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Abstract

We summarize and discuss a new theoretical model for the directional solidification of alloys in the form of dendrite
arrays. Slender body theory is used to obtain an integral equation for the dendrite shape in the asymptotic limit of the
dendrite tip radius being much smaller than the solute diffusion length. This equation has a solvability condition that
selects the shape and tip undercooling for prescribed solidification conditions and array spacings. A consequence of our
results is that we obtain a unique solution to the well-known indeterminacy for the single-dendrite [2] similarity solution
by considering the interaction between individual members of an array of dendrites. Further, the dependence of the
solutions on the dendrite spacing gives a family of “array solutions,” in which the tip radius is related directly to the
dendrite spacing. These solutions agree well with experiments in parameter ranges where the slender dendrite theory is
expected to be valid. Finally, we discuss how these array solutions, together with surface energy and stability
considerations, can describe the selection of dendrite spacings during directional solidification. ( 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Dendrites are a common solidification morpho-
logy in both pure materials and alloys [1]. For
decades their growth characteristics have been
modeled by the similarity solution due to Ivantsov
[2]. This solution describes the growth of a single
isothermal dendrite into an undercooled liquid of

infinite extent. The shape of the dendrite is a para-
boloid moving at constant speed » with radius of
curvature at the tip o. The similarity solution is
indeterminate in that, for a prescribed undercool-
ing, the product o» is determined, but neither o nor
» is uniquely specified. Despite the indeterminacy
(as well as the fact that the Ivantsov solution is
smooth and real dendrites have sidebranches) the
Ivantsov solution describes the growth of “iso-
lated” dendrites well: for a given undercooling the
predicted product o» corresponds to experimental
data [3]. However, in contrast to the indeterminate
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Ivantsov solution, the experiments show a specific
tip radius and growth velocity for a given under-
cooling.

The indeterminacy in the Ivantsov solution is
because the mathematical model lacks another
length scale that determines the dimensions of the
tip. The traditional view is that this missing length
scale is the capillary length associated with the
surface energy of the solid/liquid interface [4]. The-
ories that describe tip selection by surface energy
include those which incorporate marginal stability
theory [5], microscopic solvability theory [6,7], or
interfacial wave theory [8]. While these theories
have been successful in describing experiments to
varying degrees, we show here how to obtain
a unique solution by a different mechanism alto-
gether. We show that, neglecting surface energy
considerations, the interaction of a dendrite with its
neighbors (or container side walls) suffices to elim-
inate the indeterminacy in the Ivantsov solution.
This selection mechanism is generic: the length
scale of the dendrite spacing or distance to the
container side-walls is present in all real systems.
Since all real dendrites have neighbors and/or con-
tainer walls, the selection of one member of the
Ivantsov family by such a length scale may be of
wide-ranging importance.

The full mathematical development of the theory
involves a substantial amount of both asymptotic
and numerical analysis and is published elsewhere
[9,10]. The purpose of this paper is to: (1) summar-
ize the predictions of this theory in terms of easily
understandable physical parameters; (2) clearly
explain the idea behind what we shall call array
solutions and the consequential relationship
between the tip characteristics and the dendrite
spacing; (3) discuss and compare the predictions of
the theory relative to existing models of dendritic
array growth; (4) advocate the array solutions as
a possible alternative/complement to the tradi-
tional surface energy selection mechanism for
dendritic growth; and (5) explain the possible
implications of these array solutions for the deter-
mination of primary dendrite spacings.

A main result of our theory is that there is an
alternative way to remove the indeterminacy of the
single-dendrite similarity solution without appeal-
ing to surface energy. However, we do not claim

that surface energy is irrelevant to dendrite growth
(it is at least necessary to regularize the otherwise
ill-posed Ivantsov problem). We do claim, how-
ever, that the influence of neighboring dendrites
(or a finite system size) which is neglected in the
Ivantsov problem, leads to a fundamental effect
which is as physically relevant as surface energy. It is
likely that both the effect of neighboring dendrites
as well as surface energy are important in describ-
ing dendritic growth. A comprehensive treatment
which includes both is yet to be completed.

In our work we view the spacings as “inputs” to
determining the behavior of the tip. Of course a lar-
ger question is what determines the spacings in the
array. It has been documented experimentally
[11,12] and theoretically [13—15] that the spacings
of an array of dendrites are determined dynam-
ically by competition/interaction between the den-
drites. These interactions result in a range of stable
array spacings. Specifically, if the dendrites are too
close then the array is unstable to members of the
array being left behind by the advancing tips. This
overgrowth mechanism leads to an increase in the
average dendrite spacing. On the other hand, if the
dendrites become too far apart, then the dendrites
become unstable to the development of new pri-
mary dendrites through the growth of tertiary
arms. The tertiary outgrowth mechanism leads to
a reduction in the average dendrite spacing. These
two mechanisms result in an upper and lower
bound on the stable spacings permitted by the
array. Our work is directly relevant to the question
of dendrite spacings because these instability mech-
anisms occur at the tip in response to the dendrite
spacings. What our results provide is an important
connection between the spacings and the behavior
of the dendrite tip. At the end of this paper we
discuss how our theory relates to the question of
stable dendrite spacings. We find that the predic-
tions of our work can be used to determine a bound
on the range of stable spacings for given solidifi-
cation conditions. These results follow directly
from our predictions of the relationship between
the tip characteristics and the dendrite spacings.

The idea of a direct relationship between the tip
characteristics and the array spacing which is found
in our results can also be found in simple models of
dendrite growth during directional solidification
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which use ad hoc descriptions of the dendrite shape
[16—19]. In these works, a specific dendrite shape
(or family of shapes) is assumed a priori, and then
the relationship between the tip radius and the
spacing is deduced from conservation of heat or
conservation of mass. In general the assumed
shapes do not solve the free boundary problem for
dendrite growth, so the solutions are ad hoc ap-
proximations. Our contribution is to determine the
actual solution to the free boundary problem for
the array and show that the relationship between
the tip characteristics and the dendrite spacings is
actually a property of the solution to the free
boundary problem. We then illustrate how our
work relates to these previous theories and com-
pare our predictions with the results from experi-
ments.

While our work derives a result that is similar in
spirit to the ad-hoc approximations, we give this
result a different interpretation which takes into
account recent evidence on existence of a range of
stable spacings during dendritic growth. In these
earlier models, the relationship between the tip
radius and the spacing was augmented by a selec-
tion criteria for the tip radius (minimum undercool-
ing in Ref. [16] and marginal stability in Refs.
[17,18]) to give a unique spacing for the array. The
implication was that there was a unique spacing
and tip radius for given solidification conditions.
Later, Warren and Langer [13] developed a de-
scription of dendrite array growth based on para-
boloidal dendrites. In their work, the dendrite tip
radius was determined by microscopic solvability
with a weak dependence on the dendrite spacings,
but without any additional constraints due to the
geometry of the array. Thus, they found a family of
solutions parameterized by the dendrite spacing.
Warren and Langer showed that spacings greater
than a critical spacing were stable, giving a range of
stable spacings. As with the earlier theories, how-
ever, the Warren—Langer dendrites are not solu-
tions to the free boundary problem. We find that if
one solves the complete problem for the free
boundary, the tip radius is necessarily linked to the
spacing of the array without the need for the addi-
tional condition of microscopic solvability at the
dendrite tip. Despite this fundamental difference,
however, our theory gives an end result which is

similar to that of Warren and Langer, namely
a family of solutions parameterized by the spacing.
As in Warren and Langer, we expect that there will
be a range of spacings which are stable. In our
discussion we compare our results to the War-
ren—Langer theory and find that, despite having
a different selection mechanism, the theories give
very similar results over a range of solidification
conditions which compare favorably with the ex-
perimental results. A related contribution are the
numerical calculations of Lu and Hunt [14] which
incorporate both the effect of neighboring dendrites
and the effect of surface energy. They find that
solutions exist if the surface energy is anisotropic,
and then there is a family of solutions para-
meterized by the spacing. In essence, their results
are similar to Warren and Langer, with selection
being determined by surface energy and not by
a geometric constraint.

The rest of the paper is organized as follows. In
Section 2 we summarize the theoretical model. In
Section 3 we describe the results of the theory,
including a comparison to experimental data and
a summary of the results as a function of the para-
meters. Finally, in Section 4 we explain how the tip
characteristics are determined by the spacings,
compare the predictions of our model to a number
of existing models for dendritic growth and discuss
the implications of the array solutions for the deter-
mination of primary dendrite spacings.

2. Theory

Consider an array of dendrites growing in paral-
lel (Fig. 1.) It is clear that the Ivantsov solution is no
longer appropriate for an array because an array of
Ivantsov paraboloids will always overlap at some
distance behind the tip. Instead, interactions be-
tween neighboring dendrites will cause the shape of
each dendrite to deviate inwards from the Ivantsov
solution and prevent them overlapping. The de-
scription of this deviation from the Ivantsov solu-
tion due to the presence of neighbors is a significant
result of our work. The most important result,
however, is that the presence of neighbors deter-
mines the dendrite tip characteristics. Without
neighboring dendrites we recover the Ivantsov

B.J. Spencer, H.E. Huppert / Journal of Crystal Growth 200 (1999) 287—296 289



Fig. 1. Schematic diagram of the directional solidification of an
array of needle crystal dendrites.

1 In this model the diffusion of solute in the solid is negligible,
the diffusion of solute in the liquid is rate-controlling, the diffu-
sion of heat is the same in both phases, and the diffusion of heat
is much faster than the diffusion of solute in the liquid. For
a further description see Ref. [20].

indeterminacy; with neighbors we obtain a unique
solution. Of course the more difficult question is
how the dendrite spacings themselves are deter-
mined. While our theory does not give a complete
answer to this question, it provides an important
component in that it describes how the tip radius
and dendrite spacing are linked. From this relation-
ship we can suggest some possible scenarios for the
determination of the dendrite spacings.

Here we present a summary of the theory, with
the complete details given in Refs. [9,10]. First, we
consider the directional solidification of a binary
alloy. While this system is slightly more complic-
ated than the isothermal, one component system
for which the Ivantsov solution applies, in the limit
of zero temperature gradient and infinite dendrite
spacings we recover the solutal Ivantsov problem
(isothermal solidification into a supersaturated
liquid) as a limiting case. Further, by considering
the directional solidification of a binary alloy, we
can compare our predictions directly to experi-
ments on dendrite arrays. For simplicity we take
the phase diagram to be composed of straight lines
with constants k and m

L
denoting the segregation

coefficient and liquidus slope, respectively. We de-
note the alloy composition as C

=
with a liquidus

temperature ¹
0
. The alloy then has equilibrium

freezing range *¹
0
"m

L
(k!1)C

=
/k, where we use

the convention m
L
(k!1)'0. The steady-state

solidification morphology is assumed to be a rec-
tangular array of identical needle crystals which
grows in the !z direction at constant speed » (see

Fig. 1). We use a coordinate frame moving with the
solidification front and model the heat and solute
transport using the one-sided, “frozen-temper-
ature” model.1 Thus, the temperature field is fixed
in the moving frame and denoted by ¹"¹

0
!Gz,

where G is the constant positive temperature gradi-
ent. Two process length scales are determined by
the solidification conditions: a diffusion length,
l
D
"D/», where D is the diffusivity of solute in the

liquid; and a thermal length, l
T
"k*¹

0
/G, which is

related to the vertical extent of equilibrium solidifi-
cation in the imposed temperature gradient. In
addition to the two process length scales there are
four length scales which quantify the morphology
of the dendrite array: the dendrite tip radius o, the
spacings of the rectangular array j

x
and j

y
, and the

position of the dendrite tip in the imposed temper-
ature gradient relative to the liquidus isotherm,
z
5*1
"(¹

0
!¹

5*1
)/G.

The free boundary problem for the shape of the
dendrite consists of equations for the concentration
of solute in the liquid, C. These equations describe
diffusion of solute in the liquid; conservation of
solute and local equilibrium at the dendrite surface;
and a condition on the liquid concentration far
ahead of the solidification front. In addition, since
we are looking for periodic arrays of identical de-
ndrites, we can focus on describing a single dendrite
at the center of a repeating “unit cell” with periodic
boundary conditions. We nondimensionalize all
lengths with l

D
and describe the dendrite shape in

nondimensional cylindrical coordinates relative to
the center axis of the dendrite. Denoting the cylin-
drical coordinates as (r,f,h), where f"(z!z

5*1
)/l

D
is the nondimensional distance behind the dendrite
tip, the surface of the dendrite is described by
r"R(f, h). We scale the concentration using
C"C

=
[1#CH(1!k)] to obtain equations for

the nondimensional concentration CH. Dropp-
ing the * superscripts, we obtain the following
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nondimensional free boundary problem for the
steady-state dendrite:

+ 2C!

LC

Lf
"0 in the liquid, (1)

n
z
[1#(1!k)C]"(n )+C) on the dendrite, (2)

C"H#gf on the dendrite, (3)

CP0 as mP!R (4)

and periodic boundary conditions at the edges of
the repeating unit cell. In the above, H"

(¹
0
!¹

5*1
)/k *¹

0
"(C

5*1
!C

=
)/(C

=
(1!k)) is the

nondimensional solute undercooling of the tip rela-
tive to the liquidus, g"l

D
/l
T

is the relative strength
of the temperature gradient, n is the outward nor-
mal to the dendrite surface, and n

z
is the z-compon-

ent of n.
A set of consistent scalings for slender dendrites

can be developed when g is small [9]. Defining
a slenderness parameter as e;1, these scalings are
g"O(e), H"O(e), p"o/l

D
"O(e), and (K

x
, K

y
)"

(j
x
, j

y
)/l

D
"O(1). With these scalings we solve the

free boundary problem using slender body theory
and matched asymptotic expansions to find locally
valid solutions in four asymptotic regions (see
Fig. 1): the tip region [DfD"O(e), r"O(e)]; the inner
region [f"O(1), r"O(e1@2)]; the outer region [DfD"
O(1), r"O(1)]; and the tail region [f"O(1/e),
r"O(1)]. The locally valid solutions are then
matched and combined to construct a uniformly
valid composite solution.

The four local solutions can be summarized as
follows. In the outer region the dendrite appears as
a line source of solute, Q(f)"O(e) which extends
from 0(f(R. The tip solution is given by an
Ivantsov dendrite, r"R

5*1
(f), where

R2
5*1
"2pf. (5)

The tail region corresponds to two-dimensional
solidification in the radial direction. The cross sec-
tion of the dendrite in the tail region describes the
“filling” of the rectangular unit cell as solidification
proceeds behind the dendrite tip, and is therefore
not axisymmetric. From conservation of solute, the
Scheil-type solution gives the cross-sectional area
of the dendrite as

A
5!*-

"K
x
K

y
M1![1#(1!k)gf]~1@(1~k)N. (6)

The inner solution contains the interactions with
all other dendrites in the array and describes the
shape of the dendrite between the tip and tail. For
the case of equal dendrite spacings in the x and
y directions (K

x
"K

y
) the inner solution is axisym-

metric to leading order and can be described by
r"R

*/
(f). Conservation of solute on the surface of

the slender dendrite gives the shape of the inner
solution as

nR2
*/
"P

f

0

Q(f@) df@. (7)

If K
x
OK

y
then the lack of 4-fold symmetry in the

tail region means that the inner solution and tip
solutions may have elliptical cross sections instead
of circular cross sections. In this case, R

*/
and

R
5*1

each represent an “effective radius” of the cross
section.

The line source strength Q(f) is determined by
local equilibrium on the surface of the slender den-
drite and requires that the solute field generated by
the array of line sources Q(f) varies linearly in
response to the temperature gradient

h#gf"
!Q(f)

4p ClnA
R2

*/
4f B#c

ED
#P

=

0

[Q(f@)!Q(f)]G
00

(f; f@) df@

#

=
+

i/~=
i2#j2

=
+

j/~=
O0

P
=

0

Q(f@)G
ij
(f; f@) df@, (8)

where c
E

is Euler’s constant, G
ij
(f; f@)"expM!

(1/2)[d
ij
#(f@!f)]N/(4pd

ij
), and d

ij
"[(iK

x
)2#

( jK
y
)2# (f@!f)2]1@2. The matching of the inner

solution to the tip and tail solutions generates addi-
tional constraints. For e;f;1 the inner solution
must match the Ivantsov tip, and for 1;f;1/e
the inner solution must match the Scheil-type tail.
These conditions give the additional conditions
Q(0)"2pp and Q(R)"gK

x
K

y
.

The integral (8) has a nonlinear solvability condi-
tion [10]: given g and (K

x
, K

y
), the unknowns H and

Q(f) are simultaneously determined. The constraint
Q(R)"gK

x
K

y
is automatically satisfied by the

solution to the integral equation, and the tip radius
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Fig. 2. Composite solution for a slender dendrite. Shown are
local solutions for the tip, inner, and tail regions, as well as the
composite solution for the entire shape. The parameter values of
this solution are k"0.1, g"0.0116, K

x
"6.47 and K

y
"7.75.

The nondimensional tip radius is p "0.125 and the nondimen-
sional tip undercooling is H"0.116.

Fig. 3. Comparison of theoretical predictions for the nondimen-
sional tip radius p to data from the Somboonsuk, Mason and
Trivedi experiments on SCN-acetone. The slender body theory
has no adjustable parameters and assumes that g is small. Also
shown are other theories as discussed in the text.

p is determined from p"Q(0)/(2n). Thus, for direc-
tional solidification there is a unique dendrite
shape, tip radius, and tip undercooling for given
solidification conditions and dendrite spacings.
However, if we consider an isolated, isothermal
solutal dendrite (g"0, K

x
"K

y
"R), we recover

the paraboloidal Ivantsov solution with Q"2pp
(constant) and with the undercooling given by
H"(p/2)[!ln(p/2)!c

E
]. This relationship be-

tween H and p is precisely the leading order terms
in the expansion of the Ivantsov relationship
H"(p/2)E

1
(p/2)exp(p/2) for a slender dendrite

(p;1). Thus, without neighbors, our theory re-
covers the Ivantsov solution and associated inde-
terminacy; with neighboring dendrites we obtain
a unique solution.

The dendrite shape is determined by solving Eqs.
(7) and (8) numerically to determine the inner solu-
tion, and then combining the inner solution with
the tip and tail solutions to generate a uniformly
valid composite solution (see Ref. [10] for details).
Fig. 2 shows the local solutions and composite
solution for a typical dendrite shape as calculated
by our theory. The figure clearly shows the inward
deviation of the composite solution from the

Ivantsov tip behavior because of the interaction
with the neighboring dendrites. While these results
give a unique tip radius for a given spacing, a com-
plete theory needs to address the determination of
the dendrite spacing. We discuss this issue follow-
ing a comparison of our results with experiments
and other dendrite theories.

3. Results

To test our theory, we compare our predictions
to measured tip radii in directional solidification
experiments with SCN-acetone [21]. For the com-
parison, we use the solidification conditions of the
experiment, g, and the measured dendrite spacings,
K

x
and K

y
. Fig. 3 illustrates the dependence of the

tip radius with the spacing as predicted by our
theory. There are no adjustable parameters in our
theory, and the agreement is quite good for smaller
values of g where the asymptotic theory for e;1 is
expected to be valid. That we predict the tip radius
this well without regard to surface energy is re-
markable. Also shown in Fig. 3 are other theories of
dendrite array growth which we will discuss below.

Fig. 4 summarizes the predicted nondimensional
tip radius p from our theory for all solidification
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Fig. 4. Theoretical calculations of the nondimensional tip
radius p as a function of the dendrite spacing K"K

x
"K

y
for

different values of the temperature gradient parameter g.

Fig. 5. The nondimensional tip supersaturation (solute under-
cooling) H as a function of the nondimensional tip radius p for
the solutions from Fig. 4. Along each curve the spacing K in-
creases as p increases. Also shown is the Ivantsov relation H(p)
and the small-p approximation appropriate to our slender den-
drite theory (see text).

conditions and spacings. Note that the tip radius
generally increases as a function of the spacing.
However, each solution curve terminates at a critical
K due to a breakdown of our slender body scalings.
In particular, following the g"0.01 curve upwards,
the dendrite develops a bulbous tip which then
pinches off at the point the curve terminates. Thus, it
is not possible to consider KPR at fixed g in our
asymptotic theory. Nonetheless, the results in Fig. 4
provide predictions of the tip radius over a wide
range of solidification conditions and array spacings.

The tip supersaturation (solute undercooling)
h for the solutions depicted in Fig. 4 are shown in
Fig. 5. As gP0 the solutions collapse onto the
small-p Ivantsov relation cited earlier. Thus, for
small g and moderately large K our theory selects
a specific Ivantsov tip solution. At small p, how-
ever, the Ivantsov solution is not recovered. This is
because at small p the spacings K are also getting
small in accordance with Fig. 4. Thus, for small p,
as in the general case of nonzero g, the tip is
paraboloidal but not isolated: the tip undercooling
is modified from the Ivantsov undercooling by the
neighbors in the array.

4. Discussion

The relationship between the tip characteristics
and the dendrite spacing is due to the nonlinear

interactions in the array. In the tip and tail regions
there are local solutions. The tip solution corre-
sponds to the Ivantsov dendrite and has an indeter-
minacy. The tail solution, however, is uniquely
determined by the spacings because it describes
how the dendrites impinge on one another. Of the
family of tip solutions, only one is consistent with
the tail solution. Thus, the details of the tail solu-
tion, which are set by the dendrite spacing, provide
the link to the tip characteristics. To determine the
transition from tip to tail correctly one must solve
for the inner solution which depends on the array
interactions as given by the double sum in Eq. (8),
but as a simplified explanation as to why the spac-
ing of the array determines a tip radius we can
think of directly matching the tip and tail solutions
for f"O(1). Expanding Eq. (6) for g;1 and using
an effective radius of the tail cross section as
r"R

5!*-
(f), we obtain

pR2
5!*-

&K
x
K

y
gf. (9)

To match the Ivantsov tip solution (5) we thus
require

p"
gK

x
K

y
2p

. (10)
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Consequently, the nondimensional tip radius p is
uniquely determined by the imposed temperature
gradient g and the spacings K

x
and K

y
. While the

above Ivantsov—Scheil result captures the essence
of the selection mechanism, we emphasize that Eq.
(10) is not completely correct. The correct relation-
ship between the tip radius and the spacing must be
found by solving for the details of the inner
transition region from Eqs. (7) and (8). These equa-
tions were derived based on slender body theory for
the dendrite shape (e;1), but we believe that this
selection mechanism persists even when e is not
small.

The above simple relationship for p is similar to
a number of ad hoc theoretical models for dendritic
arrays. Hunt [16] used a spherical cap solution for
the dendrite tip in conjunction with a 1-D diffusion
field for the array to relate the spacings to the tip
radius. In terms of our notation, the result is

p"
gK

x
K

y
4J2[1!kg#(1!k)gK

x
K

y
/(4J2)]

. (11)

Trivedi [18] used the Hunt model in his description
of array growth. Kurz and Fisher [17] assumed
a hexagonal array of ellipsoidal dendrites and deter-
mined the tip radius by conservation of mass. Using
a geometric factor to convert from a hexagonal to
rectangular array, their results can be expressed as

p"
2gK

x
K

y
k(1!k)

3J3[1!kg]
. (12)

Finally, Makkonen [19] employs a conservation of
heat argument with the assumption of a parabolic
tip to find

p"
gK

x
K

y
¶

p
, (13)

where ¶"k *¹
0
C/¸ measures the range of equi-

librium undercooling to the unit thermal under-
cooling (C is the heat capacity and ¸ is the latent
heat). While the details of these relationships are all
different, and each makes different ad hoc assump-
tions about the dendrite shape, they each share
a common feature with the simple Ivantsov—Scheil
relationship. Each gives a tip radius which in-
creases monotonically with the dendrite spacing.
This feature is preserved in our solution to the free

boundary problem. These dendrite theories are
shown in Fig. 3, significantly below the experi-
mental results.

The other dendrite theory mentioned earlier is
that due to Warren and Langer [13]. Warren and
Langer assume the array consists of parabolic de-
ndrites with a tip radius which is determined by
a selection criteria based on surface energy. As
there is no additional geometric constraints to pre-
vent overlapping dendrites in the array, their
results give a unique tip radius and tip undercooling
for given solidification conditions and spacings. The
Warren—Langer results are also shown in Fig. 3.

Overall, the Warren—Langer and slender body
theories reproduce the observations much better
than the ad hoc theories. The Warren—Langer the-
ory and our slender body theory are in good agree-
ment with the experiments at small g. At larger
g our asymptotic theory is not as accurate, as
expected. Thus, even though the Warren—Langer
theory and our slender body theory are based on
different “selection mechanisms” there is a strong
correspondence with the experiments for both. On
the basis of this comparison, our array solutions
and surface-energy-based tip selection may both be
important factors in describing array growth. In
order to determine the role of the array solutions
and surface energy in array growth, one needs to
describe how the array solutions, surface-energy-
based tip stability and spacing selection interact in
a self-consistent way. We now turn to the issue of
how the primary spacing is determined.

While we have demonstrated that prescribing the
spacing of the dendrites leads to a unique solution
without the need for surface energy, it is not yet
clear how the array solutions will interact with the
surface energy selection mechanism to determine
the spacings in the array. One scenario, depicted in
Fig. 6 would be that the array solutions give a fam-
ily of solutions parameterized by the spacing (or tip
radius). The incorporation of a surface-energy-
based selection mechanism would require a par-
ticular tip radius, thus selecting one member of the
family and giving a unique tip radius and dendrite
spacing for given solidification conditions. This is
the view of array growth employed by Kurz and
Fisher [17] and Trivedi [18], but with ad hoc
models for the dendrite shape. Our model would
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Fig. 6. Array solutions from our model (see Fig. 4 or any of the
ad hoc relationships derived from geometric constraints such as
the Scheil—Ivantsov model described in the text that have
a monotonic relationship between the tip radius and the spac-
ing). The dashed line represents the surface energy selection
criteria (either microsolvability or marginal stability) with a rela-
tively weak dependence on the spacing. There is a unique oper-
ating state for the array which satisfies both selection criteria
and gives a unique dendrite spacing and tip radius.

Fig. 7. Array solutions from our model as in Fig. 6. The dashed
line represents the marginal stability criteria for the dendrite tip.
Dendrites with tip radii above this dashed line are unstable to
tip splitting (upper shaded portion of solid line). In addition,
spacings below a critical value are unstable to the overgrowth
mechanism described in the text (lower shaded portion of solid
line). The combined stability boundaries give a range of stable
spacings for the array.

give comparable predictions but with a self-consis-
tent dendrite shape.

Another scenario, depicted in Fig. 7, would be
that surface energy does not select a unique operat-
ing state but rather determines the range of stable
spacings. As above, the array solutions give a fam-
ily of solutions parameterized by the spacing (or tip
radius). Marginal stability theory [5] says that the
dendrite tip is stable only if its radius does not
exceed a critical value determined by surface en-
ergy. Thus, of the family of solutions, those with
large spacings (corresponding to large tip radii)
would be unstable. In essence, this gives an upper
bound on the range of stable spacings for the array.

A lower bound on the spacings is set by the
overgrowth mechanism. If the dendrites are too
closely spaced, the array is unstable to having some
members being overgrown by the rest of the array,
as shown in the experiments [11] and in theory
[13,14]. Thus, of the family of array solutions, the
tip instability and overgrowth mechanisms would
give a range of stable spacings for the array in
agreement with experiments [11,12].

With regard to the upper bound on the spacings,
it is acknowledged that in the experiments [11] the
instability mechanism is not due to tip splitting but

rather due to the outgrowth of tertiary arms. While
the tip splitting mechanism described by marginal
stability is not the mode of instability, it does pro-
vide an upper bound on the range of stable spacings:
there cannot be an array with a tip radius (and
hence spacing) in excess of that prescribed by the
marginal stability bound. The actual upper stability
bound, corresponding to the outgrowth of tertiary
arms, will lie below the tip splitting boundary.
Nonetheless, the tip splitting boundary serves as
a useful bound on the range of stable spacings in
the absence of any theories for tertiary outgrowth.

In either scenario described above, the relation-
ship between the tip characteristics and the array
spacings provided by the array solutions would be
an important factor in the determination of the
dendrite spacing(s).

In summary, we have developed a theory for the
directional solidification of an array of dendrites,
with the shape of the dendrite influenced by inter-
actions with neighboring dendrites. By determining
the explicit details of the solution to the free bound-
ary problem for the dendrite shape, we find that the
array interactions determine unique tip character-
istics for a given dendrite spacing and remove the
indeterminacy in the Ivantsov similarity solution.
This family of “array solutions,” in which the tip
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radius is related directly to the dendrite spacing,
agrees well with experiment in parameter ranges
where the slender dendrite theory is expected to be
valid. We suggest that these array solutions, to-
gether with surface energy and stability consider-
ations, can describe the selection of a single
dendrite spacing or a range of dendrite spacings
during directional solidification.
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