mixture of solid ash particles, liquid magma and gas.

We commence our description of the flow of magma through the crust by considering

effects induced in dry magmas and then discuss the extra effects accompanying the

transport of wet magmas, which can exhibit considerable pressure exsolution as they

rise.

Any fluid flowing in a laminar manner due to a (local, negative) pressure gradient ∇p

in either a channel of slowly varying width or a pipe of local radius a has velocity profile

u = −γu(∇p/µ)(a2 − ζ2) , (3.1)

where ζ is either: the co-ordinate across the channel (with the walls at ζ = ±a) in which

case γu = 1
2 ; or the radial co-ordinate, in which case γu = 1

4 . The associated volume

flux Q, is given by Q = −γQ∇p/µ, where γQ = a3/3 for a two-dimensional channel and

γQ = πa4/8 for circular geometry.

If, on the other hand, the Reynolds number of the flow based on the radius a exceeds a
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value of order 1000, the flow is turbulent, the mean velocity profile is effectively uniform

and the volume flux is given in terms of a friction coefficient f by

Q = 2π(−∇p/ρf )1/2/a5/2 . (3.2)

3.1. Two-dimensional fissure eruptions: thermodynamics and fluid mechanics

This subsection concentrates on two ingredients of magma flow in dykes: the fluid me-

chanics of flow along an already open dyke; and the heat transfer from the dyke to

the surrounding country rock, which can result in either solidification of the magma or

melting of the country rock. Elastic effects in the surrounding rock, in particular the

mechanisms by which a fluid dyke is initiated in solid rock, will be discussed in the next

subsection.

The starting point of the model is a long, two-dimensional dyke, of initially uni-

form width Wi through which relatively hot, Newtonian fluid of uniform viscosity µ (∼

100Pa s) is driven by a pressure drop, ∆P . Heat is transferred by both advection and

conduction. Because the width of a dyke W (∼ 1m) is so much less than its length

L (∼ 1km), conduction along the dyke can be neglected (with respect to conduction

across the dyke). In the surrounding rock, heat can only be transferred by conduction,

as determined by the two fixed temperatures of T∞ (typically between 0 and 1000◦C) in

the far field and TW (∼ 1150◦C) at the dyke wall. With flow rates u of order 1ms−1, the

Reynolds number (of order 10) is sufficiently low for the flow to be laminar.

The time for the magma in the main dyke flow to traverse the length L is L/u (∼

20 min), in which time a thermal boundary layer of width δ = (κL/u)1/2 ∼ 3cm ¿ Wi

is formed, where the thermal diffusivity in the magma, κ ∼ 10−2cm2s−1. Within the

boundary layer the main Poiseuille flow appears as a uniform shear flow, of strength

γs (∼ 1s−1). Each of W, δ and γ will vary gradually along the dyke and slowly with time.



26 H. E. Huppert

Consider a locally Cartesian coordinate system, moving horizontally with the dyke wall,

which employs a vertical z axis, with z = 0 at the base of the dyke, and a horizontal

y axis, with y = 0 at the dyke wall, so that y > 0 in the magma and y < 0 in the

surrounding solid. The wall will migrate with velocity v due either to solidification of

magma against the wall (v > 0) or to melting of the solid by the flow (v < 0). With

identical values of the thermal diffusivities in magma and solid, the initial-value problem

for the temperature in both fluid and solid T (y, z, t) can then be stated, using the usual

boundary-layer assumptions, as

Tt − vTy + γsyTz = κTyy (y, t > 0) (3.3)

Tt − vTy = κTyy (y < 0, t > 0) (3.4)

along with boundary and initial conditions

T = TW (y = 0) T → T0 (either z or t = 0, y > 0, and y →∞)

T → T∞ (t = 0, y < 0 and y →−∞) , (3.5a, b, c)

where T0 (∼ 1200◦C) is the temperature of the magma at the base of the dyke.

The velocity of migration of the interface between liquid and solid is proportional to

the difference in the conductive fluxes across the wall, as expressed by (cf. Worster)

(L/c)v = κ[Ty(0−, z, t)− Ty(0+, z, t)] , (3.6)

where L is the latent heat per unit mass of either melting or solidification and c the

specific heat per unit mass. With the use of standard relationships for Poiseuille flow,

the volume flow rate Q(t) and local dyke width W (z, t) are related to ∆P and γs through

∆P = 12µQ(t)

∫ L

0

W−3(z, t)dz and γs(z, t) = 6Q(t)W−2(z, t) . (3.7a,b)

Owing to either solidification or melting at the walls, the width of the dyke gradually
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changes according to

W (z, t) = Wi − 2

∫ t

0

v(z, t′)dt′ . (3.8)

The solutions of (3.3)-(3.8) depend on the Stefan number of the magma S0 = L/[c(T0−

TW )] ∼ 20 and that of the solid S∞ = L/[c(TW − T∞], which typically takes on values

between 1 and 10 dependent on the far-field temperature of the country rock due to

previous dyking episodes. At first both fluid and solid temperatures adjust to TW , during

which time fluid must solidify at the wall because of the very large (initially infinite)

conductive heat flux into the wall [cf. the initial-value response of hot fluid running over

a cold floor as discussed by Huppert (1989)]. Subsequently the continual supply of hot

fluid transfers heat into the wall, which may melt it, while the solid continues to adjust

to TW .

Considerable analysis of the system (3)–(8) has been carried out (Bruce & Huppert

1989; Lister & Dellar, 1996), which when complemented by numerical integration leads

to the following results. For dykes less than a critical width (dependent on the input pa-

rameters) the initial solidification at the walls continues until the dyke becomes blocked,

which first occurs at the surface, and the eruption ceases. For dykes originally broader

than this critical width, before solidification can close the conduit, the advected heat flux

melts back the newly solidified magma and melting occurs along the entire length of the

dyke. The width then gradually increases (as long as the driving pressure is maintained).

These conclusions are summarized quantitatively in figure 7.

Such analyses of the fluid dynamics and heat transfer in dykes can help explain many

aspects of dyke geology and basalt lava eruption. Typically, dykes are observed from

seismic data to propagate at speeds of 0.1 to 1 m s−1. Such speeds are broadly consistent

with the flow conditions expected along dykes of width 0.5 to 2 m. The strong sensitivity

of flow and heat transfer to dyke width can also help explain the localisation of flow in
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basalt fissure eruptions. As solidification constricts the narrower part of the dyke and

chokes off flow, melting can widen the widest parts, eventually focussing flow locally.

In long-lived eruptions, melting in focussed regions can lead to formation of cylindrical

conduits.

3.2. Fluid mechanics and elasticity

In reality the magma needs to force its way through the solid surrounding rocks: dykes

are not supplied, but need to be made. This brings into consideration elastic responses in

the rock. A series of solutions incorporating effects of both fluid mechanics and elasticity

are now developed. The conclusions are that with values of natural physical parameters

the flow is mainly characterized by a local balance between buoyancy and viscous forces;

elastic forces play a secondary role except near the tip of the dyke.

Consider the laminar flow of fluid through a channel of width W (x, z, t) with respect

to horizontal and vertical coordinates x and z. Local continuity requires that

∂W

∂t
= −∇ ·Q =

1

12µ
∇ · (W 3∇p) . (3.9a,b)

If the dyke is two-dimensional — its width independent of x — the theory of linear

elasticity indicates that the pressure pe on the fluid due to elastic deformation of the

surrounding solid (assumed to be of infinite extent) is given by

pe = −mH
{
∂W

∂z

}
≡ −m

π

∫ ∞

−∞

∂W (s, t)

∂s

ds

s− z
, (3.10a,b)

where H{f} is the Hilbert transform (Miles 1971) of f(z, t) with respect to z and m is

a material constant of the rock ∼ 30− 50 GPa for basalts and 10− 20 GPa for granites.

The magma forces its way through the solid by the residual pressure due to buoyancy,

pb = −∆ρgz, which arises because the magma density ρm is less than that of the solid

ρs by a (positive) amount ∆ρ ∼ 300kg m−3 for granite flowing through basalt. The

pressures due to buoyancy and elasticity add linearly to yield the total pressure p driving
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the flow. Substituting this result into (3.9), Spence, Sharp & Turcotte (1987) obtained

the governing integro-differential equation

∂W

∂t
+

1

12
∆ρ

g

µ

∂W 3

∂z
= − m

12µ

∂

∂z

[
W 3 ∂

∂z
H

{
∂W

∂z

}]
. (3.11)

The two terms on the left represent fluid mechanical effects; the one on the right elastic

effects.

Suppose that the dyke is fed by a line source which releases a constant flux q per

unit length. The dyke will then rise at a constant speed, say c, which can be found by

determining a travelling wave solution of the form W (z, t) = W (η ≡ ct − z). Far from

the front of the dyke W will tend to a constant value, say W∞, where the elastic term

on the right of (3.11) is dominated by the fluid mechanical terms on the left because of

the smaller number of derivatives involved. In this limit ∂p/∂z = −∆ρg and from (3.9b)

W∞ = (12µq/g∆ρ)1/3 (independent of the value of the elastic constant m). Substituting

the postulated wave form of W into the left-hand side of (3.11), integrating the result

and evaluating the resulting constant by realizing that ahead of the dyke its width is

zero, we determine that c = q/W∞ (as it must from continuity) and dp/dη = 12µc/W 2.

For small distances ζ in the vicinity of the crack tip there must be a singularity of

the form p ∼ −Λζ−1/2 where Λ is a material constant known as the stress-intensity

factor ∼ 6× 106 Pa m1/2. A weaker singularity at the front does not allow the crack to

propagate, while a stronger singularity would suggest it propagates far too fast.

With the inversion of the Hilbert transform (3.10), use of dp/dη = 12µc/W 2 and some

algebraic manipulations, the problem can be expressed as a nonlinear integral equation

for W (η) subject to a side condition incorporating a non-dimensional stress intensity

factor Λ∗ = Λ/

(
3
8m

3µq

)1/4

∼ 10−2 for natural values of the parameters. This small

value suggests that the singularity at the front plays a negligible role in the shape (or

propagation) of the dyke. The solution to this problem must be obtained numerically
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(Lister 1990a); and the resulting dyke profile for Λ∗ = 0 (and 1 for comparison) is

presented in figure 8. The front of the propagating crack is bulbous with a maximum

width of 1.3W∞. Elastic effects play a negligible role behind the bulbous nose whose

length, proportional to (mW∞/g∆ρ)1/2, is of order 1 km.

The release of a flux Q from a point (in contrast to a line) source can be analyzed

using similar concepts. With respect to perpendicular horizontal axes x and y and a

vertical axis z with the origin of co-ordinates at the source, consider a planar, steady-

state dyke described by |y| < 1
2W (x, y) for |x| < B(z, t). After the dyke has propagated

some distance, W ¿ B ¿ h, where h is a representative height, and a similarity solution

can be found (Lister 1990b) of the form

B(z) = β z3/10 and W (x, z) = γ z−1/10(1− ζ2)3/2 , where ζ = β−1xz3/10 , (3.12)

β = 2.6(Qµm3)1/10/(g∆ρ)2/5 and γ = 0.18[Q3µ3/m(g∆ρ)2]1/10. For a range of Q be-

tween 1 and 106m3s−1 and with representative values of the physical parameters, W

typically ranges between a few centimetres and a few metres, while B ranges between a

few kilometres and several tens of kilometres. These values are consistent with observa-

tions of dykes, whose widths range from between 0.1 to 10 m, with the most common

widths being between 0.5 and 2 m. It should be noted, however, that over a considerable

portion at the lower ends of these ranges, which reflect the lower values of Q, solidifica-

tion at the edges and thermal erosion near the centre would play an essential, and as yet

unincorporated, role.

Throughout this subsection the densities of the magma and the surrounding solid

have been considered constant. In reality the density of solid rock tends to increase with

depth. One can thus envisage magma propagating upwards through the lithosphere as a

result of its (decreasing) excess buoyancy until the density of the magma equals that of

the surroundings, whereupon the magma will intrude laterally at what has been called
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the level of neutral buoyancy (LNB). This is similar to the lateral intrusion of fluid at

the top of a plume in a stratified environment, as described by Linden (p. X) and in

§4.3. Elegant similarity solutions for a fluid-filled crack propagating at its LNB, either at

an interface between two semi-infinite solid layers of different densities or into a density

stratified solid medium are reviewed by Lister & Kerr (1991). Field observations indicate,

however, that the density of some magmas which are considered to have intruded laterally

into the surrounding rock is quite different from that of the surrounding solid medium.

This subject may reflect a typical little cameo of geophysics: an attractive theory suggests

that observationalists re-examine their findings, which leads to the theory being found

deficient, at least in some of its applications, until a more complete (and maybe less

elegant) series of processes is incorporated.

3.3. The ascent of wet magmas

As discussed in §2.6 and at the beginning of this section, the release of volatiles can play

a large role in magma dynamics, especially in relatively viscous, silicic magmas. Owing

to the exsolution, such magmatic systems generate the most explosive eruptions. The

bubbles that form range in size from 10−4 to 1 cm, which, due to their buoyancy, would

rise relative to the surrounding viscous magma at speeds between 10−15 and 10−6ms−1.

This is so slow that it is thus generally assumed that the bubbles travel with the magma

and form a homogeneous mixture. For every 1% by weight of volatiles exsolved, the

viscosity of the mixture increases by an order of magnitude until, at volatile contents of

about 72% by volume, the mixture behaves more like a foam than a simple Newtonian

liquid incorporating numerous bubbles, as reviewed by Woods (1995).

The steady eruption at mean speed u of magma of density ρ from a chamber along a
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vertical conduit of prescribed shape can be described by the one-dimensional equations

ρuA = Q , (3.13)

which represents the conservation of mass flux Q in a conduit of cross-sectional area A,

and

ρu
du

dz
= −dp

dz
− ρg − f , (3.14)

which represents conservation of momentum, where z is a vertical co-ordinate and f

denotes the frictional dissipation. The motion of bubbly liquids is still not sufficiently well

understood to determine f completely. A simple approximation, while the gas content is

reasonably small and the flow laminar, would be to set f = 8πµu/A, as appropriate for

a Newtonian viscous liquid. This relationship has been augmented by resort to empirical

functions which incorporate effects of the total weight fraction of water N and the fraction

by volume of gas, or void fraction, φ. As φ increases the magma becomes increasingly

foamy until, at a void fraction of approximately 75%, the gaseous magma fragments

and changes from a bubbly liquid to an ash- and liquid-laden gas, with greatly reduced

viscosity. Thereafter, frictional effects are sufficiently small that f can be ignored.

A relationship between pressure, density and volatile content can be formulated as

explained in §2.6 to lead to

ρ−1 = RT (N − ns)/p+ (1−N + ns)/ρl , (3.15)

where ρl is the density of the liquid. This relationship can be rearranged to indicate that

φ−1 = 1 + (1−N + ns)ps/[(N − ns)RTρl] . (3.16)

Differentiating (3.13) with respect to z after taking the logarithm of both sides and

(3.15) with respect to ρ on the assumption that the flow in the conduit is sufficiently
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rapid that T remains effectively constant, we can write (3.14) as

dp

dz
= [(

ρu2

A
)
dA

dz
− ρg − f ]/(1− u2

a2
s

) , (3.17)

where a2
s = dp/dρ, the square of the speed of sound in the bubbly magma, is given by

a2
s = (p/ρ)2[(N − 1

2
ns)RT − (p/ρl)]

−1 . (3.18)

The speed of sound in this multi-phase mixture is generally considerably less than that in

a pure gas because the mixture displays the compressibility of a gas with the much higher

density, and hence inertia, of a solid or liquid. Equation (3.17), along with the subsidiary

equations (2.34), (3.13) and (3.18), can be integrated numerically starting from a given

pressure excess (typically between 0 and 100 bar) at the base of the conduit and an

assumption of an empirical relationship for the viscosity of the system as a function of

φ and ns. So far this has only been done for a straight-walled chamber, dA/dz ≡ 0,

along with the assumption that the flow does not become supersonic within the conduit.

It is well known from the field of gas dynamics that flows become supersonic at either

a flow constriction (dA/dz < 0) or at an open end. Real magmatic conduits no doubt

have numerous constrictions and so many interesting results are still to be found. Typical

solutions, assuming that the flow is sonic at the vent, 3 km above the base, are graphed

in figure 9.

As the magma rises and decompresses, φ and u increase and, up to the fragmentation

level, the viscosity of the magma increases. Beyond the fragmentation level the flow is

effectively inviscid and so the resulting pressure gradient is very much less and virtually

constant. The flow exits at a pressure considerably in excess of the atmospheric pressure

(typically between 10 and 50 times greater) with u = as. Numerical evaluation of (3.18)

indicates that for 0.03 < N < 0.07 and 1 bar < p < 100 bar, as does not depart

by more than 5% from 0.93(NRT )1/2, which gives a way of estimating the exit speeds
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without detailed solution of the governing equations. For example, for T = 103K , as =

115(200)ms−1 for N = 0.03(0.06). This small variation in exit speed, coupled with the

small change in magma density, indicates (through 3.13) that the mass eruption rate

is primarily related to the cross-sectional area of the vent, A. Because the exit flow is

heavily overpressured a significant decompression phase must be experienced close to the

vent. This is really part of the eruption column dynamics, which is treated in the next

chapter.

Finally, extra effects, not yet fully understood, can arise due to crystallization, su-

persaturation or the delayed nucleation of exsolved bubbles: typical kinetic and disequi-

librium effects. Preliminary experiments suggest that supersaturations corresponding to

over 100MPa may be feasible. This would constrain the presence of bubbles until just

below the fragmentation level and alter the details of the numerical calculations consid-

erably. Some discussion of these effects is presented in chapter 3 of Sparks et al. (1997).

4. Fluid mechanics and thermodynamics of volcanic eruption columns

Once out of the volcanic conduit, the explosive mixture of gas and ash intrudes into

the atmosphere and reacts with it. Recent eruption columns have risen as much as 45

km before invading laterally into the atmosphere to cause local, and even global, changes

in the weather and climate. This section presents the main fluid-mechanical concepts

used to describe eruption columns, explains why the initially heavier-than-air explosive

mixture can penetrate so far into the atmosphere and obtains quantitative relationships

for the properties of volcanic eruption columns.

4.1. The decompression phase

The turbulent multiphase eruption jet is modelled to exit from the top of the vent at

sonic speed and exit pressure pe considerably higher than the atmospheric pressure pa.
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A decompression phase must then follow. Consider the vent to open directly into the

atmosphere, rather than through a large expanding crater, a situation which will be

considered explicitly later. The decompression takes place, as sketched in figure 10, over

a relatively short distance (less than a few hundred metres) during which the flow can be

considered steady and effects of gravity, friction and fluid entrainment neglected. (This

is not appropriate higher up in the eruption column)

The governing equations (Woods 1995) are then mass continuity, expressed by (3.13),

momentum continuity

ρu · ∇u = −∇p (4.1)

and conservation of enthalpy

ρu ·∇[cvT + (p/ρ) + u2/2] = 0 , (4.2)

where cv is the specific heat at constant volume. Integrating (4.1) over the control volume

V with the use of (3.13), we determine the velocity at the end of the decompression phase

u0, when the pressure has fallen to p0, as

u0 = ue + Ae(pe − p0)/Q ≈ ue + Aepe/Q = ue + pe/(ρeue) , (4.3a, b, c)

where the subscript e denotes values at the exit point at the top of the vent (and ue = as).

Numerical examination of the terms within the square brackets of (4.2) indicates that

the specific heat cvT is of order 106 Jkg−1, while each of the other two terms is very

much less and of order 104 Jkg−1. Thus the temperature is virtually constant across the

decompression region and can be equated to that at the vent, which in turn is virtually

identical to that of the original magma in the chamber T ∼ 1000◦C .

At the relatively low pressure of the atmosphere, (2.4) indicates that most of the

originally dissolved volatiles have been exsolved by the end of the decompression phase

(ns ¿ N ) and the volume of the gas phase greatly exceeds that of the other phases.
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Thus the second term on the right of (3.15) is negligible compared to the first term and

the density of the flow at the end of the decompression phase ρ0 ' p0/(NRT ). Using the

form of this relationship to describe very approximately the exit conditions, we substitute

pe ≈ ρe/(NRT ) into (4.3) to determine that u0 ' 1.9(NRT )1/2. An accurate numerical

evaluation shows that for 0.02 < N < 0.07 and p0 < pe/10, 1.7 < u0/(NRT )1/2 <

1.9, with velocities falling below the lower value for relatively low exit pressures, which

correspond to low values of eruption rates Q or vent radii. The area of the jet at the end

of the decompression stage, that is at the effective base of the eruption column, A0, is

hence given by A0 = Q/(ueρ0) ' 0.5Qp0(NRT )1/2.

If the eruption conduit opens into a large crater, additional phenomena are possible.

The sonic flow at the vent will become supersonic within the diverging walls of the crater

and the term in dA/dz dominates (3.17). The pressure decreases and, analogous to clas-

sical gasdynamic flows from nozzles (Liepmann & Roshko, 1957), three different types of

flow can issue from the top of the crater. Firstly, the pressure may remain above atmo-

spheric and an overpressured, supersonic flow results. At lower exit pressures the flow can

decompress relatively further in the crater and an underpressured supersonic flow results.

In both these situations a short adjustment region above the crater is required to bring

the flow to atmospheric pressure. At even lower exit pressures, a shock develops within

the conduit and the material leaves the crater subsonically at atmospheric pressure.

4.2. Eruption columns

Vertical exit velocities of a few hundred metres per second for a heavily ash-laden and

gas-dominated flow are impressive, but are nowhere near sufficiently large to take the

eruption column many tens of kilometres into the atmosphere, as is observed, merely

by converting the available kinetic energy into potential energy. (At the upper range,

ue = 400m s−1 , u2
e/2g ' 8 km, almost six times too small.) Eruption columns penetrate



Geological Fluid Mechanics 37

deep into the stratosphere by converting thermal energy into potential energy in a way

that will now be described.

The mass fraction of small solids – the volcanic ash – is typically between 0.95 and

0.98, although the volume fraction may be only of order 10−4. The large mass fraction

makes the density of the eruption column at its base typically between 20 and 50 times

that of the surrounding atmosphere. As the flow in the eruption column develops, the

plume entrains the relatively cold surrounding air (as described by Linden Ch. X.Y). The

small, hot ash particles readily transfer their heat to the engulfed air and so the bulk

density of the plume decreases with height (because the heated air is less dense), while

at the same time its upward velocity decreases, partially due to gravitational effects op-

erating on the relatively heavy material and partially due to the necessity of imparting

upward momentum to the initially stationary entrained air. The competition between

the decreasing density and velocity lead to the two fundamental styles of volcanic erup-

tion. Either the decreasing density dominates and the material of the column becomes

relatively buoyant, to lead to what is know as a Plinian eruption column, examples of

which include the eruptions of Vesuvius in AD79 documented by Pliny, St Helens in

1980 and El Cichon in 1982; or the upward velocity ceases before the material becomes

buoyant and a collapsed fountain develops which results in a ground-hugging, ash-laden

surge known as a pyroclastic flow, such as occurred at Taupo in AD186, Ngauruhoe in

1973 and Pinatubo in 1991. A full description of these flows will be delayed until the

next section.

The equations of motion in the entraining plume, which rises through an atmosphere

of spatially-varying properties, are based on the pioneering entrainment assumption of

Morton, Taylor & Turner (1956) as described by Linden (ch. X.y) and Turner (1979,

1986). Allowing for the considerable changes in density involved, i.e. not making the
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Boussinesq approximation, we write the conservation of mass and momentum equations

with respect to the vertical z-axis in standard form as

d

dz
(ρb2u) = 2αρa(z)bu and

d

dz
(ρb2u2) = ρab

2g′, (4.4a,b)

where ρ(z) is the mean density in the column of radius b(z), in which the fluid is prop-

agating with mean vertical velocity u(z) through an atmosphere specified by its density

ρa(z), α is the entrainment constant ' 0.1 and g′(z) = (ρa − ρ)g/ρa. To (4.4) must be

added the energy equation (Woods, 1995)

d

dz

[
ρb2

(
cpT +

1

2
u2 + gz

)
u

]
= 2αρa(z)bu(cpTa + gz) , (4.5)

where cp is the specific heat at constant pressure, T (z) and Ta(z) are the temperatures

within the plume and surrounding atmosphere respectively, with Ta(z), ρa(z) and pa(z)

linked by

pa(z) = ρa(z)RTa(z) = p0 − g

∫ z

0

ρa(z
′)dz′ . (4.6a,b)

The ordinary differential system (4.4)–(4.6) needs to be integrated numerically from

z = 0 given initial values of the mass flux Q, momentum flux Qu0, energy flux E and

a functional form for one of ρa(z), pa(z) or Ta(z). The “standard” calculation assumes

an initially decreasing temperature profile in the atmosphere with constant lapse rate

6.5K km−1 up to a tropopause of between 8 and 17 km, followed by a constant tem-

perature regime up to the base of the stratosphere at 21 km, with a temperature profile

increasing at 2K km−1 beyond that.

A typical set of results is shown in figure 11, which presents the velocity and density

deficiency in the jet for three different values of u0. For the largest of these (200m s−1)

the eruption column density falls off rapidly due to entrainment and the material in the

column becomes buoyant at a height of about 200 m. For the smallest u0 (50m s−1) the

column runs out of upward momentum (coincidentally at about the same height) and
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a collapsing fountain occurs. Figure 12 presents the broad curve that separates Plinian

behaviour from the occurrence of a collapsed fountain. A Plinian column is favoured by

lower mass eruption rates and higher eruption velocities.

The original theory of Morton et al. (1956) calculated the height of rise H of a buoyant

plume in a stratified environment to be given by

H = 5F
1/4
0 N−3/4 , (4.7)

where F0 is the initial specific buoyancy flux, here given by F0 = Q(T −T0)g/(ρ0T0), and

N is the (assumed constant) buoyancy frequency of the atmosphere. Figure 13 presents

the theoretical relationship (4.7) using standard atmospheric values which leads to H =

260Q1/4m if Q is expressed in kg s−1. For comparison, the figure plots the maximum

penetration heights of 12 volcanic eruptions this century. The agreement is remarkably

good; and for the 45 km high Bezymianny eruption represents an extrapolation (for

the use of the value of entrainment coefficient α ' 0.1) over more than five orders of

magnitude from the 20 cm measurements in the laboratory.

Other physical effects play an additional, albeit secondary, role in real eruption columns.

The main ones are moisture in the atmosphere and particle fall out in the plume. The

former requires incorporation of standard wet thermodynamics in the atmospheric mod-

elling, as laid out in Sparks et al. (1997). A discussion of the latter is deferred until the

next section. Note that (horizontal) winds in the atmosphere tend to play a rather small

role on the column itself, because the (vertical) velocities and turbulent intensities in

the plume are so large. Generally, the scale of the vertical velocity ws takes on values

between 40 and 400 ms−1. If the typical horizontal wind velocity U is very much less

than ws it has very little influence on the plume. If ws ¿ U a weak, bent-over plume

develops and the eruption penetrates far less into the atmosphere. Wind may also be
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important, however, in the dispersion of the final intrusion, known as an umbrella cloud,

as will now be described.

4.3. The development of an umbrella cloud

The mushroom shaped top of an eruption column, which slowly intrudes laterally at its

own density level into the stratified atmosphere, is one of the more awesome sights of a

volcanic eruption (Figure 14). The thickness of the umbrella cloud, h, determined from

observations on volcanic eruptions appears to be roughly 1
4H , with approximately half

the cloud above H and half below that height.

If there is no wind, the cloud intrudes radially, driven by the horizontal pressure gra-

dient which arises because of the different vertical hydrostatic pressure gradients in the

cloud of mean density ρ and the atmosphere. Modelling the cloud as an expanding disc

or cylinder of thickness h(t) and radius R(t) and neglecting both entrainment of the

ambient and particle fall-out, effects which will be discussed in the next section, we can

write the mass conservation equation as

πρ
d

dt
(R2h) = QH , (4.8)

where QH is the mass flux of the intruding cloud (which is very much larger than that

at the base of the column because of entrainment). Integrating (4.8) on the assumption

that the umbrella cloud already has a radius R0 at the start of the lateral intrusion at

t = 0, we find that the volume of the cloud, πR2h, increases linearly with time as

πR2h = (QH/ρ)t + V0 , (4.9)

where V0 = πR2
0 h0 is the initial volume of the cloud.

The cloud is an example of a gravity current, as discussed in much more detail in

the next section, which, on the large scale considered here, propagates under a balance

between inertial and buoyancy forces (and frictional effects are negligibly small). By
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dimensional analysis, or by use of Bernouilli’s theorem, it can be shown that the horizontal

momentum equation can be replaced by the Froude condition

dR

dt
= Fr(g′h)1/2 , (4.10)

where the reduced gravity g′ = (ρ − ρH )g/ρH , ρH is the density of the atmosphere

at height H and the Froude number Fr is constant ' 1.19 (§5.2). In the vicinity of H

the stratification in the atmosphere is effectively linear and so g′ ' N 2
Hh, where NH is

the buoyancy frequency of the atmosphere at a height H . Substituting this relationship

into (4.10), we find that h = dR/dt/(FrNH ), which upon substitution into (4.9) and

integration yields

R3(t) =
3Fr

2π
NH

(
QH

ρ

)
t2 +

3Fr

π
NHV0t +R3

0 . (4.11)

There is very good agreement between this relationship and data taken from the eruption

clouds of St. Helens in 1980, Redoubt in 1990 and Pinatubo in 1991 (Sparks et al. 1997).

5. Gravity currents: pyroclastic flows, turbidity currents, lava domes

Gravity currents occur whenever fluid of one density flows primarily horizontally into

fluid of a different density. They are driven by horizontal pressure gradients which re-

sult from the buoyancy (either relatively positive or negative) of the current. (Primarily

vertical propagation, driven by vertical pressure gradients due to horizontal buoyancy

differences is studied mainly as plumes.) Gravity currents occur in a wide range of nat-

ural (and industrial) situations, including: the spread of oil on the surface of water; the

motion of a dense, ash-laden pyroclastic flow along the ground (figure 15); the flow of

sand- and silt-laden water from the continental shelves across the ocean floor in what is

termed a turbidity current; the propagation of relatively dense sea breezes in the atmo-
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sphere; and the slow motion of thick, sticky lava in a volcanic crater. A nice review of

the field is given by Simpson (1997).

Buoyancy forces are always important in the motion of gravity currents, which can

flow either at large Reynolds numbers, when the buoyancy forces are balanced by in-

ertia forces, or at low Reynolds numbers, when the buoyancy forces are balanced by

viscous forces (and inertial forces are negligible)†. Each current can be essentially two-

dimensional, axisymmetric or influenced by topography. Some gravity currents are the

result of a rather rapid release of a given volume of fluid; some are due to a continual

flux of fluid; and other possibilities have also been investigated. This section develops

fundamental concepts used to describe gravity currents and discusses a few geological

applications of recent interest.

5.1. Compositional, large Reynolds number gravity currents

The simplest gravity currents are driven by differences in composition, such as salt. The

fact that the currents tend to be very much longer than they are thick immediately

suggests the use of the shallow water equations (Whitham, 1974) wherein the vertical

pressure gradient is hydrostatic. Under this assumption, the equations for conservation of

mass and momentum (neglecting any entrainment of the ambient which might occur) for

a two-dimensional current of density ρc and height h(x, t) propagating with horizontal

velocity u(x, t) below a layer of fluid of density ρ0 < ρc (as sketched in figure 16) are

∂h

∂t
+

∂

∂x
(uh) = 0 and

∂

∂t
(uh) +

∂

∂x
(u2h) + g′h

∂h

∂x
= 0 , (5.1a,b)

where the current propagates under horizontal pressure gradient ∂p/∂x = −ρ0g
′∂h/∂x

and reduced gravity g′ = (ρc−ρ0)g/ρ0. In order to solve equation (5.1) initial conditions

† Flows at intermediate values of the Reynolds number, where all three forces are roughly

balanced, are rarely encountered.
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are required – generally describing how the current was initiated – and two boundary

conditions – one at each end of the current. The condition at x = 0, where in the

laboratory there is a vertical wall, is generally u(0, t) = 0. The use of Bernoulli’s theorem

indicates that the velocity at the nose of the current uN and the depth at the head hN

are related by

uN = Fr(g
′
hN )1/2 , (5.2)

where the Froude number Fr is a constant, determined by perfect fluid theory to be

√
2 for an infinitely deep upper layer or by experiments on real fluids to be 1.19†. The

difference between these two values represents the effects of turbulent Reynolds stresses

and viscous drag in the vicinity of the head in a real fluid, which bring about additional

momentum transfer at the head and hence retard the flow. [If the undisturbed ambient

layer is of finite height Ha < hN/0.075, F r = 0.5(hN/Ha)
1/3.]

There exists a useful family of similarity solutions to (5.1) and (5.2). For a current of

fixed volume A per unit width intruding into a layer of very large depth, the solution

can be found by substituting into (5.1) and (5.2) the forms

g
′
h(x, t) = ẋ2

N (t)H(σ) and u(x, t) = ẋN (t)U(σ) , (5.3a,b)

where the similarity variable σ = x/xN (t), to determine that

H(σ) = 1
4 (σ2 − 1) + Fr−2 , U(σ) = s and xN (t) = C(g′A)1/3t2/3 , (5.4a, b, c)

where C = [27Fr2/(12− 2Fr2)]1/3 and xN (t) is the length of the current. This solution

is valid some time after the release of the current. If the release takes place by instanta-

neously lifting a lock gate in front of a rectangular region of heavy fluid, as is frequently

† Under quite general conditions in an infinitely deep ambient, uN can only be a function

of g′ and hN . Dimensional arguments then indicate that the only non-dimensional quantity,

uN/(g
′hN )1/2, must be a constant (because there is nothing else for it to depend upon).
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the case in laboratory experiments, the current starts in a “slumping phase”, wherein

the initial column collapses, a nose is driven forward at virtually constant speed and a

return bore in the upper fluid propagates backwards to conserve volume. Once the bore

has reflected off the back wall and caught up with the front of the current the similarity

form of solution (5.4) becomes valid.

Mathematically different, but qualitatively similar, similarity solutions exist if either

the volume increases as a power law in time due to an input flux at the origin or in an

axisymmetric geometry, or both (Bonnecaze et al. 1993, 1995).

A less rigorous, but extremely useful, approach is to consider a simple “box” model

of the flow, which represents the current as a series of rectangles of equal volume with

no horizontal variation of properties within the flow. In two dimensions this requires the

solution of

xNhN = A and ẋN (t) = Fr(g′hN )1/2 , (5.5a,b)

which, with initial condition xN (0) = 0, is identical to (5.4c) except that C = (3Fr/2)2/3.

The difference between these two values of C is no more than 10% for 1.2 < Fr <
√

2.

In axisymmetric geometry, the radial extent rN (t) of an instantaneously released, fixed

volume of fluid V is given by rN (t) = Cr(g′V )1/4t1/2, where the box model and similarity

solution values of Cr are (4Fr2/π)1/4 and (4Fr2/π)1/4[4/(4−Fr2)]1/4. A good qualitative

feel for the solutions can also be obtained from evaluating and then equating the total

buoyancy and inertial forces in the current. This approach is described in the Appendix

of Huppert (1982).

Entrainment of ambient fluid into the flow has been investigated by experimentally

following the intrusion of an alkaline current into an acidic ambient. Entrainment was

seen to take place almost entirely at the head of the current due to shear instabilities on

the interface between the current and the ambient and by the over-riding of the (relatively
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less dense) ambient fluid by the head. An entrainment or dilution ratio E, defined as the

ratio of the volumes of ambient and original fluid in the head, which hence must be

non-negative, can be shown by dimensional analysis, and confirmed by experiment, to

be independent of g′, and to be given in two dimensions by

E = [1− c1yN/A
1
2
S ]−c2 − 1 , (5.6)

where AS is the volume per unit width of fluid in the head at the end of the slumping

phase (which occurs when the current has propagated about ten lock lengths), yN is the

position of the head beyond the slumping point, and c1 ≈ 0.05 and c2 ≈ 1.5 are empirical

constants determined by the roughness of the floor. Note that (5.6) is consistent with the

rather surprising result that the entrainment is essentially zero in the slumping phase

(when yN < 0).

5.2. Particle-driven gravity currents

When heavy (or possibly relatively less dense) particles drive the flow the major new

addition is that the particles fall (or rise) out of the flow and the driving buoyancy

continually decreases. The approach most frequently taken to analyze the sedimentation

if the concentration is not too large is to assume that the (high Reynolds number) flow is

sufficiently turbulent to maintain a vertically uniform particle concentration in the main

body of the current. However, at the base of the flow, where the fluid velocities diminish

appreciably, the settling of particles occurs at the (low Reynolds number) Stokes velocity

Vs in otherwise quiescent fluid. Quantitatively, this indicates that, neglecting particle

advection for the moment and assuming that the particles are all of one size, if Np (which

is possibly a function of time and position) denotes the total number of particles per unit

horizontal area in a layer of depth h, the change of Np in time δt, δNp, due only to

the sedimentation is given by δNp = −VsC0δt, where C0 is the (number) concentration



46 H. E. Huppert

(per unit volume) just above the base of the flow. Vigorous turbulent mixing implies

that C0 = Np/h, which (on taking the appropriate infinitesimal limits) indicates that

Ṅp = −VsNp/h, a relationship which has been carefully verified by experiments (Martin

& Nokes, 1988). The incorporation of advection of the particles by the mean flow then

results in

DΦ

Dt
≡ ∂Φ

∂t
+ u ·∇Φ = −VsΦ/h , (5.7a,b)

where Φ is the volume concentration of particles.

Shallow water equations, akin to (5.1), and incorporating (5.7), can be derived (Bon-

necaze et al. 1993,1995). There are no similarity solutions and recourse, in general, has

to be made to numerical solution, although it is also possible to develop asymptotic,

analytic solutions, based on the smallness of βs = Vs/(g
′
0h0)

1/2, where g
′
0 is the initial

reduced gravity of the system (Harris, Hogg & Huppert 2000).

Insightful, box-model solutions are relatively straightforward to obtain. In two dimen-

sions this requires, for the instantaneous release of a fixed volume A per unit width of

particle-laden fluid, the solution of

ẋN = Fr(g′pΦA/xN )1/2 and Φ̇ = −VsxNΦ/A , (5.8a,b)

where g′p = (ρp − ρa)g/ρa, ρp is the density of the particles, and the density of the

interstitial fluid in the current has been assumed to identical to that of the ambient.

Appropriate initial conditions are

xN = 0 and Φ = Φ0 (t = 0) . (5.9a,b)

Dividing (5.8b) by (5.8a) and integrating the resulting ordinary differential equation

subject to (5.9), we obtain

Φ(t) =
(
Φ

1/2
0 − λpx

5/2
N

)2

, (5.10)
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where λp = 0.2Vs/(Fr
2g
′
pA

3)1/2, from which we can deduce immediately that the current

ceases to flow (Φ = 0) at xN = l∞ ≡ (Φ
1/2
0 /λp)

2/5. Introducing non-dimensional variables

Φ = φ/φ0 and ξ = xN/l∞, substituting (5.10) into (5.8a) and using (5.9a), we determine

that

τ =

∫ ξ

0

s1/2(1 − s5/2)−1ds ≡ F(ξ) (5.11)

in terms of a dimensionless time τ given by τ = Fr(g
′
pAΦ0)

1/2(xN/l∞)−3/2 t.

In order to evaluate the resulting deposit distribution, we argue that in time δt, a

mass per unit width δM = −ρpAδΦ is deposited uniformly over a length xN to lead to a

deposit density δη = −ρpAδΦ/xN . Thus the total deposit density (of dimensions ML−2)

after the flow has ceased is given by

η = −ρpA
∫ l∞

xN

z−1 dΦ

dz
dz =

25φ0ρpA

12xl∞

(
1− 8

5
ξ3/2 +

3

5
ξ4

)
. (5.12a,b)

Similar results can be obtained for axisymmetric particle-driven gravity currents. Eval-

uation of the details are left to the reader as an exercise, with the answers given in

Huppert & Dade (1998).

The erosion of a sedimentary bed due to the pick up of particles can play an important

role in particle-driven flows. The erosion of a bed by a shear flow, in such a way as

to increase the buoyancy, and hence the shear, to lead to a self-accelerating current, a

process often called autosuspension, was first considered, independently, by Pantin (1979)

and Parker (1982). They derived a fifth order, nonlinear ordinary differential system to

describe the evolution of the flow and analyzed the behaviour of the resulting solutions

using phase plane techniques. Unfortunately, the values of some of the parameters that

appear in the theory are not known and the predicted criteria for particle erosion has

not yet been subjected to careful experimental investigation.
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An expanded version of this sub-section, which brings out additional concepts and

examples can be found in Huppert (1998b).

5.3. Some geological applications

There are many geological situations in which particle-driven gravity currents play a fun-

damental role. One example concerns the motion of pyroclastic flows, resulting from the

collapse of volcanic eruption columns. The largest flows have been modelled as isothermal,

relatively low concentration entities which spread radially along the ground. A particular

problem posed, and answered, by Dade & Huppert (1996) was the determination of the

initial conditions of the flow, and especially the initial particulate concentration, given

the observed radial distribution of the final deposit. Having set up a general framework,

Dade & Huppert applied it specifically to analyzing one of the largest eruptions in the

last 10,000 years, the eruption of Taupo on the North Island of New Zealand in AD

186. Approximately 30km3 of solid material was distributed in a roughly axisymmetric

fashion around a vent up to a radius of 80 km as a result of the eruption. The total

volumetric flux, after column collapse and the associated entrainment of air, was found

to be of order 40km3 s−1, over a period of approximately 15 minutes. The initial solids

concentration in the pyroclastic flow was around 0.3% by volume – a result consistent

with the initial assumption of low particle concentrations.

This low concentration, which was greeted with surprise by some Earth scientists, is

consistent with the idea, well known to geologists, that some pyroclastic flows can, quite

suddenly, lift up into the atmosphere to form what are called co-ignimbrite plumes. These

occur because the small, hot ash particles can heat the air in the flow sufficiently that the

bulk density of hot air plus particles exceeds that of the relatively cold, particle-free air of

the surrounding atmosphere. The general analysis of such particle-driven flows with less

dense interstitial fluid can be analyzed using the concepts (box-models, shallow water
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theory, etc.) of the last subsection (Sparks et al. 1993; Hogg, Huppert & Hallworth 1999).

A simple but instructive calculation equates the density difference purely due to thermal

differences ∆ρT to the density difference due to the particulate concentration ∆ρc = Cρp,

where C is the fractional volume concentration of particles of density ρp. The equality

of these two contributions to the density would strictly be appropriate just at lift-off,

but it allows an approximate estimate of the particle concentration to be obtained. Thus

with the densities of air at 1000 and 10◦C being 0.28 and 1.3 kg m−3 respectively and

ρp ∼ 2500kg m−3, C ∼ 0.0004, which indicates that the calculated concentration of

particles in the Taupo eruption, although considered low by some geologists, was already

considerably larger than that in many other such flows.

Particle-driven flows with less dense interstitial fluid can also occur when sand- and

silt-laden fresh water rivers discharge into a (salty) ocean. The particulate concentration

can be sufficiently large that the discharge flows along the bottom of the ocean for many

kilometres until, when sufficient particles have fallen out of the flow, the interstitial fluid

rises and thereby mixes fresh water into the ocean a considerable distance off shore. Such

a situation is believed to be permanently operating in some ten of the world’s largest

rivers, many of them in China, with the most famous example being the Yellow River.

Large suspension-driven flows at the bottom of the oceans, known as turbidity currents,

have been well documented by geologists and are the main mechanism by which sediment

from land is transported into the deep sea. Volumes as large as 500km3 of sand and silt

can propagate many hundreds of kilometres across the ocean floor, as was first effectively

realized in 1929 when, owing to an earthquake on the Grand Banks off the eastern coast

of the USA, submarine cables were broken sequentially by the resulting turbidity current

as it propagated across the Atlantic. Sequential turbidite flows can lay down a series of

beds which can act as reservoirs for oil. One of the larger turbidite flows to have been
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continuously traced on the ocean floor is found on the Hatteras Plain off the eastern coast

of North America and is known as the ‘Black-Shell turbidite’ because of the many small

black shells that litter the deposit. The turbidite lies in water 5.5 km deep, covers an

area of at least 44 × 103 km2 and extends for more than 500 km along a fairly straight,

two-dimensional channel flanked by abyssal hills. Using the observed thickness of the

deposit as a function of the distance along the Hatteras Abyssal Channel, a mean fall

speed Vs of 0.08 cm s−1 (corresponding to silt-sized particles with an effective diameter

of 32µm) and the box-model results developed in §5.2, Dade & Huppert (1994) showed

that the deposit resulted from an initial surge 30 km long, 300 m high and approximately

200 km wide (≈ 2, 000 km3) containing particulate matter which made up 5% by volume,

and 13% by weight, of the surge.

As described at the end of §4, a volcanic eruption plume which intrudes laterally

into the atmosphere at its level of neutral buoyancy, contains many small (heavy) ash

particles. Consider the penetration as a steady axisymmetric flow with radial velocity

ur of a layer of turbulent fluid of thickness h. The rate of change of the mass M of

suspended particles in the current with radial distance r will be given, following (5.7b),

by dM/dr = −VsM/(urh). Because the flow is steady, the flux Q = 2πrhur is constant

and so

M = M0 exp

[
−πVs(r2 − r20)/Q

]
, (5.13)

where M0 is the mass of particles in the current at radius r0. The agreement between the

prediction of (5.13) and data from both laboratory experiments and from the measured

sedimentation density of, for example, the deposit on the island of San Miguel in the

Azores, from the umbrella cloud associated with the eruption of the Agua de Pau Volcano

about 3000 BCE, is surprisingly good (Sparks et al. 1997).
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5.4. Low Reynolds number gravity currents

When viscous forces dominate inertial forces, the well-known concepts of lubrication the-

ory (Davis, ch D) can be used to determine the flow. The formulation is then similar

to that employed in analyzing parallel flow, as described at the beginning of §3. The

paradigm situation (Huppert, 1982) considers the spreading in either a two-dimensional

or axisymmetric geometry of a Newtonian fluid above a horizontal base and seeks the

shape and resultant rate of spreading of the current under the assumption that its hor-

izontal extent greatly exceeds its thickness. The pressure p within the current is hydro-

static and thus the pressure gradient driving the flow is proportional to the slope of the

height of the (unknown) free surface h. Hence for viscous fluid of density ρ and kinematic

viscosity ν extruded at a line source in a two-dimensional fashion, as sketched in figure

17, the parabolic, horizontal velocity profile is directly proportional to ∂h/∂x, where x

is the horizontal co-ordinate perpendicular to the source (with x = 0 at the source). Use

of the depth-integrated continuity equation (with details not given here because they

are supplied in Huppert, 1982 and 1986) then indicates that h(x, t) satisfies the singular

nonlinear diffusion equation

∂h

∂t
− (g/3ν)

∂

∂x

(
h3∂h

∂x

)
= 0 , (5.14)

with the one boundary condition h[l(t), t] = 0, where l(t) is the length of the current. If

the extrusion of fluid takes place so that the cross-sectional volume per unit width of the

current increases with time as qtα where α is a (non-negative) constant, (5.14) must be

solved subject to the global continuity equation

∫ l(t)

0

h(x, t)dx = qtα . (5.15)

With difficulty, numerical solutions of (5.14) and (5.15) can be obtained for any given

initial conditions. Alternatively, similarity solutions, to which all solutions with suffi-
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ciently regular initial conditions will tend, except possibly at x = 0, are easy to obtain.

Indeed, determination of the independent similarity variable is sufficient to show that

l(t) = ηN (α)(gq3/3ν)1/5t(3α+1)/5 , (5.16)

where the constant ηN (α) can be calculated to be a monotonically decreasing function

of α with 1.41 > ηN > 0.85 for 0 < α < 2.5. (Equation (5.16) can also be obtained by

globally equating viscous forces to buoyancy forces.)

For an axisymmetric current of radius rN (t), extruded from the origin so that the

volume of the current is Qtα, the argument outlined above leads to the result

rN (t) = ξN (α)(gQ3/3ν)1/5t(3α+1)/8 , (5.17)

where ξN (α) is also a monotonically decreasing function with 0.90 > ξN > 0.65 for

0 < α < 2.5. In particular, for a viscous current of constant volume, rN (t) ∝ t1/8.

Numerous laboratory experiments confirm the accuracy of the theoretical approach and

predictions.

One of the motivations of the original analysis was to apply the results to examine and

interpret the spreading of lava domes, which are often extruded in volcanic craters. For

example, commencing in late April 1979, a lava dome spread across the relatively flat

base of the 1200 m high Soufriere of St. Vincent in the West Indies, following a series

of explosive eruptions starting on 13 April. The lava dome slowly increased in volume,

and spread horizontally, for the next five months, by which time the pancake-shaped

dome had a height of 130 m, a mean diameter of 870 m and a volume of 50 x 106m3.

Careful measurements during this time indicated that the volume V (t) and radius r(t)

as functions of time were well represented by V (t) = 930t0.66 and r(t) = 90t0.39 (in SI

units).

The theoretical result (5.17) can then be used in two different ways. Firstly, the power-
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law representation of the measured volume indicates that for this dome α = 0.66, which

should lead to a radial time dependence of (3α + 1)/8 = 0.37, in good agreement with

the measured value of 0.39. Secondly, the observed coefficient in the radial spread of 90

can be substituted into (5.17) to determine a value of 6 × 107 m2s−1 for ν.

An isothermal Newtonian fluid captures some of the features of some spreading lava

domes, and in so doing acts as the foundation for more developed models which incor-

porate extra effects. Amongst the effects that need to be included are the cooling of the

lava as it flows (possibly in a non-Newtonian way) to form a resistive crust on the sur-

face. The field has advanced mainly due to extensive laboratory experiments, with the

results backed up by scaling arguments – detailed solutions to governing equations are

still awaited. One aim of the research has been to describe the different flow morphologies

observed in recently active domes, which include, aside from the Soufriere of St. Vincent,

Unzen, Merapi and others.

Fink and Griffiths (1990) conducted a series of experiments in which liquid polyethy-

lene glycol (PEG) was extruded at a constant rate from a point source to flow along a

horizontal boundary below a layer of effectively cold water. The water temperature was

maintained below the freezing temperature of the PEG. For those experiments with the

warmest layer temperatures, the PEG did not solidify and spread as calculated above

for an isothermal, constant viscosity (Newtonian) fluid. In experiments with cooler lay-

ers, a solid PEG crust formed and one of four different morphologies developed. These

were categorized by Fink and Griffiths as: levees; folds; rifts; and pillows. The transition

between the different morphologies (and from the formation of no crust at all) was pa-

rameterized in terms of a single variable Ψ, which is the ratio of the time for the initially

warm PEG to solidify to an advection time scale.

Fink and Griffiths (1998) extended these experiments to mimic a (plastic) yield strength
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in magma by adding kaolin powder to the liquid PEG. The existence of the resulting in-

ternal yield stress had a strong influence on the behaviour of the flows, which displayed

morphologies quite different from the previous flows. They argued that the latter exper-

iments are better analogues of the more viscous magma domes and, in particular, the

numerous lava domes recently observed on Venus.

6. Extra Topics

There remain numerous areas of geological fluid mechanics which have not been de-

scribed here. Many (but not all) of them have as a common feature the flow of fluid

through a porous medium. The Navier-Stokes momentum equation is then replaced by

Darcy’s law (or some extension of it), whereby the fluid transport velocity is directly

proportional to the driving pressure gradient, with the constant of proportionality being

the permeability of the medium divided by the dynamic viscosity of the fluid (Phillips,

1991). A large number of interestingly different flows can result.

Deep-sea vents and the hydrothermal circulation. One of the most exciting recent events

in the Earth Sciences has been the discovery by small, manned submersibles of the

existence of a chain of vents littering the bottom of the sea, centred on the mid-ocean

ridges. As depicted in figure 18, hot water gushes through holes ∼ 70cm in diameter,

at velocities of ∼ 5m s−1, into an ocean whose ambient temperature (at that depth)

is quite steady at approximately 2◦C. These turbulent, entraining plumes, which are

part of the hydrothermal circulation, are driven by the heat lost from the hot magma

chambers several kilometres beneath the ridge axes. Relatively cold sea water penetrates

the oceanic crust over a broad area several tens of kilometres on either side of the ridge

axis. As water flows down through the crust it is heated to temperatures as high as 400◦C

without vaporising, because of the high pressures. At such temperatures the density of
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the water is ∼ 0.7 times that of cold sea water and hence extremely buoyant. The venting

at individual sources represents the return flow. Calculations of thermal flow in a porous

medium driven by a heat source, in some ways similar to the high Rayleigh number

calculations in Chapter X.y by Linden (but see also Phillips, §7.6) reflect many of the

observed features of the flow. There are indications, however, that the crust is heavily

fractured and that the flow is strongly focused along numerous cracks, which will require

augmentation of the governing equations.

The turbulent discharge of this less dense, hot water at the bottom of the ocean

is another example (following §4.2) of a buoyant plume as described in Chapter X.y

(Linden). Chemical analyses indicate that the mixing of the entrained sea water into the

hydrothermal fluid of the plume forms a black precipitate, which has led to the plumes

being called “black smokers”. (A very small number of plumes precipitate white particles

and are hence known as white smokers.) Some of the heavy particles fall out of the plume

and calculations indicate that more than a half are then re-entrained back into the plume.

After a rise of a few hundred metres, the plumes reach their level of neutral buoyancy,

as quantitatively predicted by (4.7), and flow out horizontally into the ocean.

Aside from the chemical and physical importance (and their great fluid mechanical

interest), black smokers have introduced new concepts into biology. At that depth in

the ocean, sunlight is totally absent and chemosynthesis replaces photosynthesis as the

mechanism for life. Completely new biological organisms have been found around the

vents where they thrive on the hot, chemically rich environment. It has been seriously

suggested that they will represent a significant food source in the future.

Flow and reactions in porous sedimentary rock. A foundation for those aspects of flow in

a porous medium that are relevant to sedimentary geology is clearly described by Phillips

(1991) with a stimulating summary given in Phillips (1990). One of the central themes
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of the book and paper is the analysis of slow flows that react thermally and chemically

with the solid matrix through which they percolate (c.f. the flow through a mushy layer

described by Worster, chapter X.y). The controlling processes in such flows are the fluid

mechanical ones of advection and diffusion, which specify the rate at which reactants can

be supplied to the reaction sites, and the chemical ones which specify the rates of reaction.

Phillips categorizes three different types of flow. First, isothermal reaction fronts, which

propagate like broad shock waves altering the chemical composition (of both the fluid

and the enveloping matrix) from a constant, specified value ahead of the travelling front

to a different constant value behind it. These can occur, for example, as a result of the

reaction which turns limestone or calcite into dolomite, or, maybe more generally, when

an acidic aqueous solution dissolves material in the solid rock matrix.

With c(r, t) and u(r, t) denoting the concentration of the reactant (e.g magnesium ions,

acid, ...) and transport velocity in the fluid as functions of space and time, the governing

conservation equation becomes

φ
∂c

∂t
+∇ · (uc) = φDe∇2c+ φQc , (6.1)

where φ is the porosity (fluid volume fraction), De the effective diffusivity of concentration

and the source term Qc may be a function of the concentration of each of the reactants,

temperature, pressure, space, time and possibly other variables. Note that φ (typically

¿ 1) appears as a pre-multiplicative factor in front of those terms that reflect that c (the

acid concentration, say) is confined to the fluid. As a consequence, as seen on dividing

(6.1) by φ, variations in the acid concentration are advected with fluid velocity q/φ, which

is much larger than the transport velocity q. With m(r, t) denoting the concentration of

the other reactant in the solid (e.g. CaCO3; let us call it mineral), the governing equation
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becomes

(1− φ)
∂m

∂t
= −γc(1− φ)Qc , (6.2)

where γc is a (stoichiometric) constant dependent of the particular chemistry of the

reaction under investigation.

With the simplest assumption, that Qc ∝ mc, Phillips, Hinch & Bhatt (1990) (and

others) treat φ as a constant and develop analytical one-dimensional travelling wave

solutions of the form

c = F (ζ = x− V t) m = G(ζ) (6.3a,b)

with F → 0 (all the acid is used), G→ m0 (the initial mineral concentration) as ζ →∞

and F → c0 (the initial acid concentration), G → 0 (mineralisation is complete) as

ζ → −∞. The resultant velocity with which the front moves, V , is typically a small

fraction of the velocity of the acid.

Hinch & Bhatt go on to investigate the linear stability of the front by allowing the

permeability (but not the porosity) to be a function of m. This is a general Saffman-

Taylor situation (Couder, §X.y) and hence if the permeability decreases with m (i.e. in

the direction of motion) the front is unstable; otherwise it is stable.

In other situations there are initial spatial gradients of m. A simple travelling wave

representation is then not possible because the reaction can continue at different rates

within the matrix. Phillips terms this a gradient reaction in which the rate of reaction

or deposition in the pores is proportional to the gradient of temperature and to the

interstitial fluid velocity in the direction of the gradient. In a faulted or fractured medium,

the fluid velocities in the fracture network are typically very much larger than those

in the matrix, and the rates of mineral deposition are correspondingly larger, leading

to the characteristically vinuous structure of mineral deposits. Finally, Phillips defines

mixing zone reactions which occur as a result of intimate mixing between different fluids
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as they seep through a porous matrix, such as can occur when sea water infiltrates a

coastal aquifer initially saturated with fresh water. The ability of areas of relatively high

permeability to attract and focus flow from low permeability regions draws streamlines

closer together and hence promotes mixing.

Geothermal reservoirs and their replenishment. Another exciting area of flow in porous

media concerns advection and convection in geothermal reservoirs made up of fractured

rock at temperatures of up to 400◦C which are located in the upper 10 km of the Earth’s

crust. A number of these on land have been used over the last thirty years or so as ther-

mal energy sources on a commercial scale, although the use of naturally heated water

has been common in spas and even in some forms of central heating for a few millennia.

One fascinating problem, associated with such areas is the formation of geysers, such

as at Yellowstone National Park in the United States, which can erupt with remarkable

regularity although the essential mechanisms are still not understood. Another prob-

lem concerns the input of cold water to replenish warm water extracted by commercial

hydrothermal heating plants.

A simple situation, which nevertheless illustrates many of the essential features, occurs

when cold water at temperature Ti is input at a small source with flux Q (of dimensions

L2T−1) in a saturated, hot, two-dimensional porous medium at temperature T∞(> Ti).

The thermal balance for the temperature T , which is identical in the solid and adjoining

fluid, can be written as

ρcp
∂T

∂t
+ (ρcp)l(Q/2πr)

∂T

∂r
= ρcpκr

−1 ∂

∂r

(
r
∂T

∂r

)
, (6.4)

Woods (1999), where r is the radial co-ordinate and an overbar indicates a mean value

for the system weighted with respect to the volume occupied, i.e. for any variable σ say,

σ = φσl + (1−φ)σs, where σl and σs are the values of σ in the liquid and solid (matrix)

respectively (Worster X.y). The different coefficients in (6.4) reflect the fact that heat
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diffuses throughout the matrix but is advected only by the fluid motion through the

pores.

Because there is no externally imposed length scale there is a similarity solution to

(6.4) in terms of η = r/2(κmt)
1/2, where κm = ρcpκ/ρcp, and the one non-dimensional

parameter λ = [(ρcp)l/ρcp](Q/κm) ∼ (Q/κm), given by

T (η) = Ti + (T∞ − Ti)P (
1

2
λ, η2) , (6.5)

where P (a, x) is the incomplete gamma function. For large values of λ, which correspond

to input fluxes much larger than thermal diffusion, there is negligible conduction of heat

from the far field. Instead the input liquid is heated to T∞ by extraction of heat from

the rock matrix near the source. The temperature jumps quite rapidly from Ti to T∞

over a thin region at a radius [given by η = (λ/2)1/2 ≡ ηT ] considerably smaller than

that to which the input liquid has penetrated [given by η = ηT /(πφ)1/2]. For λ ¿ 1

the liquid front advances more slowly than the rate at which heat is diffused and the

problem approaches the purely thermal diffusion situation discussed by Carslaw and

Jaeger (1980). For almost all real geothermal systems λÀ 1.

If the porous rock is at a temperature above the boiling point of the input liquid, vapour

may be produced ahead of the advancing front. The motion may then be determined by

combining: Darcy’s law for the flow of vapour in the pore spaces; the perfect gas law;

and the mass conservation equation; in the form

u = (−k/µv)∇P ; p = ρvRT ; and φ
∂ρv
∂t

+∇ · (ρvu),= 0 , (6.6a,b.c)

where subscript v denotes the vapour phase. This leads to the nonlinear diffusion equation

∂

∂t
(p/T ) = Γ∇ · (p∇p/T ) , (6.7)

where Γ = k/(φµv) and k is the permeability of the porous medium. Again, on the

assumption that the flow is radially symmetric, a similarity solution is obtainable, which
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has a different structure for small, intermediate and large values of Γ. In practice such

boiling fronts can become unstable to yet another manifestation of a Saffman-Taylor

instability.

The evolution of the inner core. The largest fluid region of the Earth is the liquid

outer core, in which there are vigorous, convectively-driven motions which maintain the

all-important magnetic field of the Earth as described by Moffatt (Chapter X.y). The

motions are driven by the slow cooling of the Earth, which causes the iron-rich liquid,

with minor constituents of between 5 and 15% of sulphur, oxygen, nitrogen and nickel,

to solidify almost pure iron on the boundary of the inner core, as mentioned in §1.2. The

convection is partially thermal, driven by the heat transfer associated with the rise of

warm fluid (and sinking of cold fluid) within the outer core and partially compositional,

driven by the release of relatively less dense fluid due to the incorporation of the heavy

iron component into the inner core.

A number of (rather complicated) numerical models have been introduced to study

this evolution and to evaluate the radius of the inner core rc(t) as a function of time.

A simplifying step was taken by Buffett et al. (1996) who developed a new theoretical

model for which the results could be obtained analytically, thus allowing a general un-

derstanding to be developed of the role of the various parameters, whose explicit values

are not very well known. Buffett et al. based their model on global heat conservation and

the realization that the cooling of the core is regulated by the heat flux fm(t) that is

taken away from the core-mantle boundary by the motions in the sluggish, more massive

mantle. They considered the convection in the outer core to be sufficiently vigorous that

the fluid is well mixed there, with a uniform potential temperature (the temperature

after subtracting off the adiabatic variation) of T (t), which decreases slowly with time.

This temperature is equal to the solidification temperature Ts[rc(t)] of the inner core,
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which is a strong function of the pressure at r = rc. The thermal evolution of the (radi-

ally symmetric) solid inner core can then be determined by solving a thermal diffusion

equation in terms of the imposed temperature Ts at the boundary to yield the resultant

heat flux at the boundary between the inner and outer core. From this calculation they

determined a (fifth order) polynomial for rc(t), with an approximate solution

rc(t) = rb

{∫ t

to

fm(t
′
)dt

′
/M

}1/2

, (6.8)

where rb (= 3454km) is the radius of the outer core, to is the initiation time of the

growth of the inner core (∼ 2 × 109 years ago), all other variables are grouped in

M = (2π/9)r3bcpGρ
2(∂Ts/∂ρ) where G is the gravitational constant. Buffett et al. (1996)

verified this result by a full numerical computation and investigated the relative impor-

tance of thermally- and compositionally-driven convection. They concluded that in the

early Earth, when the inner core was much smaller than it is today, thermal convec-

tion dominated. Their calculations, extended by Lister & Buffett (1995), indicate that at

present the contribution made by compositional convection to the ohmic dissipation, and

hence the relative amount of energy available to drive the geodynamo (Moffatt, Chapter

??), represents approximately three-quarters of the total.

Compaction. The initial production of melt from a solid, in infinitesimal amounts,

occurs at the boundaries between individual grains. When this happens in the Earth,

some of the melt migrates away from the matrix from which it was formed and, eventually,

finds itself, as part of a much greater volume, flowing into magma chambers, up dykes

and partaking in a volcanic eruption. The investigation of the mechanisms by which

small amounts of melt percolate through a solid matrix has generated enormous interest

over the last two decades amongst Earth scientists, applied mathematicians and fluid

dynamicists (as well as being of considerable relevance to areas of metallurgy, petroleum

engineering and soil science).
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In order for the melt to migrate, the matrix must deform, so as to conserve volume.

The resulting motion can be analyzed using the concept that the matrix be described as

a high viscosity, compressible fluid and the dynamics of melt and matrix be considered

separately. Each is assumed to obey the standard conservation laws, with the interaction

between the two fluids coupling their motion. This approach was pioneered by McKenzie

(1984), who derives carefully the following compaction equations, which have now become

standard.

In terms of the densities of fluid and solid, ρf and ρs, and porosity φ(r, t), the mass

conservation equations for the two phases are

∂

∂t
(ρfφ) +∇ · (ρfφv) = Q = − ∂

∂t
[ρs(1 − φ)] −∇ · [ρs(1− φ)V] , (6.9a,b)

where v and V are the velocities of melt and matrix, and Q the mass transfer rate, or

melting rate, from matrix to melt. The melt, being much less viscous than the matrix, is

transported by the matrix deformation as well as flowing relative to it, as described by

Darcy’s law in the form

φ(v −V) = −[a2K(φ)/µf ]∇(p− ρfgz) , (6.10)

where a is an average grain size and the dimensionless permeability K(φ) depends on the

geometry of the porous network. The corresponding low Reynolds number momentum

conservation equation for the (fluid) matrix is written as

0 = ∇(p−ρfgz)−(1−φ)(ρs−ρf )g+∇·
{
η

[
∇V+(∇V)T

]
+(ζ− 2

3
η)(∇·V)

}
, (6.11)

where ζ and η, the bulk and shear viscosities of the matrix, may also be functions of φ.

Equations (6.9)-(6.11) display a rich variety of solutions. An important length scale

which arises from the equations, as first determined by McKenzie on analyzing the sim-

plest problem of the behaviour of a layer with constant porosity above an impermeable

boundary, is the compaction length δc = [(ζ+ 4
3η)K/µf ]

1/2a (typically between 0.1 and 1
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km for geological situations), which is independent of the all important density contrast,

ρf − ρs between melt and matrix, although this becomes a controlling factor in the rel-

ative velocity and (hence time scale) of the resultant motions. If the porosity decreases

with height, finite amplitude solitary waves can be initiated which propagate upwards at

velocities dependent on their amplitude. This behaviour has been reproduced in labora-

tory experiments by Scott, Stevenson & Whitehead (1986) in which buoyant, relatively

inviscid water was released at the base of a layer of much more viscous and deformable

glycerine. In general, the waves can, dependent on the parameters, have phase velocities

greater or less than the fluid velocities and group velocities that are directed either par-

allel or anti-parallel to gravity. The compaction equations have been used not only to

examine the physics of melt extraction from the mantle, but also to study the associated

chemical signals. Some of this work is reviewed in the papers which appear in Cann,

Elderfield & Laughton (1997).

There are many more topics of immediate concern in understanding the Earth where

fluid mechanics plays a central role. These inclued at least such topics as the propagation

of plumes through the mantle (Jackson, 1998), mountain building and deformation of

continents (England & Jackson, 1989), deposition and evolution of ore deposits (Phillips,

1991) and the role of convection in maintaining the motion of the continental plates

(Peltier, 1989). At the change of the millennium we are just beginning to discover the

main processes involved in these fluid motions. A combination of penetrating physical

reasoning, powerful applied mathematics and imaginative laboratory experiments will be

required to reveal the full range of the further fundamental geophysical mechanics that

control the evolution and behaviour of our planet.
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CAPTIONS

Figure 1. A diagrammatic Earth showing the solid inner core, the liquid outer core, the

mantle, the lithosphere and the covering clouds. Also depicted are deep mantle plumes

and erupting volcanoes.

Figure 2. The nondimensional temperature as a function of position for various values of

κt/a2 as a result of the temperature of a layer of thickness 2a being initially raised to a

temperature excess T+ − T1 above the ambient.

Figure 3. a) The resulting temperature profile θ(z, t) when a constant heat flux H is

incident on the boundary of a solid with melting temperature TM . b) The melting of a

solid roof due to a thermally convecting fluid beneath it. The released melt is of greater

density and is miscible with the fluid.

Figure 4. The melting of a solid roof due to a thermally convecting fluid beneath it. The

released melt is of smaller density than the fluid beneath it. a) The Rayleigh number

of the melt layer Ra is sufficiently small that heat is transferred through the layer by

conduction. b) Ra is so large that the heat is transferred by vigorous convection.

Figure 5. The bulk density of a melt as a function of crystal content X for various

values of the total fractional water content by weight N at a pressure of 1.5 k bar,

which corresponds to a depth within the Earth of about 500 m (taken from Huppert

et al. 1982).

Figure 6. a) A fissure eruption in Hawaii. b) The remains of a long fissure in the four

corners region of the United States.

Figure 7. The time tb for a two dimensional fissure to solidify, or the minimum width

Wm it attains, as a function of its initial width for a dyke of length H intruding magma

at initial temperature 1200◦ C into country rock at 100◦ C with a melting temperature

of 1150◦ C (taken from Bruce and Huppert 1989).
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Figure 8. The (half-) profile of a crack propagating vertically under the influence of

buoyancy and elasticity for Λ∗ = 0 and 1 (taken from Lister & Kerr 1991).

Figure 9. The velocity, pressure and void fraction as a function of depth due to an eruption

of magma at 1000K with three different water contents in a cylindrical conduit of radius

20 m and length 3 km. Note the fragmentation and dramatic change of behaviour at a

void fraction of 75% (courtesy of A. W. Woods).

Figure 10. The decompression phase wherein a flow of pressure pe and density ρe exits a

conduit at the local sonic speed as and decompresses to the local atmospheric pressure p0,

to obtain density ρ0 and velocity u0. The temperature during the decompression phase

remains essentially constant.

Figure 11. The velocity and density deficiency at the base of the column in an eruption

column with initial velocities u0 = 50, 75 and 200m s−1. Initial values of the mass flux,

temperature and water content are 10−1 kg s−1, 1000K and 3% respectively.

Figure 12. The separation in the plane of eruption velocity against mass eruption rate

between a Plinian column and a collapsed fountain.

Figure 13. The curve is the theoretical relationship for the height of an eruption column

H as a function of the volume eruption rate for standard atmospheric parameter values.

The data are from observations of 12 volcanic eruptions in the twentieth century.

Figure 14. a) The umbrella cloud resulting from the eruption of Mt. Redoubt, Alaska in

1991. b) A simulatory laboratory experiment in which a plume of fresh water laden with

particles is released into a salinity gradient.

Figure 15. A hot dense pyroclastic flow from the eruption of Mt. Unzen, Japan in 1991.

Figure 16. A sketch of a gravity current initiated by the instantaneous release of a fixed

volume of fluid behind a lock gate propagating at high Reynolds number.
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Figure 17. A sketch of a viscous (low Reynolds number) gravity current propagating over

a horizontal surface.

Figure 18. A typical black smoker vent.


