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Particle-driven gravity currents: asymptotic and box model solutions
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Abstract – We employ shallow water analysis to model the flow of particle-driven gravity currents above a horizontal boundary. While there exist
similarity solutions for the propagation of a homogeneous gravity current, in which the density difference between the current and ambient is constant,
there are no such similarity solutions for particle-driven currents. However, because the settling velocity of the particles is often much less thanthe initial
velocity of propagation of these currents, we can develop an asymptotic series to obtain the deviations from the similarity solutions for homogeneous
currents which describe particle-driven currents. The asymptotic results render significant insight into the dynamics of these flows and their domain of
validity is determined by comparison with numerical integration of the governing equations and also with experimental measurements. An often used
simplification of the governing equations leads to ‘box’ models wherein horizontal variations within the flow are neglected. We show how to derive these
models rigorously by taking horizontal averages of the governing equations. The asymptotic series are then used to explain the origin of the scaling of
these ‘box’ models and to assess their accuracy. 2000 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Particle-driven gravity currents arise whenever suspensions of heavy particles are released into an ambient
fluid. Because of the presence of the particles, the density of the suspension differs from that of the ambient and
a buoyancy force is induced which drives the flow. However, during the evolution of the current, the particles
continually sediment and are deposited from the flow, thus reducing the excess density of the suspension and
the driving buoyancy force. There is hence significant coupling between the dynamics of the current and the
transport of the particles. Particle-driven gravity currents occur naturally in the atmosphere, as a result of
volcanic eruptions, for example; in the oceans, as a result of sediment-laden river outflows, for example; and in
industrial settings, such as in the dumping of particle-rich pollutants.

There have been a number of previous studies of particle-driven gravity currents propagating above a
horizontal surface which have provided experimental and theoretical understanding of the flows (Bonnecaze et
al. [1,2]). These papers developed a model of the flow in which the buoyancy forces arising from the suspension
of the relatively heavy particles are balanced by the inertial forces associated with the moving fluid (and viscous
effects in the interior of the flow are neglected). The model utilizes the ‘shallow-water’ equations, which
assume that the flow is predominantly horizontal and vertically uniform and that the pressure is hydrostatic.
The current is assumed to intrude into the ambient with only negligible mixing across the interface between the
two fluids. Particles are advected by the flow and settle out of the current through a basal viscous boundary
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layer. At the front of the current, a Froude number condition is applied (Von Kármán [3], Benjamin [4],
Huppert and Simpson [5]). This condition links the frontal velocity with the height and particle concentration.
Bonnecaze et al. [1] formulated a theoretical description of the flow for two-dimensional currents flowing over
smooth, horizontal surfaces and numerically integrated the resulting equations of motion. They found good
agreement between their experimental observations and theoretical predictions. They were able not only to
predict the frontal velocity for a given particle size and initial concentration, but also to compute accurately
the deposit formed by the sedimentation from the flowing current. It should be emphasized that this model
has no free parameters, other than those set externally by specifying the particular experiment. Bonnecaze et
al. [2] performed a similar study of axisymmetric particle gravity currents and likewise found good agreement
between experiments and theory.

A simplification of the shallow water equations describing the evolution of particle-driven gravity currents
was proposed by Dade and Huppert [6] for an axisymmetric geometry and by Huppert and Dade [7] for two-
dimensional situations. They formulated a ‘box model’ description of the flow, in which the properties of
the current are assumed to be horizontally uniform. This class of models provide considerable insight into the
dependency of the frontal velocity and deposit upon the size of the particles and their initial concentration. They
also have the great, additional advantage of yielding analytical solutions. The scalings developed by Dade and
Huppert [6] and Huppert and Dade [7] exhibit good agreement with the experimental data and are also borne
out by the more rigorous numerical results of Bonnecaze et al. [1,2].

In the case of a vanishing settling velocity, the gravity current behaves like a constant density, compositional
current, which has been widely studied (Huppert and Simpson [5]; Rottman and Simpson [8]). It has been
shown in this case that release of a dense fluid within a less dense ambient attains a self-similar state
independent of the details of the initial conditions (Chen [9], Grundy and Rottman [10]). The fundamentals
of this similarity solution were first formulated by Hoult [11].

Analytical similarity solutions are advantageous tools for scientists and engineers. They provide both
significant insight into the dynamical balances that govern the flow and exact results against which numerical
codes may be tested. They also yield easily-calculated analytic expressions for the evolution of the dependent
variables of any experimentally realiseable situation. However, for a genuine particle-driven current, for which
the settling velocity is non-zero, there is no self-similar evolution. Our purpose is to extend the benefits of the
similarity solution to the particle-driven situation. We derive a perturbation correction to the similarity solution
for constant density currents, reliant upon the small settling velocity of the particles. We find the leading order
correction provides considerable insight into the evolution of the particle-driven gravity currents and brings out
some of the noteworthy features of the numerical solutions of Bonnecaze et al. [1,2]. In addition, we are able to
derive an expression for the position of the front of the current as a function of time which is in good agreement
with experimental observations. We also include an appendix in which we utilise this asymptotic expansion to
interpret more clearly the use of the analytically simplified box models.

We formulate the problem in Section 2 and introduce there the physical effects that govern the evolution
of the current. In Section 3 we present the asymptotic analysis for a two-dimensional current based on an
expansion which exploits the assumption that the settling velocity of the particles is much less than the initial
speed of propagation of the current. We then compare the results with a numerical integration of the full system
of equations. We draw some conclusions from this study in Section 4 and compare our analysis with the
experimental observations of Bonnecaze et al. [1]. The paper also includes three appendices. In the first the
results for the axisymmetric case are summarised. In the second we demonstrate how the same analytical
framework may be used to study the two-layer model of Bonnecaze et al. [1]. This model accounts for the
motion of the fluid overlying the gravity current and, in particular, we show how to justify the seemingly
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counter-intuitive prediction that the overlying return flow leads to an increased frontal velocity of the current.
In the third we examine the box model description of the flow in the light of this asymptotic analysis.

2. Formulation

Consider the intrusion of a suspension of particles over a horizontal boundary into a deep and quiescent
ambient (figure 1). The ambient fluid is assumed to be of constant density,ρa, while the fluid making up
the current is considered to be a suspension of monodispersed particles of densityρp and volume fractionφ,
with initial valueφ0. We assume that the interstitial fluid of the suspension is the same as the ambient. (The
industrially and naturally-occurring important case of relatively heavy particles suspended in light interstitial
fluid was studied by Sparks et al. [12]. Application of the ideas expounded in this paper to that situation is
straightforward.) We define the density parameter

α = ρp − ρa
ρa

. (1)

The density of the suspension making up the current,ρc, is then given by

ρc = ρa(1+ αφ), (2)

and the initial reduced gravity of the current is given by

g′0= αφ0g, (3)

whereg is the gravitational acceleration. If the current is homogeneous and non-entraining, then the effective
reduced gravity remains at its initial valueg′0. We note that in the analysis which follows, the normalised
density difference between the fluid and particulate phases,α, occurs only when multiplied by the gravitational
acceleration and therefore the reduced gravity is the important parameter.

We employ a co-ordinate system (figure 1), with horizontal and vertical axes denoted byx andz, respectively.
The current is of local heighth and we formulate expressions for the conservation of mass, momentum and
particles for the current, while the relatively deep ambient fluid is assumed to be quiescent. We assume that the
dynamics of the current are governed by a balance of inertial and buoyancy forces and hence viscous effects
may be neglected. (Bonnecaze et al. [1] found that in their experiments the dynamics of the particle-driven

Figure 1.Schematic picture of a particle-laden gravity current flowing along a horizontal boundary, under a deep and otherwise quiescent ambient fluid.
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gravity currents were indeed dominated by a balance of inertial and buoyancy forces. Ultimately viscous forces
do play a role, but at this stage the current was almost arrested.) Additional physical effects which may occur
with suspensions, as described, for example, by Ungarish [13], are negligible here because in the situations
under consideration in this study both the relative velocity between the particulate and fluid phases and the
initial volume fraction of particles are small. We employ the ‘shallow-water’ approximation for which the
current itself is assumed to be in hydrostatic equilibrium in the vertical and the remaining governing equations
are vertically averaged and reduced to expressions for the averaged horizontal velocity and volume fraction of
particles, which are denoted byu andφ, respectively. The shallow-water approach is based upon the current
being of low aspect ratio and its velocity being predominantly horizontal. The variables which describes its
evolution,u,h andφ, are considered as functions of the horizontal distancex and of timet only.

Following Einstein [14], Martin and Nokes [15] and Bonnecaze et al. [1], we assume that the dispersed
particles sediment from the current only through a basal boundary layer with constant dimensionless settling
velocity−βẑ, whereẑ is a unit vector directed vertically upwards. The value ofβ may be calculated from the
Stokes formula with the possible incorporation of hindrance (see Ungarish [13], for example). The turbulent
intensity of the current is assumed to be sufficiently large to maintain the concentration profile vertically
uniform, but insufficient to entrain deposited particles.1

In order to non-dimensionalise the equations, we first choose a suitable reference length,Lr . For the
similarity solutions there is actually no ‘natural’ lengthscale; only the initial volume per unit width can be
prescribed. We hence suggest defining a length scale for the two-dimensional case by

Lr = V 1/2
d , (4)

whereVd is the initial volume of the current per unit perpendicular width. Reference velocity and time scales
are then defined by

Ur = (Lrg′0)1/2 and Tr = (Lr/g′0)1/2. (5)

The particle volume fraction is scaled withφ0. The settling velocity of the particles is non-dimensionalised with
respect toUr (and is denoted byβ as introduced above). This is taken to be a small parameter in the subsequent
analysis. (Bonnecaze et al. [1] suggest a typical value ofβ as 5× 10−3. Note, however, that the velocity of
propagation decays with time while the settling velocity of the particles is practically constant, hence even for
small values ofβ the settling becomes important and even dominant. This is indeed pointed out by the following
asymptotic expansion whose ‘small’ parameter is notβ, but ratherβ multiplied by an increasing function of
time.) The only additional parameter that explicitly enters the solution is the Froude number,Fr , at the front of
the current which expresses the ratio of the velocity of propagation of the nose to the pressure head(g′hN)1/2
(in dimensional form, wherehN is the height of the nose). The results obtained here are calculated for a current
with Fr = 1.19, as semi-empirically determined by Huppert and Simpson [5], but may be straightforwardly
extended to a current with a different value.

We note that a different choice ofLr does not affect the results derived below, even though its definition
seemingly determines the magnitude of the dimensionless settling velocityβ. We demonstrate that the
perturbation to the similarity solution is not dependent upon any artificially defined lengthscale. We also discuss

1 An alternative model of sedimentation has been formulated (Ungarish and Huppert [16]) in which it is assumed that there is laminar settling of the
particles. The velocity of the particles relative to the suspending fluid is−βẑ everywhere. The interface between the current and the ambient is defined
by the kinematic shock which follows the boundary between the particles and the ‘pure fluid’ domain. By this process some of the interstitial fluid of
the current is left behind the interface and becomes part of the embedding ambient fluid. The employment of such a model leads to results not very
different from those derived here from the model for sedimentation from a turbulently moving fluid.
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in Section 4 the simple connection between the present scaling and results and a prototype current released from
a ‘lock’ with a reference length chosen as the initial height of the dense fluid.

3. Analysis

In this section we consider a two-dimensional, particle-laden gravity current and adopt a model of turbulent
sedimentation from the flow. Following Bonnecaze et al. [1], we write the dimensionless governing equations
as

∂h

∂t
+ ∂

∂x
(uh)= 0, (6)

∂u

∂t
+ u∂u

∂x
+ φ ∂h

∂x
+ h

2

∂φ

∂x
= 0, (7)

∂φ

∂t
+ u∂φ

∂x
=−βφ

h
. (8)

These are the expressions for the conservation of mass, momentum and particulate matter, respectively, for the
gravity current. We note that for a vanishing settling velocity (β = 0) andφ = 1, the equations describing a
compositional current are recovered (Huppert and Simpson [5]).

The equations are valid in the domain 06 x 6 xN(t), wherexN(t) is the dimensionless position of the front
and are subject to the following boundary conditions, which are applied at all orders of the expansion described
below. First, the volume of fluid which comprises the current is constant and is equal to the initial dimensionless
volumeVd , per unit width. This indicates that∫ xN

0
h(x, t) dx = Vd. (9)

As discussed in the previous section, we introduce a dimensionless lengthscale which rendersVd = 1 for two-
dimensional currents. A condition of no-flow at the rear wall yields

u(0, t)= 0. (10)

A dynamic nose (or front) condition is required because the fluid motions there are three-dimensional and
unsteady and hence can not be accurately reproduced by shallow water models. A number of studies have
suggested that the velocity at the nose be related to the local wave velocity of the shallow water equations (Von
Kàrmàn [3], Benjamin [4]) by

u(xN , t)= Fr[h(xN, t)φ(xN , t)]1/2, (11)

whereFr is the Froude number at the nose. Using inviscid fluid theory for a current of a constant excess density,
moving within a deep ambient fluid, Benjamin [4] showed thatFr =√2. Huppert and Simpson [5] studied this
condition experimentally for compositional currents and found thatFr = 1.19. The difference in values is due
to the fact that at the nose viscous forces are not entirely negligible as the complex three-dimensional motions
are dissipated. The Froude number of 1.19 has been successfully used to model experiments (Bonnecaze et
al. [1,2]). Finally, at the nose a kinematic condition is required, which is given by

d

dt
xN(t)= u(xN, t). (12)
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We reiterate that these boundary conditions are applied at all orders of the asymptotic expansion developed
below.

In general, initial conditions are required for the length, height and particle volume fraction in the current.
We prescribe the initial value of the particle volume fraction asφ = 1. However, the initial magnitudes forxN
andh cannot be prescribed to determine the similarity solution considered here, because this would introduce
an additional lengthscale. Hence, in line with the usual way of determining similarity solutions, we prescribe
the initial volume of the current but accept the need for the singular behaviourxN→ 0, h→∞ at t→ 0.

Whenβ = 0 the equations of motion (6)–(8) and the aforementioned boundary conditions are satisfied by
the classic similarity solution (Hoult [11])

xN =Kt2/3, u= 2

3
Kt−1/3U0(y), h= 4

9
K2t−2/3H0(y) and φ = 1, (13)

where

y = x/Kt2/3, (14)

provided that

U0(y)= y, H0(y)= 1

Fr2 −
1

4
+ 1

4
y2 and K =

(
27Fr2Vd

12− 2Fr2

)1/3

. (15)

Note that in this solution we have not yet substitutedVd = 1 in order to indicate how the solution is changed by
a different choice of non-dimensionlization. The validity of this solution may be verified by direct substitution,
and will also be shown as a by-product of the subsequent analysis. Note that this theoretical prediction of the
velocity of the front of the current has been confirmed experimentally (Huppert and Simpson [5]).

3.1. Asymptotic analysis

We extend this similarity solution to particle-driven currents by developing an asymptotic expansion which is
valid for times such thatt � (K2/β)3/5. Sinceβ� 1 we note that this corresponds to a considerable time span
and hence the asymptotic series is a useful addition to the similarity solutions for the homogeneous currents. It
is convenient to adopt the coordinate transformation (14) and considerh, u andφ as functions ofy andt . The
equations of motion in the new coordinates become

∂h

∂t
+
(
K−1t−2/3u− 2

3
t−1y

)
∂h

∂y
+K−1t−2/3h

∂u

∂y
= 0, (16)

∂u

∂t
+
(
K−1t−2/3u− 2

3
t−1y

)
∂u

∂y
+K−1t−2/3

(
φ
∂h

∂y
+ 1

2
h
∂φ

∂y

)
= 0, (17)

∂φ

∂t
+
(
K−1t−2/3u− 2

3
t−1y

)
∂φ

∂y
=−β φ

h
. (18)

The equations written in this form motivate the introduction of the variable

τ = βK−2t5/3, (19)

which will be used as the expansion parameter for the asymptotic series. The scaling of this parameter follows
from a consideration of (18) in the regimeβ � 1. We substitute an expansion series in ascending powers of
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β for each of the dependent variables, using the similarity solution as the leading order terms. We find thatβ

does not occur separately fromK−2t5/3 and so it is convenient to introduce the parameterτ and propose the
following expansions in the regimeτ � 1:

xN =Kt2/3[1+ τX1+ τ 2X2+ · · · ], (20)

u= 2

3
Kt−1/3[U0(y)+ τU1(y)+ τ 2U2(y)+ · · · ], (21)

h= 4

9
K2t−2/3[H0(y)+ τH1(y)+ τ 2H2(y)+ · · · ], (22)

φ= 1+ τϕ1(y)+ τ 2ϕ2(y)+ · · · , (23)

whereU0(y) andH0(y) are given by the similarity solution (15) andX1,X2 are constants. Evidently, for
τ = 0 (β = 0) the similarity solution is recovered. We now demonstrate how to develop expansions which are
consistent with both the equations of motion and the boundary conditions.

We substitute (21)–(23) into the equations of motion (16)–(18) and balance terms of equal powers ofτ . At
O(1) the equations and boundary conditions are automatically satisfied, thus validating the similarity solution
for β = 0. At O(τ ) the equations of continuity, momentum and particle transport yield, respectively,

5H1+ 2(H0U1)
′ = 0, (24)

3U1+H ′1+H ′0ϕ1+ 1

2
H0ϕ

′
1= 0, (25)

ϕ1=−27

20

1

H0
, (26)

where a prime denotes a derivative with respect toy. At O(τ 2) the particle transport equation gives the relatively
simple result

ϕ2=−27

40

1

H0

(
ϕ1− H1

H0

)
− 1

5
U1ϕ

′
1, (27)

which is all we require from this order in this study.

We now consider the boundary conditions for these asymptotic series. First, we note that although the
perturbation functionsH1(y),U1(y), etc. are defined in the domain 06 y 6 1, the nose of the current is at

yN = 1+ τX1+ τ 2X2+O
(
τ 3) (28)

and yN is expected to be smaller than unity. This follows because the current loses particles during its
propagation and thus its effective buoyancy (and hence the driving force) decays with time. Hence its rate
of propagation is also reduced.

The condition of no-flow at the origin (10) aty = 0 is readily expressed as

U1(0)= 0. (29)

The dynamic condition at the nose (11), on account of the expansions (21)–(23) and (28), is rewritten as

U0(1)+ τX1U
′
0(1)+ τU1(1)= Fr{[H0(1)+ τX1H

′
0(1)+ τH1(1)

][
1+ τϕ1(1)

]}1/2[
1+O

(
τ 2)]. (30)
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Expansion of both sides shows that the O(1) terms are balanced and the next order terms must satisfy

X1+U1(1)= 1

2

[
Fr2X1H

′
0(1)+ Fr2H1(1)+ ϕ1(1)

]
. (31)

The kinematic condition at the nose, (12), upon similar manipulation, reads

1+ 7

2
τX1+ 6τ 2X2=U0(1)+ τX1U

′
0(1)+ τ 2X2U

′′
0 (1)+ τU1(1)+ τ 2X1U

′
1(1)+ τ 2U2(1)+O

(
τ 3) (32)

resulting in at O(τ )

X1= 2

5
U1(1), (33)

and at O(τ 2)

X2= 1

6

[
U2(1)+U ′1(1)X1

]
. (34)

Finally, combining (31) and (33), we obtain

14− Fr2

5
U1(1)= Fr2H1(1)+ ϕ1(1) (35)

and after substitution of (25) and (26) this is reduced to a single, mixed boundary condition for the variableH1

only,

H1(1)+ 14− Fr2

15Fr2 H ′1(1)=
27

20

[
1+ 14− Fr2

60

]
. (36)

The solution ofϕ1, U1, H1, X1 andϕ2 can now be obtained from (24)–(26) and (33) subject to the conditions
(29) and (36). It follows immediately thatϕ1 is given explicitly by (26) and (15) as

ϕ1(y)=−27

20

/(
1

Fr2 −
1

4
+ 1

4
y2
)
. (37)

Substitution of this result into (25) and rearrangement give

U1=−1

3

[
H ′1−

27

80
y

/(
1

Fr2 −
1

4
+ 1

4
y2
)]
, (38)

and then subsequent substitution into (24) yields a second-order differential equation forH1(y), namely(
1

Fr2 −
1

4
+ 1

4
y2
)
H ′′1 +

1

2
yH ′1−

15

2
H1= 27

80
. (39)

The boundary condition forH1(y) at y = 1 is provided by (36), while the other necessary constraint follows
from (29) and (38) as

H ′1(0)= 0. (40)

In essence these two boundary conditions are related to the dynamic condition at the nose and the condition of
zero flow at the origin.
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A numerical evaluation ofH1(y) and the subsequent calculation ofU1(y) andϕ1(y) is a straightforward task.
However, we proceed here with an analytical solution. Upon the transformation of the independent variable,

ξ = iy
(

4

Fr2 − 1
)−1/2

, (41)

wherei =√−1, we find that (39) is reduced to

(
1− ξ2) d2

dξ2
H1− 2ξ

d

dξ
H1+ 30H1=−27

20
. (42)

This is a standard Legendre equation (see, for example, Arfken and Weber [17]) and the solution can be
expressed in terms of Legendre functions of order 5. On account of the condition (40) only the function of
the second kind, denoted byQ5, enters the result, which becomes

H1(ξ)= CTQ5(ξ)− 9

200
. (43)

The coefficientCT is obtained from the boundary condition (36). It is real-valued but dependent onFr . In
particular,

CT =−0.05623 forFr = 1.19. (44)

Formally, this completes the solution forH1(y), from whichU1(y),X1 andϕ2(y) can be readily calculated.
These functions are displayed infigures 2and3. In particular, we obtain

X1=−0.1809 forFr = 1.19. (45)

Of major interest is the proportion of particles that have sedimented out of the current. This is defined by

S(t)= 1

Vd

∫ xN

0

[
1− φ(x, t)]h(x, t) dx, (46)

where, again,Vd is the initial dimensionless volume of the current. Using the asymptotic series developed
above, we may evaluateS(t) with accuracy O(τ 2) without calculating any further terms. In this way, we find
that

S(τ)=−4

9

K3

Vd

∫ 1+τX1

0

(
τϕ1+ τ 2ϕ2

)
(H0+ τH1) dy +O

(
τ 3)

=−4

9

K3

Vd

{
τ

∫ 1

0
H0ϕ1dy + τ 2

[∫ 1

0
(H1ϕ1+H0ϕ2) dy +H0(1)ϕ1(1)X1

]}
+O

(
τ 3)

= 3

5

27Fr2

12− 2Fr2

(
τ − d2τ

2)+O
(
τ 3). (47)

Using the foregoing solution, we calculate that

d2= 1.183 forFr = 1.19. (48)

SinceS(τ) must be an increasing function ofτ , (47) is valid at most up toτ = 1/(2d2).



148 A.J. Hogg et al. / Eur. J. Mech. B - Fluids 19 (2000) 139–165

(a)

(b)

(c)

Figure 2. The first order asymptotic functions for (a) heightH1(y); (b) velocity U1(y); and (c) (minus) volume fraction of particles−ϕ(y) of a
two-dimensional current (———–). Also plotted are the numerical evaluations of the normalised departure from the homogeneous similarity solution

divided byτ, δh, δu andδφ, at τ = 0.057 (- - - -),τ = 0.18 (—· · ·—), τ = 0.355 (–· – · –) andτ = 0.573 (— - — - —).

Higher-order expansions may be derived in an analogous manner to the first-order expansions presented here.
Using this technique, after lengthy algebraic manipulations, we computed the second-order terms in the power
series expansions. In particular we find thatX2= 0.06489 forFr = 1.19.
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Figure 3. The first term in the asymptotic formulation of the normalised departure of the length of a two-dimensional, particle-driven current from the
homogeneous similarity solution,X1, (———–). Also plotted is the numerical evaluation of this departureδxN (- - - - -).

3.2. Numerical solutions

These asymptotic series are compared with results arising from the numerical integration of the governing
equations in order to assess further the validity of the analysis and the range ofτ for which the asymptotic
expansion accurately reproduces the numerical results. For this purpose the governing equations, in terms of
independent variablesy andt , were recast into conservation form and discretised by a two-step Lax–Wendroff
method, after the addition of an artificial viscosity to the momentum equation, which is necessary to damp
spurious oscillations. (Similar methods have been described more fully by Bonnecaze et al. [1,2], Ungarish and
Huppert [16].) The initial conditions, however, were different from the usual ones employed to model lock-
release gravity currents. To avoid a period of adjustment from the ‘lock-like’ initial conditions to the similarity
solution which obscured the comparison with the asymptotic analysis, the dependent variables here were set
equal to the form of the homogeneous similarity solution at the start of the numerical integration. However,
this similarity solution is singular att = 0 (h→∞). This difficulty was overcome by starting the integration
at some small timet0; at this time, the initial conditions ofh, u andφ were prescribed as the corresponding
values in the similarity solution. We estimate that this produced a small deviation from the exact solution of
O(βt5/30 ) and O(βt20) for the two-dimensional and axisymmetric cases, respectively. This numerical scheme
was employed for the analysis of both two-dimensional and axisymmetric currents with models of turbulent
and laminar sedimentation. In a typical numerical integration, we used 200 grid points, a time step of 5× 10−4

and an initial time oft0= 0.5. The dimensionless coefficient of artificial viscosity was 0.03.

We compare the asymptotic solutions with the numerical integration of the governing equations in the
following stringent manner. We numerically evaluate the following expressions as functions ofy andτ :

δh(y, τ)≡ 1

τ

[
h(y, t)

(4/9)K2t−2/3
−H0(y)

]
, (49)

δu(y, τ)≡ 1

τ

[
u(y, t)

(2/3)Kt−1/3
−U0(y)

]
, (50)

δφ(y, τ)≡ 1

τ

[
1− φ(y, t)], (51)

δxN(τ)≡ 1

τ

[
xN(t)

Kt2/3
− 1

]
. (52)

These expressions define functions which evaluate 1/τ times the departure of the normalised, numerically
integrated solutions from the similarity solution for homogeneous gravity currents. As shown infigures 2
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and 3, in the regimeτ � 1 they are accurately represented by the leading-order asymptotics functions
H1(y), U1(y), −ϕ1(y) andX1. However, asτ increases, the functionsδh, δu, δφ andδxN systematically depart
from the first-order asymptotic solutions, suggesting the need to include higher-order terms in the asymptotic
series.

The divergence between the numerical integration and the first-order asymptotic functions occurs most
rapidly with the evaluation for the volume fraction of particles. We note that the use of only the first-order
asymptotics becomes a poor approximation to the numerics at a relatively small value ofτ (figure 2(c)). For
this dependent variable, however, we have also evaluated the second-order asymptotic functionϕ2(y). We
compare the numerically evaluated functionδφ(y, τ) with the leading two functions of the asymptotic series,
−ϕ1(y)− τϕ2(y), in figure 4. This extended asymptotic series now accurately reproduces the numerics up to
a much larger value ofτ . We also note that because we have calculated three terms in the asymptotic series
of the volume fraction,φ(y, τ) = 1+ τϕ1(y)+ τ 2ϕ2(y)+ · · ·, we may take a Shanks transform (Hinch [18])
to improve the convergence of the series. This further improves the agreement between the numerics and the
asymptotics. Finally, we compare infigure 5 the numerical evaluation of the proportion of particles which
have settled out of the current with the first two terms of the series expansion (47). We note that there is good

Figure 4. The sum of the leading two asymptotic functions for the volume fraction of a two-dimensional current,−ϕ1(y)− τϕ2(y), and the numerical
evaluation ofδφ(y, τ ) as a function ofy at various values ofτ . The graph shows the first-order asymptotic function−ϕ1(y) (———–); the numerical
evaluation of the departure from the similarity solution,δφ(y, τ ), atτ = 0.057 andτ = 0.573 (– – – –); the sum of the leading two asymptotic functions,
−ϕ1(y)− τϕ2(y), at τ = 0.057 andτ = 0.573 (- - - - -); and the Shankes transformation of the series for the volume fraction atτ = 0.573 (–· – · –).

Figure 5. Comparison between the two-term asymptotic expression for the proportion of particles which have settled out of the current for a two-
dimensional current,S(τ ), and the numerical evaluation of this quantity as a function ofτ . The graph shows the asymptotic function (———–), the

numerical calculation (- - - - -) and the continued fraction approximant of the asymptotic series (–· – · –).
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agreement between the two until approximatelyτ = 0.3, after which the numerical and asymptotic functions
diverge. We define this value ofτ as the limit of validity for our first-order asymptotic expansion. We also
note that the use of a continued fraction approximant for the expansion of the proportion of particles within the
current which have settled out of it, given by

Scf (τ)= 3

5

27Fr2

12− 2Fr2

τ

1+ d2τ
, (53)

yields an improved estimate of the numerical calculation up to at leastτ = 0.6.

The extension of the above concepts to cover axisymmetric situations is presented in Appendix A.

4. Discussion

We summarise intable I the asymptotic results derived in the preceding sections for two-dimensional and
axisymmetric particle-driven gravity currents with laminar and turbulent models of sedimentation. The table
presents the appropriate expansion parameter and the first-order asymptotic functions for the rate of propagation
of the front of the current and the proportion of particles which have settled out of the current. It also provides
a comparison with the ‘box’ model solutions and indicates a maximum value of the expansion parameter for
which these asymptotic expressions adequately reproduce the numerically integrated solutions of the governing
equations.

The form of the first-order asymptotic functions provide considerable insight into the dynamical balances
within the flow and the way in which the evolution of particle-driven currents differ from homogeneous currents
of the same initial excess density. The fundamental difference between the two is, of course, that the particles
settle out of the flow to the underlying boundary. Hence the buoyancy of the current in the ambient is decreasing
and thus the rate of propagation is also decreasing.

First, we consider the analysis of currents which are described using our model of turbulent sedimentation.
(We observe by comparingfigures 2and7 that the qualitative forms of the first-order asymptotics for both the
two-dimensional and axisymmetric currents are similar.) The first-order asymptotic function for the volume
fraction of particles,ϕ1(y), is always less than zero, indicating particle sedimentation along the entire length

Table I. The leading-order expressions for the position of the front and the proportion of settled particles for ‘box’ model and asymptotic series for
two-dimensional particle-driven currents with models of both turbulent and laminar sedimentation and for axisymmetric particle-driven currentswith a

model of turbulent sedimentation. The series are calculated withFr = 1.19.

Two-dimensional Axisymmetric

Sedimentation Turbulent Laminar Turbulent

Expansion parameter τ = βK−2t5/3 σ = βκ−2t2

K =
(

27Fr2Vd
12−2Fr2

)1/3
κ =
(

32Fr2Va
4−Fr2

)1/4

Asymptotic series

Limit of validity τ = 0.3 τ = 0.4 σ = 0.15

Position of front xN = 1.61Kt2/3(1− 0.18τ ) xN = 1.61Kt2/3(1− 0.20τ ) rN = 1.54κt1/2(1− 0.18σ)

Settled particles S(τ )= 2.50τ S(σ )= 4.38σ

Box models

Position of front xN = 1.47Kt2/3(1− 0.29τ ) rN = 1.72κt1/2(1− 0.29σ)

Settled particles S(τ )= 2.29 S(σ)= 3.52σ
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of the current. The reduction in the concentration of particles by sedimentation is greatest, though, at the tail
of the current and least at the front. This distribution arises because the height of the tail is less than the height
of the front. While the settling velocity of the individual particles is constant, the proportion of suspended
particles which settle to the boundary is larger in the shallower regions of the current than in the deeper regions.
The sedimentation of particles and the resultant reduction of the density difference between the current and
ambient indicates that the velocity of propagation at the front is reduced relative to a current of constant excess
density. Therefore we find thatU1< 0 near toy = 1. Within the current itself these exists an adverse pressure
gradient which acts to slow down the fluid following the front of the current. Particle sedimentation affects this
distribution of pressure in a complex way and leads to different effects in separate regions of the flow. Near to
the origin, the pressure gradient resisting motion is reduced, the fluid accelerated and the height of the current
reduced relative to that found within the similarity solution for homogeneous currents. Consequently, there is
a region of fast moving, relatively particle-free fluid. Near to the front, however, the current is slowed relative
to the homogeneous similarity solution and the height of the current is increased as fast-moving fluid from the
tail piles up near to the nose.

These perturbation solutions have reflected a number of features of the structure of the flow noted by
Bonnecaze et al. [1] from their numerical solutions. They observed a region near to the origin in which the
volume fraction of particles is strongly depleted, the height of the current is significantly reduced and the flow
is opposed by a relatively reduced pressure gradient. After a sufficient length of time, this developed into an
internal bore which separated a particle-free, jet-like flow at the rear from a dense gravity-current-like flow at
the front. We observe that the basis for the generation of this internal bore is to be found within the functional
form of the first-order asymptotics, as described above.

In Section 2 we defined a lengthscaleLr which was used to non-dimensionalise the governing equations.
We now demonstrate that the seemingly arbitrary choice ofLr does not affect the results derived here. This is
most simply shown by verifying that the expansion parameter is independent of the choice of this lengthscale.
Denoting the dimensional time byt ′, we find that

τ =
(

12− 2Fr2

27Fr2

)2/3
t ′5/3Vsg

′1/3
0

V
2/3
d

, (54)

where, again,Vs, Vd andg′0 are the dimensional particle settling velocity, the initial volume of the current
(per unit width) and the initial reduced density of the current fluid, respectively. Thus the choice of lengthscale
used to render the problem dimensionless does not play a role in the asymptotic expansions developed in this
study. The influence of the particles on the behaviour of the current, according to the asymptotic expansions
developed in this study, depends on the volume of the current (per unit width),Vd , but not on the particular
initial geometry. This, however, is subject to the following restriction.

In practice a typical constant volume current is produced by a lock release. Hence, in the two-dimensional
analysis, the initial conditions for shallow water equations are not those employed in Section 3, but rather

u= 0, φ = 1 and h= h0 for 06 x 6 Vd/h0, (55)

whereh0 is the initial dimensionless height of the lock. There is both computational and experimental evidence
that although these conditions are different from the similarity shape, the current is well approximated by the
similarity solution after an initial slumping period (tsl ≈ 3x0/h

1/2
0 ). Substitutingtsl in (19) yieldsτsl which is

expected to be the lower bound of the intervalτ for which the present approximation is valid. Thus, the initial
aspect ratio of the lock-released current determines the range of validity of the expansion, but not the results.
Evidently, our results are of practical value only whenτsl� 1 which is equivalent to the statement that during
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the slumping phase only a small fraction of the dispersed particles sediment to the underlying boundary. This
condition, though, is not restrictive as we illustrate by use of the experimental data of Bonnecaze et al. [1].

Bonnecaze et al. [1] experimentally studied the gravity currents which arose when suspensions of silicon
carbide particles were released into pure water. The density of these particles,ρp is 3.22 gcm−3, and the
experiments employed particles with mean diameters, 9, 23, 37 and 53µm, while the initial volume fraction
of particulate was in the range of 1–4%. We estimate the timescale of slumping for flows with an initial reduced
gravity, g′0, of 22.9 cms−2, released from a lock of length 15 cm and height 30 cm. Thus the slumping time,
tsl, is 1.7 s. On the other hand, we have demonstrated that the expansions of Section 3 are valid up to an
approximate minimum value ofτ = 0.5. This corresponds to dimensional times of 116, 38, 21 and 14 s, for
particles of the particles of diameter 9, 23, 37 and 53µm, respectively. There are thus significant times during
which the behaviour of the current is accurately modelled by the theoretical model presented here.

Bonnecaze et al. [1] developed a shallow-water description of the current which, when integrated
numerically, was able to accurately model the evolution of the flow. Their model is identical to that employed
here with the additional feature that the return flow within the ambient fluid overlying the current was
accounted for. We demonstrate in Appendix B that the influence of the return flow is O(t−2/3) and hence it has
progressively less effect on the propagation of the current. Therefore our analysis, which neglects the influence
of the ambient fluid, will become increasing accurate as time progresses. We compare the experimental data
of Bonnecaze et al. [1] with our analytical expression for the propagation of the front of the current (20). It is
convenient to re-scale the experimentally measured position of the front and time with respect to a lengthscale,
Lp, and a timescale,Tp, given by

Lp =
[
Vd(g

′
0Vd)

1/2

Vs

]2/5

and Tp = Vd

VsLp
. (56)

Denoting the dimensionless position of the front byL and dimensionless time byT , we re-plot the experimental
data of Bonnecaze et al. [1] infigure 6. (Note that these new dimensionless variables are related to those of
Section 3 byL= xNβ2/5 andT = (τK2)3/5.) We observe that in terms of these new dimensionless variables the
experimental data for four particle sizes, three initial volume fractions and three volumes of the current per unit
width are collapsed onto each other. The eight data series displayed infigure 6span the range of experimental
conditions investigated by Bonnecaz et al. [1]. In terms of the asymptotic theory developed here, we note that

L(T )=KT 2/3
(

1+ X1

K2
T 5/3+ X2

K4
T 10/3+ · · ·

)
, (57)

whereK ≡ [27Fr2/(12−2Fr2)]1/3= 1.6 for Fr = 1.19. Infigure 6we plot the first-order approximation and
note that it accurately reproduces the experimental data up toT ≈ 2. Thereafter the first-order approximation
rapidly diverges from the theoretical prediction. We also show the continued fraction representation of the first
order expansion and note that this slightly extends the domain in which it accurately models the experimental
data. The final curve plotted infigure 6 is the [1,1] Padé approximant of the second-order expansion. We
observe that this accurately reproduces the experimental observations over the entire range of measurements.
We have thus avoided the need for the numerical integration of a system of partial differential equations and
instead have derived an analytical expression for the rate of propagation of the front of the current, which is in
excellent agreement with the experimental data.

We conclude that the asymptotic analysis developed here has permitted a number of the valuable
characteristics of the similarity solutions for homogeneous gravity currents to be carried over to particle-
driven currents. We have developed analytical expressions for the first-order asymptotic functions in both
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Figure 6. Comparison between the asymptotic theory and the experimental results of Bonnecaze et al. [1] for the position of the front of the current as
a function of time. The particle size, initial volume fraction and volume of fluid per unit width for each of the data series are listed in the legend.

two-dimensional and axisymmetric geometries (the latter in Appendix A). These functions yield significant
insight into the structure of the solutions to the governing equations and the various dynamical effects. By
comparison with numerical solutions of the governing equations and with experiments, we identify the regime
for which these first-order expansions are valid.

Finally in Appendix C, we have demonstrated how to derive rigorously from the full shallow-water equations
box model solutions which neglect horizontal variations. We have been able to suggest why such solutions
provide a possibly more reasonable than expected model of the dynamics.

Appendix A. Axisymmetric currents

We analyse the evolution of particle-driven axisymmetric currents and derive a correction to the similarity
solution for homogeneous currents. The analysis closely follows the approach of the preceding sections
for two-dimensional currents, although the details of the calculation are somewhat different. We employ a
cylindrical coordinate systemr, θ, z, andu now represents the vertically averaged velocity component in the
radial direction. The azimuthal velocity component is identically zero and we consider a flow which exhibits
only temporal and radial dependence. The analysis also applies to a flow in a sector of constant angle. The
dimensionless equations describing the evolution of the current were derived by Bonnecaze et al. [2] and are
given by
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∂h

∂t
+ 1

r

∂

∂r
(ruh)= 0, (A1)

∂u

∂t
+ u∂u

∂r
+ φ ∂h

∂r
+ 1

2
h
∂φ

∂r
= 0, (A2)

∂φ

∂t
+ u∂φ

∂r
=−β φ

h
. (A3)

The equations are valid in the domain 06 r 6 rN(t), whererN is the dimensionless position of the front of the
current. The boundary conditions are analogous to those for a two-dimensional current and are given by∫ rN

0
h(r, t)r dr = Va, (A4)

u(0, t)= 0, (A5)

u(rN, t)=Fr[φ(rN , t)u(rN, t)]1/2, (A6)

d

dt
rN = u(rN, t), (A7)

whereVa is the dimensionless initial volume of the current. These equations represent the integral expression
for the global conservation of volume (A4); vanishing velocity at the origin (A5); the dynamic condition at
the front of the current (A6); and the kinematic condition at the front (A7). This system of equations has
been numerically integrated by Bonnecaze et al. [2] and has been shown to exhibit excellent agreement with
experimental observations.

As for two-dimensional currents, there exists a similarity solution for non-entraining, axisymmetric gravity
currents of constant excess density(β = 0) and we derive the asymptotic correction to this expression in the
regime of small settling velocity(β� 1). The similarity solution was first calculated by Hoult [11] and takes
the form

rN = κt1/2, u= 1

2
κt−1/2U0(η), h= 1

4
κ2t−1H0(η) and φ = 1, (A8)

where

η= r/κt1/2, κ =
(

32Fr2Va
4− Fr2

)1/4

, (A9)

and

U0(η)= η, H0(η)= 1

Fr2 −
1

2
+ 1

2
η2. (A10)

It has been shown that compositional currents are well modelled by this similarity form of solution after a
sufficient lapse of time from their initiation (Bonnecaze et al. [2]).

As before, it is convenient to adopt the coordinate transformation (A9) and considerh, u andφ functions of
η andt . The equations of motion become

∂h

∂t
+
(
κ−1t−1/2u− 1

2
t−1η

)
∂h

∂η
+ κ−1t−1/2

(
h
∂u

∂η
+ uh
η

)
= 0, (A11)

∂u

∂t
+
(
κ−1t−1/2u− 1

2
t−1η

)
∂u

∂η
+ κ−1t−1/2

(
φ
∂h

∂η
+ 1

2
h
∂φ

∂η

)
= 0, (A12)

∂φ

∂t
+
(
κ−1t−1/2u− 1

2
t−1η

)
∂φ

∂η
=−β φ

h
. (A13)
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We define the variable

σ = βκ−2t2, (A14)

which will be utilised as a small parameter in the analysis which follows. We introduce the expansions

rN = κt1/2[1+ σR1+ σ 2R2+ · · · ], (A15)

u= 1

2
κt−1/2[U0(η)+ σU1(η)+ σ 2U2(η)+ · · · ], (A16)

h= 1

4
κ2t−1[H0(η)+ σH1(η)+ σ 2H2(η)+ · · · ], (A17)

φ = 1+ σψ1(η)+ σ 2ψ2(η)+ · · · . (A18)

Again, we substitute these expansions into the governing equations (A11)–(A13) and balance terms of equal
powers ofσ . At O(1), the terms are already in balance by virtue of the similarity solution. At O(σ ), we
obtain the following expressions for the conservation of fluid volume, momentum and the transport of particles,
respectively,

(H0U1)
′ + 4H1+H0U1/η= 0, (A19)

H′1+ 4U1− η/H0= 0, (A20)

ψ1=−2/H0, (A21)

where a prime is used now to denote differentiation with respect toη. At O(σ 2) we consider only the result of
the particle conservation equation, which is a function of variables at lower order and is given by

ψ2=− 1

H0

(
ψ1− H1

H0

)
− 1

8
U1ψ

′
1. (A22)

The corresponding boundary conditions, in terms of these perturbation functions, are that at the origin there is
no flow and so

U1(0)= 0, (A23)

which, on account of (A20), also imposes

H′1(0)= 0. (A24)

The dynamic nose condition (A6) renders at O(σ )

U1(1)+R1

[
1− 1

2
Fr2H′0(1)

]
= 1

2
Fr2H1(1)+ 1

2
ψ1(1). (A25)

The kinematic nose condition (A7) yields

R1= 1

4
U1(1) and R2= 1

8

[
U2(1)+ U ′1(1)R1

]
. (A26)

The combination of these results provides a single mixed boundary condition ofH1:

H1(1)+ 10− Fr2

16Fr2 H
′
1(1)= 2+ 10− Fr2

16
. (A27)
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The solutionψ1(y) emerges in a straightforward fashion from (A21) and (A10) and we then solve the
remaining governing equations (A19) and (A20) subject to the boundary conditions (A24) and (A27). We
eliminateU1 from these equations to obtain

η

(
1

Fr2 −
1

2
+ 1

2
η2
)
H′′1 +

(
1

Fr2 −
1

2
+ 3

2
η2
)
H′1− 16ηH1= 2η. (A28)

A change of variable, given by

ζ =− Fr2

2− Fr2η
2, (A29)

reduces (A28) to an inhomogeneous hypergeometric equation (see Arfken and Weber [17])

ζ(1− ζ )d
2H1

dζ 2
+ (1− 2ζ )

dH1

dζ
+ 8H1=−1. (A30)

The solution, which satisfies the boundary condition atζ = 0 (A24), is

H1(ζ )= CA 2F1(a, b,1; ζ )− 1

8
, (A31)

wherea = (1+√33)/2, b = (1−√33)/2 and the coefficientCA is determined by the boundary condition
(A27). In particular,

CA = 0.09044 forFr = 1.19. (A32)

The remaining unknownsU1(η), ψ2(η) andR1 follow straightforwardly fromH1(η) andψ1(η) by (A20),
(A22) and (A26), respectively. Results are displayed infigures 7and8, and, in particular,

R1=−0.1754 forFr = 1.19. (A33)

The proportion of particles which have settled from the current may be calculated from

S(σ )= 1

Va

∫ rN

0
(1− φ)hr dr. (A34)

Using our expansions for the leading terms, we obtain

S(σ )=− 8Fr2

4− Fr2

{
σ

∫ 1

0
ψ1H0ηdη+ σ 2

[∫ 1

0
(ψ2H0+ψ1H1)η dη− 2R1

]}
+O

(
σ 3) (A35)

= 8Fr2

4− Fr2

[
σ − k2σ

2]+O
(
σ 3), (A36)

where

k2= 2.638 forFr = 1.19. (A37)

We compare these asymptotic solutions with numerical integration of the governing equations in an
analogous manner to Section 3. From the numerical solutions we evaluate the following functions to measure
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(a)

(b)

(c)

Figure 7. The first-order asymptotic functions for (a) heightH1(η); (b) velocity U1(η); and (c) (minus) volume fraction of particles−ϕ(η) of an
axisymmetric current (———–). Also plotted are the numerical evaluation of the normalised departure from the homogeneous similarity solution

divided byσ, δh, δu andδφ, atσ = 0.076 (- - - - -),σ = 0.21 (· · · · · ·), σ = 0.41 (– · – · –) andσ = 0.68 (—· · ·—· · ·—).

the departure from the similarity solutions for a homogeneous current

δh(η, σ )= 1

σ

[
h(η, t)

(1/4)κ2t−1
−H0(η)

]
, (A38)
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Figure 8. The first term in the asymptotic formulation of the normalised departure of the length of an axisymmetric, particle-driven current from the
homogeneous similarity solution (———–),R1. Also plotted is the numerical evaluation (- - - - -) of this departureδrN .

Figure 9. Comparison between the two-term asymptotic expression for the proporation of particles which have settled out of the current for an
axisymmetric curent,S(σ), and the numerical evaluation of this quantity as a function ofσ . The graph shows the asymptotic function (———–),

the numerical calculation (- - - - -) and the continued fraction approxiamnt of the asymptotic series (—· · ·—· · ·—).

δu(η, σ )= 1

σ

[
u(η, t)

(1/2)κt−1/2
− U0(η)

]
, (A39)

δφ(η, σ )= 1

σ

[
1− φ(η, t)], (A40)

δrN(σ )= 1

σ

[
rN(t)

κt1/2
− 1

]
. (A41)

These are plotted on the same graphs as the first-order asymptotic functionsH1(η), U1(η), −ψ1(η) andσR1 at
various values ofσ in figures 7and8. Once again we observe good agreement between the asymptotics and the
numerics, with the expected gradual divergence of the two asσ increases, which indicates the need to include
higher-order corrections. Again the divergence of the numerical solutions from the first-order asymptotics
is most pronounced for the volume fraction of particles (figure 7(c)), which is relatively poorly represented
by its first-order asymptotic function. We compare the numerical and two-term asymptotic evaluation of the
proportion of particles which have settled out of the current infigure 9. We note that there is good agreement
until aroundσ = 0.15, at which point approximately 40% of the particles have settled out of the current. We
take this value ofσ as the definition of the limit of validity of our first-order expansion.
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Appendix B. Two-layer model

In this appendix we consider the flow of a non-entraining gravity current of constant density as it propagates
over a horizontal boundary under an ambient fluid which is sufficiently shallow so that its motion cannot
be neglected. As the current passes, a return flow is set up within the ambient as a consequence of mass
continuity. It is assumed that there is no interfacial drag between the two layers and that the flows are vertically
uniform. Such a model of two-layer flow has been successfully employed by a series of studies (Rottman and
Simpson [8]; Bonnecaze et al. [1]; Hallworth et al. [19]) and has been found to explain some features of the
flow which are unresolved by single-layer models. We consider here a two-dimensional gravity current and
employ the length and time scalesLr andTr , given by (4) and (5), to render the variables dimensionless. We
denote the height and velocity of the upper layer byhu anduu, respectively, while as in Section 3 the height and
velocity of the current are denoted byh andu. We further simplify the problem by assuming that the combined
height of the current and overlying ambient is constant and is denoted byH . The equations of mass continuity
in each layer are given by

∂h

∂t
+ ∂

∂x
(uh)= 0, (B1)

∂hu

∂t
+ ∂

∂x
(uuhu)= 0, (B2)

whilst the momentum equations in each layer are

∂

∂t
(uh)+ ∂

∂x

(
u2h+ h2/2

)+ h∂pi
∂x
= 0, (B3)

∂

∂t
(uuhu)+ ∂

∂x

(
u2
uhu
)+ hu ∂pi

∂x
= 0, (B4)

wherepi is the pressure at the interface between the fluids. Since the combined depth of the current and
ambient is constant(h+ hu = H) and the volume fluxes of fluid in each layer balance(uh+ uuhu = 0), we
may eliminate the interfacial pressure from (B3) to find (Hallworth et al. [19])

∂

∂t
(uh)+ (1− h/H) ∂

∂x

(
u2h+ h2/2

)− h

H 2

∂

∂x

(
u2h2

1− h/H
)
= 0. (B5)

We analyse this equation, together with (B1) in the regimeε ≡ 1/H � 1. These equations are applicable along
the length of the current and we denote the position of the front byxN(t). The boundary conditions are given
by

u(0, t)= 0, (B6)
dxN

dt
= u(xN , t), (B7)

u(xN, t)=Fr[h(xN, t)]1/2, (B8)∫ xN

0
hdx = 1. (B9)

These equations represent the condition of no flow at the origin (B6); the kinematic condition at the front of
the current (B7); the dynamic condition at the front (B8); and the global conservation of fluid volume (B9).
We may not specify initial conditions in an analogous manner to Section 3 because this would imply that at
t = 0 the height of the current would exceed the total depth of fluid,H . Instead we require that our solution
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for the two-layer flow recovers the similarity solution of the single-layer ast→∞. This similarity solution is
given by (13). We recast the governing equations in terms ofy andt , using the coordinate transformation given
by (14). A convenient parameter for the asymptotic expansions of the height, velocity and position of the front
is given by

λ= εK2t−2/3. (B10)

In the regimeλ� 1, we propose the following series

xN =Kt2/3[1+ λX1+ · · · ], (B11)

u= 2

3
Kt−1/3[U0(y)+ λU1(y)+ · · · ], (B12)

h= 4

9
K2t−2/3[H0(y)+ λH1(y)+ · · · ]. (B13)

The leading-order solutions are the similarity solutions for the single-layer model of a gravity current. At O(λ)

we obtain

−H1+ (H0U1)
′ = 0, (B14)

−1

3
U1+ 2

3
H ′1=

8

27

(
U2

0H0+H 2
0 /2

)′
, (B15)

where a prime denotes differentiation with respect toy. We now formulate the boundary conditions for these
first-order asymptotic functions. This analysis proceeds in a manner analogous to Section 3. Hence we find that
the condition of no-flow at the origin yields

U1(0)= 0. (B16)

The kinematic condition at the nose leads to

U1(1)+X1= 0 (B17)

and the dynamic condition at the nose gives

H1(1)+X1H
′
0(1)= 0. (B18)

We eliminate the velocity perturbationU1 from (B14) and (B15) to yield the following equation:

(
H0H

′
1

)′ −H1/2= 4

9

[
H0
(
U2

0H0+H 2
0/2

)′]′
. (B19)

Upon the transformation of the independent variable toζ = iy(4/Fr2 − 1)−1/2, we find that this equation
becomes a standard Legendre equation with homogeneous solutions of Legendre functions of order 1. On
account of the boundary condition (B16), we find that only the Legendre function of the second kind, which
we denote byQ1(ζ ), enters this solution. Hence we find that

H1(ζ )=AQ1(ζ )+
(

1

Fr2
− 1

4

)2(20

9
ζ 4− 8

3
ζ 2+ 4

9

)
. (B20)

The remaining constant,A, is determined from the boundary conditions. As in Section 3, it is real and dependent
upon the magnitude of the Froude number at the front of the current. We find that

A= 0.5860 forFr = 1.19. (B21)
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Figure 10.The first-order asymptotic functions for (a) heightH1(y) (———–); and (b) velocityU1(y) (- - - - -) in a two layer model of a homogeneous
two-dimensional gravity current.

This implies thatX1 = 0.6540. We plot the functionsH1(y) andU1(y) in figure 10. We note that the effect
of including the motion of the upper layer is to accelerate the gravity current(X1 > 0). This is a somewhat
counter-intuitive results because the ambient flow is in opposition to the flow of the gravity current. However
interfacial drag, which would act to decelerate the gravity current, is not included in this simple model of
the motion. Instead the distribution of the interfacial pressure is such that the flow accelerates. There is some
evidence of this behaviour in the numerical results of Bonnecaze et al. [1]. They found that it was necessary
to include the motion of the ambient fluid in order to model accurately their experimental results. We also
note that the extra velocity of the current decays with increasing time ast−2/3, because as the current spreads
out and becomes thinner, the return flow within the ambient is reduced. Thus, the behaviour of the solution is
represented by the single-layer similarity solution with increasing accuracy as time advances.

Appendix C. Derivation of the box model

In this appendix we illuminate the conditions for the validity of the analytical ‘box’ models of gravity currents
that have been proposed by Huppert and Simpson [5], Dade and Huppert [6] and Huppert and Dade [7] and also
show how they can be determined from the full governing equations. For box models horizontal variations in
the properties of the current are neglected. The resulting analysis, however, leads to accurate predictions of the
scaling dependencies of the frontal velocity. Box models may be formulated for both axisymmetric and two-
dimensional currents. In this appendix, however, we focus only on two-dimensional currents. (Axisymmetric
currents can be similarly analysed.) Starting from the shallow-water equations (Eqs (6)–(8)), we consider the
horizontally-integrated expressions for the conservation of mass, momentum and particles which are given by

d

dt

∫ xN

0
hdx = 0, (C1)

d

dt

∫ xN

0
hudx =−

[
1

2
h2φ

]xN
0
, (C2)

d

dt

∫ xN

0
hφ dx =−β

∫ xN

0
φ dx. (C3)

The boundary conditions for these equations are given by (9)–(12). For the ‘box’ models, we solve for the
temporal variation of the frontal position and the height and volume fraction at the front; we do not explicitly
solve for the height and velocity ‘within’ the current. This implies that the momentum condition (C2) is not
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required since the velocity at the boundary is specified by the Froude number condition,

dxN

dt
= Fr[φ(xN , t)h(xN, t)]1/2. (C4)

We now make the following substitutions which link the integrals of the properties of the current to the
conditions at the front. We write ∫ xN

0
hdx = f1(t)xNh(xN, t), (C5)∫ xN

0
hφ dx = f2(t)xNh(xN, t)φ(xN, t), (C6)∫ xN

0
φ dx = f3(t)xNφ(xN , t), (C7)

where each off1(t), f2(t), f3(t) are functions of time. If the current evolves in a self-similar manner then these
functions are constants, because there are constant ratios of the average height and volume fraction of particles
to their values at the nose of the current. The magnitude of these ratios indicate the skewness of the distribution
within the current; if the currents were truly box-like then the value of these ratios would be unity. If, however,
the current does not evolve in a self similar manner, thenf1(t), f2(t), f3(t) will not be constant.

In the limitβ = 0, the current is a non-entraining, gravity current of constant density. There exists a similarity
solution for such flows, which was given in Section 3. In this case we find that

f1= f2= 1− 1

6
Fr2, f3= 1. (C8)

We observe thatf1, f2 < 1 which is consistent with the height of a self-similar homogeneous gravity current
being skewed towards the nose.

Whenβ is non-zero, there is no similarity form of solution and the functionsf1(t), f2(t), f3(t) are not
necessarily constant. We employ the perturbation analysis of Section 3 to evaluate series expansions for each
of these functions. In the regimeτ ≡ βK−2t5/3� 1 and withFr = 1.19, we find that

f1(τ )= 0.76(1− 0.47τ + · · ·), (C9)

f2(τ )= 0.76(1− 1.1τ + · · ·), (C10)

f3(τ )= 1− 0.63τ + · · · . (C11)

In the limit τ = 0 and withFr = 1.19, these expressions are equivalent to (C8). We note that the form of each
of the functions implies that the distribution of fluid and particulate mass becomes increasing skewed towards
the nose, a conclusion which is borne out in the results of both the asymptotic and numerical analysis of the
shallow-water equations. We recall from Section 3 that these first-order solutions are valid until approximately
τ = 0.5, within which range of values each of these exhibits a considerable variation in value. Box models
which utilise the assumption that these distribution functions are constant, have been formulated by Dade and
Huppert [6], Bonnecaze et al. [2] and Hallworth et al. [19] to find the rate of propagation of the currents and the
resulting deposit. These ‘box’ model solutions provide not only the dimensionless ratios of parameters on which
the characteristics of the current depends, but also the relevant functional dependency upon the dimensionless
time and downstream distance. All that is undetermined is a series of constants, which correspond to the values
ascribed to the functionsf1(t), f2(t) andf3(t). It is to be expected that the values of these should differ from
unity since the distributions of height and volume fraction of particles throughout the current are non-uniform.
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In the analysis which follows, we work through the ‘box’ model approach and attempt to justify its success in
reproducing predictions from more complex numerical models.

The ‘box’ model approach yields

hNxNf1= Vd, (C12)
d

dt
(f2hNxNφN)=−βf3φNxN, (C13)

together with the Froude number condition at the front (C4), where we have used a suffix ofN to indicate the
function evaluated at the nose of the current. Hence, substituting8= f2φN/f1 into (C12) and (C13), we find
that

d8

dt
=−βf3f1

f2Vd
8xN, (C14)

dxN

dt
=Fr

( Vd8
xNf2

)1/2

. (C15)

We note that all of the parameters within the box model may be removed from these two governing equations
by the adoption of new non-dimensional variables. We introduce new dimensionless variables for the frontal
position and time, denoted byL andT , respectively, which have been rendered dimensionless byL∞ andT∞,
which are given by

L∞ =
(5Fr(g′pφ0)

1/2V
3/2
d

Vs

)2/5

and T∞ = 5Vd
VsL∞

. (C16)

In these expressions,Vs denotes the dimensional settling velocity of the particles. The box model dimensionless
time is related to the expansion parameterτ by

τ = 5K−2Fr−2/3T 5/3. (C17)

It turns out that just as the asymptotic expansions of Section 3 could be expressed in power series ofτ , so the
box model variables can be expressed in power series ofT 5/3. These two variables,L and8, are simply related
by a function of the Froude number at the front of the current. The adoption of this new non-dimensionalisation
renders the ‘box’ model equations as

d8

dT
=−f3f1

f2
8L, (C18)

dL

dT
=
(
8

Lf2

)1/2

. (C19)

Integration of the model is based upon the assumption that the ratios of the shape functions,f3f1/f2 andf −1/2
2 ,

are constant and equal to unity, for simplicity. While we noted above that individually these functions are not
constant, we find that when they are combined in these ratios they exhibit a substantial weaker variation. The
ratios of the functions may be expanded as the following series:

f3f1

f2
= 1− 0.045τ + · · · , (C20)

f
−1/2
2 = 1.14(1+ 0.53τ + · · ·). (C21)

Using the box model equations, it is also possible to derive simple relationships for the temporal evolution of
length of the current and the proportion of particles which have settled out of the current (Hallworth et al. [19]).
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By expanding such relationships in the regimeT � 1 and using (C17) to write these expansions in terms ofτ ,
we may compare the box model results with the asymptotic analysis of the shallow-water equations. Intable I,
we present a summary of these results, expanded up to O(τ 2) with Fr = 1.19. We find that the agreement
between the box model analysis and the asymptotic treatment of the full governing equations is reasonable
and in some ways remarkable given the restrictive assumptions of the theory which underlies the box model
approach. Box models, however, may be applied at large times which is a significant advantage over the first-
order asymptotic analysis developed here.
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