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Erosion by planar turbulent wall jets
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New scaling laws are presented for the spatial variation of the mean velocity and
lateral extent of a two-dimensional turbulent wall jet, flowing over a fixed rough
boundary. These scalings are analogous to those derived by Wygnanski et al. (1992)
for the flow of a wall jet over a smooth boundary. They reveal that the characteristics
of the jet depend weakly upon the roughness length associated with the boundary, as
confirmed by experimental studies (Rajaratnam 1967).

These laws are used in the development of an analytical framework to model the
progressive erosion of an initially flat bed of grains by a turbulent jet. The grains are
eroded if the shear stress, exerted on the grains at the surface of the bed, exceeds a
critical value which is a function of the physical characteristics of the grains. After
the wall jet has been flowing for a sufficiently long period, the boundary attains a
steady state, in which the mobilizing forces associated with the jet are insufficient
to further erode the boundary. The steady-state profile is calculated separately by
applying critical conditions along the bed surface for the incipient motion of particles.
These conditions invoke a relationship between the mobilizing force exerted by the
jet, the weight of the particles and the local gradient of the bed. Use of the new
scaling laws for the downstream variation of the boundary shear stress then permits
the calculation of the shape of the steady-state scour pit. The predicted profiles are
in good agreement with the experimental studies on the erosive action of submerged
water and air jets on beds of sand and polystryene particles (Rajaratnam 1981).

The shape of the eroded boundary at intermediate times, before the steady state is
attained, is elucidated by the application of a sediment-volume conservation equation.
This relationship balances the rate of change of the bed elevation with the divergence
of the flux of particles in motion. The flux of particles in motion is given by a semi-
empirical function of the amount by which the boundary shear stress exceeds that
required for incipient motion. Hence the conservation equation may be integrated
to reveal the transient profiles of the eroded bed. There is good agreement between
these calculated profiles and experimental observations (Rajaratnam 1981).

1. Introduction
When jets impinge upon loose beds of granular material, they can lead to significant

local scour. For example, the plunging water flow found under dam spillways leads to
the erosion of the channel bed and to the possible weakening of engineered structures
(Mason & Arumugam 1985). However jet-induced scour is not always undesirable;
recently developed dredging vessels use high-velocity water jets to mobilize accumu-
lated sediment. The jets entrain the sedimentary particles from the bed to form a
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cloud of a higher density than the surrounding fluid. This density difference initiates
a flow which transports the sediment away from the region being dredged.

There are many physical processes that are pertinent to the erosion of a loose
bed of grains by jet impingement. These include the vigour of the jet-induced fluid
turbulence, the pressure and shear stress distribution exerted on the bed, the density
and size of the particles and the angle of repose of the granular material comprising
the bed. The coupling between the shape of the eroded pit and the characteristics
of the jet flow render this problem highly complex. Most of the previous studies
have been experimental and have attempted to model the erosion theoretically in
an empirical manner. Several studies have been conducted by Rajaratnam and co-
workers (Rajaratnam & Berry 1977; Rajaratnam & Beltaos 1977; Rajaratnam 1981,
1982; Rajaratnam, Aberibigbe & Pochylko 1995) in papers which discuss laboratory
observations of scour pits arising from jet impingement. The experiments were carried
out using submerged water and air jets, which impinged on beds composed of particles
of sand and polystryene. Other studies have focused on particular issues of this erosion
process. Kobus, Leister & Westrich (1979) studied pulsating jets and demonstrated
that these can lead to greater erosion than steady jets. Mih & Kabir (1983) studied
the erosion of beds of mixed particle size; they were interested in the problem of
removing sand grains from between larger pebbles which form the breeding ground
for salmon. Stein, Julien & Alonso (1993) modelled the time-dependent problem to
track the evolution of the maximum eroded scour depth.

In this study we focus on the erosion of a loose bed of non-cohesive granular
material by a two-dimensional turbulent wall jet. We assume that the axis of the jet
is parallel to the initial surface of the bed and that the source of the jet momentum is
close to the bed. This leads to a considerable simplification of the problem because it
allows us to assume that the forces which mobilize the particles from the boundary are
just those associated with the shear stress. A model of the progressive erosion of an
initially flat bed of grains was developed and we find that the eroded profile attains
an equilibrium shape that can be computed separately from the time-dependent
calculation. The dimensions of this steady-state profile are related in a simple way
to the hydrodynamic properties of the jet and the size, excess density and angle of
repose of the particles. This analysis permits the steady-state profiles of both water
and air jets to be modelled using the same framework, although the particles may be
transported out of the scour pit in different ways (Rajaratnam 1981).

In the next section we consider the flow of turbulent wall jets over fixed boundaries.
To this end, the analysis of Wygnanski, Katz & Horev (1992) for flows of turbulent
wall jets over smooth boundaries are reviewed. We then develop new scaling laws
to predict the spatial variation of the jet characteristics for flows of turbulent jets
over boundaries of a given grain roughness; these new scalings are analogous to
those proposed by Wygnanski et al. (1992). We find that these account for the weak
dependence on roughness length found in the experiments of Rajaratnam (1967). In
§3 we derive critical conditions for the incipient motion of loose particles in repose on
a bed with a longitudinal slope. This establishes a relationship between the mobilizing
force associated with the jet flow, the weight of the particles and the local gradient
of the bed. We apply the jet flow scaling over fixed rough boundaries to erodible
boundaries, on the assumption that the aspect ratio of the pit is small. (Here the
aspect ratio is defined as the ratio of depth to streamwise extent). In this way we
calculate the dimensions of the steady-state pit (§4). In §5 we utilize a semi-empirical
model for the flux of transported particles to study the temporal evolution of the
scour starting from an initially horizontal boundary. This calculation elucidates the
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rate of evolution of the maximum eroded depth. Finally, in §6, we summarize our
findings.

2. The flow of two-dimensional turbulent wall jets
2.1. Smooth fixed boundaries

We consider the flow of a steady two-dimensional turbulent jet along a horizontal
boundary. This kind of ‘wall jet’ flow may be treated as a boundary layer flow to
which momentum has been added upstream of the region of interest. This view
implies that the velocity over some range in the shear layer exceeds that in the free
stream (Launder & Rodi 1983). The flow has been modelled by the boundary-layer
equations (Rajaratnam 1976), on the assumption that the pressure is constant with
distance normal from the boundary and the streamwise variations of normal stress
are negligible. In this case we further assume that the flow is driven by the upstream
source of momentum, rather than any streamwise pressure gradient. Therefore
denoting the horizontal and vertical coordinates by x and y, the mean horizontal and
vertical velocities by u and v, the fluid density by ρ and the mean shear stress by τ,
the Reynolds-averaged equations describing the flow are the streamwise conservation
of momentum and the continuity equation, given by

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂τ

∂y
(2.1)

and
∂u

∂x
+
∂v

∂y
= 0. (2.2)

The boundary conditions specify the upstream streamwise momentum flux, ρM0, the
no-slip condition on the boundary and the decay of the streamwise velocity away
from the boundary, which may be expressed as∫ ∞

0

ρu2 dy = ρM0 (x = 0), (2.3)

u = v = 0 (y = 0) (2.4a, b)

and

u→ 0 (y →∞). (2.5)

For purely viscous stresses, there exists a similarity solution for the velocity fields
(Glauert 1956). For turbulent wall-jet flows, there is no consensus on the appropriate
closure for the turbulent stresses and so the velocity distribution cannot be predicted
with any certainty. There are, however, a number of proposed empirical distributions
(Launder & Rodi 1983). This uncertainty illustrates the important distinction between
the wall-jet flow and a fully developed turbulent boundary layer. In the latter, the
shear stress is approximately constant in a region close to the boundary and the
horizontal velocity varies logarithmically with height. In a wall jet, however, there is
no equivalent constant-stress layer.

The lack of an analytical framework for the prediction of the variation of the
velocity field implies that the boundary shear stress, τb, cannot be predicted accurately.
However, by integrating the momentum equation (2.1), it is found that

τb = − d

dx

∫ ∞
0

ρu2 dy. (2.6)
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There have been a number of papers which consider the variation of the maximum
horizontal velocity, um, and the height above the boundary, δ, at which this velocity
is attained (Launder & Rodi 1983). Traditionally it has been assumed that um ∼
(M0/x)1/2 and δ ∼ x. These are the scalings of a two-dimensional free jet, sufficiently
far downstream of the jet source. They arise from the hypotheses that molecular
viscosity does not play a role in the evolution of the jet (i.e. the Reynolds number
based on nozzle width is large) and the streamwise momentum flux is constant.
Neither of these assumptions is valid for a wall jet. The boundary shear stress,
given by the streamwise rate of change of the momentum flux (2.6), is non-negligible.
Hence the momentum flux is not constant. Furthermore, the presence of the boundary
introduces a no-slip condition on the flow (equation (2.4)). Therefore, in accord with
Wygnanski et al. (1992), we conclude that the two-dimensional parameters governing
the evolution of the flow are the initial streamwise momentum flux per unit mass
M0 ≡ b0U

2
0 and the kinematic viscosity ν. (Here we have equated the initial momentum

flux with the product of the nozzle width, b0, and the square of the initial velocity,
U0.) The evolution of the velocity and boundary-layer thickness of the flow are then
given by

um = F1(M0, ν, x) and δ = F2(M0, ν, x), (2.7a, b)

where F1 and F2 are arbitrary functions. Writing these in dimensionless variables and
assuming the functions take a power-law form, Wygnanski et al. (1992) proposed that

um = C1M0/ν(M0x/ν
2)−m and δ = C2ν

2/M0(M0x/ν
2)n, (2.8a, b)

where C1 and C2 are constants. Hence, in terms of the Reynolds number based on
jet-nozzle width, Re = U0b0/ν,

um/U0 = C1(b0/x)mRe1−2m and δ/b0 = C2(x/b0)
nRe2(n−1). (2.9a, b)

Wygnanski et al. (1992) found that without adjusting for virtual origin effects to
account for the establishment of the flow, the exponents in these relationships are
given by m = 0.47 and n = 0.88. Hence the effect of viscous forces is to reduce the
rate of decay of the jet velocity. Presumably the exponents m and n are functions of
the Reynolds number so that as Re→∞, m→ 1

2
, n→ 1 and the scaling recovers that

of the free jet. Wygnanski et al. (1992) also found that by use of (2.6), the boundary
shear stress varies as

τb ∼ ρ(M0/ν)
2(M0x/ν

2)2(−0.47)+0.88−1.

Rajaratnam (1976) and Wygnanski et al. (1992) demonstrate that if a dependence
of the velocity upon downstream distance, similar to that of a free jet (i.e. m = 1), had
been sought, then the residual constant of proportionality C1 is weakly dependent
upon Reynolds number. However by use of the new scaling (2.9), this Reynolds
number dependence of C1 is eliminated.

2.2. Rough fixed boundaries

This new scaling for the behaviour of wall jets is now applied to those for which
the flow is over a boundary of a prescribed roughness. If a boundary is artificially
roughened by particles of a given diameter, then the bed roughness, ke, which is the
lengthscale of protrusions into the flow, is simply proportional to the particle diameter.
Furthermore, if these protrusions extend to far outside the laminar sublayer, then
most of the resistance to the flow arises from the form drag associated with the
individual elements, rather than the viscous drag. In this case the flow is termed
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as ‘hydraulically rough’ (Fredsøe & Deigaard 1992). Rajaratnam (1967) performed
experiments on such wall jets and in this subsection we analyse his results. First,
we suppose that the normalized maximum mean velocity, um/U0, and boundary-layer
thickness, δ/b0, are only dependent upon the downstream position x/b0 as plotted
in figure 1. We find that there is considerable scatter in the data, which remains
even after the data for which x/b0 < 5 are excluded. These exclusions are justified
because within a downstream distance from the jet source of the order of only a few
(∼ 5) nozzle widths the flow has not fully developed; the turbulence arising from
the mixing of the jet and the ambient fluid has not penetrated throughout the entire
width of the jet. This region of flow development is referred to as the potential core.
Rajaratnam (1976) suggests that the potential core extends downstream to a distance
of approximately 6 nozzle widths. Hence these data are excluded.

We hypothesise that the dimensional variables which govern the flow are the initial
streamwise momentum flux per unit mass M0 and a measure of the turbulent viscosity
associated with the roughness elements given by U0ke, where ke is the roughness length
and is proportional to grain size. For flows over rough boundaries it is not the fluid
viscosity which ultimately influences the flow because the roughness elements prevent
the establishment of a viscous boundary layer. Rather the turbulent viscosity based
on roughness length is the relevant parameter to indicate how the no-slip boundary
condition is enforced. Strictly this eddy viscosity is given by u∗ke where u∗ is the
friction velocity. However, there is no initial measure of u∗ and so we use U0 instead.
In non-dimensional and power-law form we seek the following relationships:

um = C3M0/U0ke(xM0/U
2
0k

2
e )
−m and δ = C4U

2
0k

2
e /M0(xM0/U

2
0k

2
e )
n, (2.10a, b)

where C3 and C4 are constants. Hence we find that

um/U0 = C3(x/b0)
−m(b0/ke)

1−2m and δ/b0 = C4(x/b0)
n(b0/ke)

2(n−1). (2.11a, b)

From the plots of Rajaratnam’s data presented in figure 2, we find the exponents
are m = 0.47 and n = 0.84. Hence the variation of the maximum velocity and the
boundary-layer thickness of the flow are only weakly dependent on the roughness
because the exponents differ only slightly from the free-jet case of m = 0.5, n = 1.
We note that the collapse of these plots is improved by removing those points
which fall within the flow development region (x/b0 < 5). We note the remarkable
correspondence between the numerical value of the exponents for the rough and
smooth boundaries. By use of equation (2.6), we find that the boundary shear stress
is given by

τb = C5ρU
2
0 (x/b0)

−2m+n−1(b0/ke)
2(n−2m), (2.12)

where C5 is a constant. Since the roughness is related to the size of the particles which
comprise the roughened boundary, we find that the size of the particles influences
both the growth of the boundary layer and the decay of the maximum velocity. This is
inevitable: given that viscosity plays a role in the flows over the hydraulically smooth
boundaries, then for rough boundaries the particle size must also play a role because
it influences the vertical diffusion of the horizontal momentum within the flow.

3. Conditions for incipient motion
We identify critical conditions for incipient particle motion by calculating the

moments of the forces which drive and resist particle motion. The forces leading
to particle motion on the surface of the bed of grains arise from the shear stress
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Dimensionless downstream distance, x/b0

Figure 1. (a) The variation of the maximum wall-jet velocity and (b) the boundary-layer thickness
of the wall jet as functions of the downstream distance from the source and the roughness of the
boundary (ke). (The boundary-layer thickness is the distance from the boundary at which the average
downstream velocity attains its maximum value.) The downstream distances and boundary-layer
thicknesses are non-dimensionalized with respect to the the nozzle width, b0, and the maximum
velocities are non-dimensionalized with respect to U0, where the horizontal momentum flux per
unit mass is given by M0 = b0U

2
0 . The curves are the best-fit lines of the form Um ∼ (M0/x)1/2 and

δ ∼ x. The equations of the curves are (a) Um/U0 = 2.8(b0/x)1/2 and (b) δ/b0 = 0.05x/b0. (Data
from Rajaratnam 1967.)
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Figure 2. (a) The variation of the maximum wall-jet velocity and (b) the boundary-layer thickness
of the wall jet as functions of the downstream distance from the source and the roughness of
the boundary (ke). Data points for which x/b0 < 5 are omitted. The downstream distances are
non-dimensionalized with respect to k2

e /b0 and the maximum velocities are non-dimensionalized
with respect to b0U0/ke (see §2 for an explanation of these scales). The curves are the best-fit curves
of the form Um/(b0U0/ke) ∼ [x/(k2

e /b0)]m and δ/(k2
e /b0) ∼ [x/(k2

e /b0)]n. The equations of the curves
are (a) Um/(b0U0/ke) = 2.3[x/(k2

e /b0)]−0.475±0.005 and (b) δ/(k2
e /b0) = 0.21[x/(k2

e /b0)]0.84±0.025. The
confidence limits on the exponents are given by the standard errors of the best-fit values. (Data
from Rajaratnam 1967). Symbols as in figure 1.
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exerted by the jet flow, whereas the particle weight resists motion. This implies that
the jet flow introduces negligible flow within the porous granular bed. Luque (1974)
and Wiegel (1980) argue that the effects within the bed of a shear flow parallel with
the bed surface are rapidly attenuated. This is not the case, however, if the jet flow
impinges upon the bed. Such an impingement leads to a surface pressure distribution
and a seepage flow within the bed (Kobus et al. 1979). In this case the mobilizing
force is a more complex function of the surface pressure, bed shear stress and bed
permeability.

Consider the idealized scenario of a bed composed of identical spherical particles,
as depicted in figure 3. The angle of inclination of the bed is denoted by β and
the horizontal and vertical forces driving particle motion by Fx = CDπd

2τb cos β and
Fy = CDπd

2τb sin β, where CD is a constant drag coefficient. The submerged weight
of a particle is given by W = 1

6
πd3∆ρg, where ∆ρ is the excess density of the particle.

(We have ignored the possibility of a lift force on the particles; this could be simply
included by the introduction of a suitable lift coefficient.) We consider the moment of
these forces exerted on a single particle in repose on the bed surface about its point
of contact with a neighbouring particle. The moment of inertia of a particle about
the axis passing through this point of contact is denoted by I , the angular velocity of
the particle by ω and the angle of repose of the granular material by α. Readers will
find further details of this calculation in the Appendix. We find there that

I
dω

dt
= 1

2
d
(
Fx cos(α+ β) + Fy sin(α+ β)−W sin(α+ β)

)
. (3.1)

For particle motion, we require that dω/dt > 0 and hence that

τbCD cos α > 1
6
∆ρgd sin(α+ β). (3.2)

This expression for the incipient motion of particles on a bed with a longitudinal
slope links the shear stress exerted by the jet with the local gradient of the bed and
excess density, size and angle of repose of the particles. We note that if the downward
inclination of the bed exceeds the angle of repose (−β > α), then the particles are
inevitably in motion. An equivalent expression was derived by Luque (1974) and by
Kovacs & Parker (1994) for a particle on a surface with both lateral and longitudinal
gradients. We present an alternative derivation of the critical conditions for particle
motion on a bed with a generalized slope in the Appendix. This yields the same final
expressions as Kovacs & Parker (1994), but is derived in terms of turning moments
and the angle of repose, rather than forces and the coefficient of friction.

Shields (1936) examined conditions for the incipient motion of particles from a flat
bed (β = 0). He found the critical value of the ratio θcrit = τb/∆ρgd for incipient
motion. In terms of the analysis above, this critical ratio is given by θcrit = 1

6
tan α/CD .

Shields found that this critical value attains an approximately constant value when
the particle Reynolds number is sufficiently large and that its value is different for
experiments performed in air and water. For water, θcrit ≈ 0.05 (Nielsen 1992),
whereas for air, θcrit ≈ 0.025 (Greeley & Iversen 1985). Denoting the critical value of
the ratio τb/∆ρgd for incipient motion on a bed with a longitudinal gradient by θc,
we find that

θc = θcrit
sin(α+ β)

sin α
. (3.3)

The boundary shear stresses are turbulent and although attaining a steady mean
value, the instantaneous stresses are highly intermittent. These fluctuations are
analogous to the turbulent events found within boundary layers (Kline et al. 1967).
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Fy

Fx

W

α+β

β

β

Figure 3. The forces acting on a particle in repose on the surface of a bed at an angle β to the
horizontal. (The angle of repose of the granular medium is denoted by α.)

Hence it is possible that the ‘steady’ profile of the eroded boundary will be only a
dynamic equilibrium. The shear stress, at times, may significantly exceed its mean,
leading to additional particle movement. This may in turn lead to the eroded profile
adopting local positive gradients which exceed the angle of repose (i.e. β > α).
However, between the times when the stress attains a value in excess of the mean,
it drops to a much lower value and cannot support the high gradient of the eroded
bed. Hence the bed relaxes back to the angle of repose (i.e. β = α).

Rajaratnam (1981) performed erosion experiments using both air and water wall
jets. In order to assess in which of these two media this relaxation process is going
to be of greater importance, we consider the timescale of angular acceleration of the
particle. This may be estimated from (3.1) and is given by

S =
ρs

∆ρ

(
d

g

)1/2

. (3.4)

Hence, the ratio of these two timescales in air and water for particles of a similar size
and density is given by

Sair/Swater =
ρs − ρwater
ρs − ρair

< 1. (3.5)

This implies that the grains in air exhibit a more rapid angular acceleration than
those in water due to an applied moment with the same value of the ratio τb/∆ρgd.
Thus for the experiments performed with jets of air, we expect that the gradients of
the eroded scour pits are more likely to undergo this relaxation process than those
with water jets. This implies that the upward gradients are more likely to have an
upper bound (i.e. the angle of repose), because they rapidly adjust during the times
when the shear stress falls below its mean value. This rationalizes the observation
of Rajaratnam (1981) that the steady-state eroded profiles for experiments with the
wall jets of water were significantly different when the jet was flowing than when it
was stopped. Conversely, for the experiments with the jets of air, there was little
difference. While both water and air jets generate instantaneous shear stresses which
can support eroded profiles with upward gradients in excess of the angle of repose
(β > α), those generated using jets of air have a greater tendency to relax to the angle
of repose during the intermittent periods of low shear stress. When the jet is stopped,
the profiles adjust to a state in which all the gradients are limited by the angle of
repose. This adjustment, therefore, will appear more significant for the experiments
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Figure 4. Sketch of the wall jet and the resulting scour pit with its important dimensions.

with water jets. This process also explains why Rajaratnam (1981) found a reduction
of the maximum depth eroded by a water jet when the jet was stopped.

4. Steady-state profiles
Armed with the concept of a mobilization criterion on a bed with a longitudinal

slope (§3), we investigate the erosion of a granular bed by a two-dimensional turbulent
jet. The bed is initially planar and the jet flows in a direction that is parallel to this
surface, through what is otherwise quiescent ambient fluid. The jet flow erodes the
bed and, in this section, we investigate the shape of the erosion profiles which are
invariant with time: the steady-state profiles. We begin by predicting the dimensions
of these scour pits, as depicted in figure 4, in terms of the characteristics of the jet
and the particles.

The profile of the scour pit can be calculated by considering the shear stress
distribution along the surface of the bed. We further assume that the boundary shear
stress for the flow of a two-dimensional jet over an erodible boundary is equivalent to
the flow of a two-dimensional jet over a fixed rough boundary, as given by (2.12). In
making this crude approximation, we assume that the boundary profile has negligible
influence on the jet flow; or equivalently, that the aspect ratio of the eroded profile is
small. In fact, any bed topography will exert an additional drag on the flow, leading
to a more rapid attenuation of the boundary shear stress. Furthermore, we assume
that the mean flow does not separate from the boundary at any downstream location
to avoid the need to introduce models of regions in which the flow recirculates.
This assumption is inappropriate for flow over the crest of the eroded profile (i.e
x > xc). Recognizing that these assumptions constitute considerable simplifications,
we postulate that the shear stress is given by

τb = C6ρU
2
0 (b0/d)

2γ(x/b0)
−1+γG(h, x), (4.1)

where C6 is a constant which is different from C5 in equation (2.12) due to the
replacement of the surface roughness with the diameter of the particles. Also y = h(x)
is the profile of the boundary, γ = n − 2m and G(h, x) is a shape function to
encapsulate how the boundary shear stress varies when the boundary is no longer
horizontal. Initially the boundary is flat (h = 0) and so we require that G(0, x) = 1,
but other than this there is no available model or data to prescribe the variation of
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G. We therefore propose the following Gaussian-like model of the stress distribution:

G(h, x) =

{
1 (h > 0),
exp

(
−(h/C7δ)2

)
(h < 0),

(4.2a, b)

where C7 is a constant and δ(x) is the boundary-layer thickness, which varies with
downstream position. We have set G(h, x) = 1 for h > 0 since the wall jet is simply
deflected upwards without altering the magnitude of the shear stress, whereas for
h < 0 we assume that the shear stress varies with Gaussian-like characteristics. We
emphasize that this is a somewhat arbitrary model of the shear stress distribution
and that within this analytical framework any other shape function could be used.
Indeed our preliminary investigations indicate that there is little difference in the
results introduced by the use of an alternative model .

Critical conditions for motion on a sloping bed are given by

Θ(x/b0)
−1+γG(h, x) >

sin(α+ β)

cos α
, (4.3)

where Θ is an erosion parameter defined by Θ = C6ρU
2
0 (b0/d)

2γ tan α/∆ρgdθcrit.
Hence for the equilibrium profile attained by the eroding wall jet, we impose the
equality of (4.3) along the boundary y = h(x), with the local gradient of the bed given
by dh/dx = tan β.

At this stage of the analysis it is convenient to non-dimensionalize the lengthscales
and the shear stresses by writing

ξ = (x/b0)Θ
−1/(1−γ), (4.4)

η = (h/b0)Θ
−1/(1−γ), (4.5)

fb = τb tan α/∆ρgdθcrit, (4.6a)

= ξ−1+γ

{
1 (η > 0),
exp

(
−η2/σ2ξ2n

)
(η < 0),

(4.6b, c)

where σ = C7C4Θ
(n−1)/(1−γ)(b0/d)

n−1. Hence the profile of the boundary is given by

fb =
dη/dξ + tan α

[1 + (dη/dξ)2)]1/2
, (4.7)

which may be re-written as

dη

dξ
≡ tan β =

− tan α+ [tan2 α− (f2
b − 1)(f2

b − tan2 α)]1/2

f2
b − 1

, (4.8)

subject to boundary conditions which represent the absence of erosion far from the
jet source (4.9) and the conservation of the volume of particles (4.10),

η(ξ∗) = 0 (4.9)

and ∫ ξ∗

0

η dξ = 0. (4.10)

There are two remaining non-dimensional parameters in this system of equations for
the rescaled dimensions of the scour pit, namely σ and tan α. The magnitude of the
first of these indicates the rate of expansion of the wall jet as it flows downstream. It
is a function of the rate at which ambient fluid is entrained into the jet.
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4.1. Extent of eroded zone (ξ = ξc)

We identify the extent of the eroded zone as where the boundary has attained its
peak value and is locally flat (β = 0). Hence we find that

ξ−1+γ
c = tan α. (4.11)

Therefore, in terms of the dimensional variables

xcb0

d2
= θ

−1/(1−γ)
crit

(
C6ρU

2
0b

2
0

∆ρgd3

)1/(1−γ)

. (4.12)

We plot on figure 5a the data for the air and water experiments on a log-log
graph of xcb0/d

2 against Υ ≡ ρU2
0b

2
0/∆ρgd

3. We note that the curves for the two
media have similar exponents, as predicted by (4.12), and differ by a constant factor
of approximately 2. Furthermore, if we assume that the shear stress varies with
distance from the nozzle in a similar way to the wall-jet flows over horizontal rough
boundaries, then 1/(1 − γ) = 0.90, which compares favourably with the measured
value of 0.85. Also the constant factor may be rationalized in terms of the different
critical Shields parameters θcrit for the incipient motion for the two media. The
ratio (θcrit water/θcrit air)

1/(1−γ) ≈ 2 and this is approximately equal to the ratio of the
empirically fitted constants (see figure 5a).

These results are to be contrasted with the analysis of Rajaratnam (1981) in which
he suggests a linear correlation between x0/b0 and F0 = U0/(∆ρgd/ρ)1/2. Not only
do we find that the correlation given by (4.12) yields an improved collapse of the
data, but also that the differences between the data for water and for air may be
rationalized in terms of the critical Shields parameter pertaining to the different
media.

4.2. Downstream distance to the position of maximum eroded depth (ξ = ξm, η = ηm)

The downstream location of the maximum eroded depth may be calculated from (4.8)
by seeking the minimum of the function η(ξ). This leads to the requirement that at
the maximum eroded depth

ξ−1+γ
m exp

(
− η2

m

σ2ξ2n
m

)
= tan α. (4.13)

In this expression ξm is an implicit function of n and σ, where σ is itself a weak
function of Θ and b0/d. We henceforth simplify this equation by setting the exponent
n equal to unity. This fixes the empirical shape function G for the stress distribution
and renders the parameter σ independent of the flow and particle characteristics. This
simplification has only negligible influence on the interpretation of the experimental
results of Rajaratnam (1981), because the dependence on the exponent n occurs in
only the shape function. Furthermore, as found in §2, we expect |1− n| � 1 and the
experiments performed with an erodible boundary do not provide sufficient resolution
to permit an accurate assessment of the value of n.

On the assumption that ηm/σξm is approximately constant, which is demonstrated
below, (4.13) indicates that ξm is also approximately constant. Therefore, in terms of
dimensional variables,

xmb0/d
2 ∼ θ−1/(1−γ)

crit

(
C6ρU

2
0b

2
0

∆ρgd3

)1/(1−γ)

. (4.14)

This correlation is examined by plotting in figure 5(b) the experimentally determined
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Figure 5. (a) The downstream distance to the peak of the eroded profile, xc, as a function of
the flow parameter, Υ = ρU2

0b
2
0/∆ρgd

3. The equations of the fitted power-law curves are given by
xcb0/d

2 = 2.7Υ 0.87±0.04 (for water) and xcb0/d
2 = 5.0Υ 0.85±0.06 (for air). (b) The downstream distance

to the position of maximum eroded depth, xm, as a function of the flow parameter Υ = ρU2
0b

2
0/∆ρgd

3.
The equations of the fitted power-law curves are given by xmb0/d

2 = 1.3Υ 0.82±0.04 (for water) and
xmb0/d

2 = 2.3Υ 0.82±0.08 (for air). The confidence limits on the exponents are given by the standard
errors of the best fitting values. (Data from Rajaratnam 1981.)

values of xmb0/d
2 against Υ ≡ ρU2

0b
2
0/∆ρgd

3. There is a good correlation between
these variables. Also, as for xc, the data for the experiments performed with both air
and water jets are collapsed by a power law, with a similar exponent. This exponent
has the value 1/(1− γ) = 0.82 which is similar to that determined for the variation
of xc. Furthermore, the different value of the constant for the two data series may be
rationalized in terms of the magnitude of the critical Shields parameters for the two
media.

In terms of the calculated solution (4.8)–(4.10), ξm and ηm vary as functions of the
parameter σ, while ξc is independent of σ. From figure 6 ξm/ηm is approximately a
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Figure 6. The ratio of the maximum eroded depth to the downstream location at which this occurs
as a function of σ. The values of this ratio was computed from the model (§4) for a range of values
of σ (0.14 < σ < 0.58). There is an approximately linear relationship between the two given by
ηm/ξm = 1.16σ − 0.05.
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Figure 7. The maximum eroded depth εm as a function of the downstream distance to the position
of maximum eroded depth xm. The data for the experiments using both air and water wall jets are
reasonably well represented by the linear equation εm = 0.5xm. (Data from Rajaratnam 1981.)

linear function of σ and ηm ≈ σξm. Hence a plot of maximum scour depth εm against
xm for the experimental data should provide an estimate of the parameter σ. There is
indeed a reasonable linear correlation between εm and xm, with σ = 0.5 as indicated
in figure 7. In accord with the theory developed here, this constant is the same for
both sets of experiments.

The theoretically calculated profiles also elucidate the dependence of the ratio ξm/ξc
on the parameter σ. We find that with increasing σ the position of maximum eroded
depth moves closer to the source. This is because σ effectively represents the near-
source spreading of the jet. Hence larger values of σ correspond to greater spreading
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Figure 8. The ratio xm/xc as a function of the flow parameter Υ . The model predicts that
xm/xc = 0.28, as drawn on the plot.

and therefore the maximum depth is attained closer to the source. The experimentally
measured ratio of the dimensional distances ξm/ξc should be independent of the media
in which the experiments were conducted and the theory predicts that xm/xc = 0.28
with σ = 0.5. This is approximately borne out in the experimental results of
Rajaratnam (1981), as displayed in figure 8.

4.3. Shape of eroded profile

The profile of the scour pits may be calculated by the integration of (4.8) subject to
the boundary conditions (4.9) and (4.10). The condition of a fixed volume of particles
may not be entirely appropriate for comparison with experiments in which particles
are swept downstream into a ‘sand trap’. It is, however, appropriate for geophysical
applications. In figure 9(a) we present the steady-state profiles for various values of
the parameter σ. We note that for the profiles which correspond to larger values of
σ, there are regions in which the upward inclination of the boundary exceeds the
angle of repose. As argued in §3, these profiles may not be stable because the shear
stress is intermittent. Hence they relax to a configuration in which the gradient of the
upward slopes never exceeds the tangent of the angle of repose. We introduce this
relaxation process via the following adjustment procedure, which is based upon the
constancy of volume of the particles. Suppose that dη/dξ > tan α, for some ξ = ξ0

with ξ− < ξ0 < ξ+. We then redefine the boundary profile as

ηnew(ξ) =

{
η(ξ) (ξ < ξ−),
η(ξ−) + (ξ − ξ−) tan α (ξ− < ξ < ξ+),
η(ξ) (ξ > ξ+).

(4.15a, b, c)

The limits ξ− and ξ+ satisfy the following two equations:

η(ξ+)− η(ξ−) = (ξ+ − ξ−) tan α (4.16)

and ∫ ξ+

ξ−
η dη = 1

2
(ξ+ − ξ−)2 tan α. (4.17)

This adjustment for the profiles is shown in figure 9(b) and we note that it introduces
negligible alteration to the overall shape of the scour pits.
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Figure 9. (a) The steady-state shape of the scour pit arising from the erosive action of a wall jet
for various values of σ. (b) The steady-state shape of the scour pit arising from the erosive action
of a wall jet, adjusted so that the maximum upward gradient never exceeds the tangent of the angle
of repose for the particular value σ = 0.5. This adjustment introduces very little alteration of the
shape of the profile.

Rajaratnam (1981) demonstrated the similarity of the steady-state shape of the
eroded profiles by scaling the eroded depth by the maximum eroded depth εm and
the distance from the source by the downstream distance to the position of maximum
erosion xm. He found that to a reasonable degree of accuracy this collapsed the
profiles onto each other. We now compare the predicted eroded profiles with the
experimentally measured profiles. We scale both the measured depth and the distance
from the source by the distance to the maximum eroded depth (ξm). The agreement
between theory and experiment is fairly good as seen in figure 10. This agreement
is not too surprising, given that we have chosen the parameter σ = 0.5, although
we have constrained neither the boundary condition at the source, nor the curvature
of the profile (apart from imposing an upper bound on the gradient equal to the
tangent of the angle of repose). The predicted and experimentally determined results
differ around the downstream locations at which the profiles attain a maximal value.
Presumably this difference arises because the model has neglected flow separation
over the crest. Hence the model assigns a shear stress in excess of the true value and
so predicts a downstream transport of particles which is too high. Instead, as the
experimental results seem to show, there is increased particle deposition at the crest.
Alternatively there may be a reverse flow at the lee side of the crest which could
sweep particles towards the crest. A more complete model of the flow should rectify
this discrepancy.
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Figure 10. Comparison between the predicted and experimentally measured eroded profiles for
the wall jets of (a) air and (b) water. (Data from Rajaratnam 1981).

5. Temporal evolution of the scour pit
While the theory developed above describes the shape of the steady-state eroded

pits, it does not provide insight into their temporal evolution. Early studies of the
rate of scour suggested that the maximum scour depth increases linearly with the
logarithm of time (Rouse 1940) and is therefore unbounded. This suggestion has since
been refuted as investigators have realized that a steady state is possible. Nevertheless
the time taken to attain this steady state can be very long. For instance, Rajaratnam
(1981) found that for some laboratory experiments, the attainment of the equilibrium
profile of the scour pit took in excess of 60 hours. Furthermore, he found that at
intermediate times the maximum eroded depth did approximately increase linearly
with the logarithm of time.

In order to describe this temporal evolution we need to model the process of
particle transport. The particles are non-cohesive and are primarily transported by
rolling, sliding and saltating along the boundary, rather than by being launched
into suspension and advected by the flow. We therefore adopt a bedload model of
sediment transport (Nielsen 1992). This neglect of suspended-load sediment transport
is probably a reasonable assumption for flows in which the density of the particles
far exceeds that of the fluid; however for flows in which the two are comparable, it
may considerably underestimate the rate of transport.

There are many empirical and semi-empirical models of bed-load transport (Fredsøe
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& Deigaard 1992), although in essence the dimensionless flux of particles depends
upon the dimensionless shear stress raised to the 3/2 power. We adopt one of the
oldest models, namely the semi-empirical model of Meyer-Peter & Muller (1948),

qb/(∆ρgd
3/ρ)1/2 = 8(θ − θc)3/2, (5.1)

where qb is the dimensional volumetric flux of particles per unit width, θ = τb/∆ρgd
is the Shields parameter and θc is the critical Shields parameter for incipient motion
(see §3). The functional form of (5.1) was derived for particle transport on a flat
bed, but we will apply it to a longitudinally sloping bed for which the critical Shields
parameter varies with the local bed gradient. The recent study of Kovacs & Parker
(1994) used a slightly different formula for the flux of bed-load transport to study
the progressive erosion of a downstream step of bed elevation. We adopt the above
expression because it takes a somewhat more simple functional relation. Many models
of suspended sediment transport have a form similar to (5.1), except that the critical
parameter for the onset of suspension is increased and the exponent of the Shields
parameter is higher (Yalin 1977). Also models of cohesive soil transport take a similar
form, but with a lower exponent (Stein et al. 1993).

Following Kovacs & Parker (1994), we study the temporal evolution of the pit by
adopting a sediment conservation equation (the Exner equation). This relates the
rate of change of the bed elevation to the divergence of the flux of particles. In two
dimensions, this gives

(1− Cb)
∂h

∂t
+
∂qb

∂x
= 0, (5.2)

where Cb is the porosity of the bed. We introduce non-dimensional variables for the
lengthscales given by equations (4.4) and (4.5) and for the particle flux and timescale
given by

Ψ = qb/8(θ3
crit∆ρgd

3/ρ tan3 α)1/2 (5.3)

and

T = t
8(θ3

crit∆ρgd
3/ρ tan3 α)1/2

(1− Cb)b2
0Θ

2/(1−γ) . (5.4)

In non-dimensional form, the conservation equation is now given by

∂η

∂T
+
∂Ψ

∂ξ
= 0. (5.5)

We now substitute for the Shields parameter θ = fb(η, ξ)θcrit/tan α and for the critical
Shields parameter

θc =
θcrit

tan α

(
∂η/∂ξ + tan α(

1 + (∂η/∂ξ)2
)1/2

)
. (5.6)

This yields the evolution equation

∂η

∂T
= 3

2
(fb − θc tan α/θcrit)

1/2

(
1− tan α∂η/∂ξ

(1 + (∂η/∂ξ)2)3/2

)
∂2η

∂ξ2
− 3

2
(fb − θc tan α/θcrit)

1/2 ∂fb

∂ξ
.

(5.7)
This equation is subject to the following initial and boundary conditions:

η = 0 (T = 0), (5.8)

η → 0 (ξ →∞) (5.9)
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Figure 11. (a) Experimentally measured profiles (Rajaratnam 1981) at intermediate dimensional
times (t) before the steady-state profile was attained. These profiles arose from the flow of an air
wall jet over an initially flat bed of sand. The steady state was attained after approximately 15000 s.
(b) Theoretically calculated profiles of an initially flat bed of grains at non-dimensional times of
T = 1, 5, 10, 20, 40, 60, 160, 310, 510.

and

θ − θc = 0 (ξ = 0). (5.10)

The interpretations of these equations are: the boundary is initially flat (5.8); there is
no erosion sufficiently far downstream from the source of the jet (5.9); and there is no
particle flux entering at the source of the jet flow (5.10). These boundary conditions
imply that the volume of particles within the domain is constant, a condition which
may be expressed as ∫ ∞

0

η dξ = 0. (5.11)

We note that equation (5.7) for the evolution of the bed elevation is effectively an
advection–diffusion equation, with a nonlinear diffusion coefficient which depends
upon ξ, η and ∂η/∂ξ. When ∂η/∂ξ > cot α, the effective diffusion coefficient becomes
negative and the equation becomes ill-posed. The origin of this change of sign in the
diffusion coefficient is that the magnitude of the critical Shields parameter for erosion
on a sloping boundary has a maximum value at ∂η/∂ξ = cot α.

We recall that the boundary shear stresses are intermittent (§3). Hence during
the progressive erosion of an initially flat bed of particles, the applied shear stresses
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Figure 12. The maximum eroded depth as a function of non-dimensional time. Note that at
intermediate times, before the steady state is attained, the maximum eroded depth varies linearly
with the logarithm of time. (The steady-state eroded depth is ηm = 0.265.)

are insufficient to support upward gradients which exceed the tangent of the angle
of repose. This hypothesis seems to be borne out by the observations made by
Rajaratnam (1981) of the temporal development of the eroded profiles as shown in
figure 11(a). Therefore we enforce a relaxation procedure after each timestep during
the numerical integration of (5.7) to rearrange the profile such that ∂η/∂ξ < tan α for
all ξ. We use a procedure identical to that described in §4.3 to enforce this bound on
the maximum upward gradient.

We integrate (5.7) using a two-step numerical scheme which is analogous to the
Crank–Nicholson scheme for differential equations with constant diffusivities (Press
et al. 1986). When integrating between two timesteps (ηn → ηn+1), we first take a half-
timestep and use the values of ηn+1/2 to evaluate the diffusivity for the full timestep.
After each full timestep we apply the rearrangement algorithm to ensure the upward
gradients are less than tan α. This ensures the effective diffusion coefficient always
remains positive and so the system remains well-posed. As a check on the numerical
scheme, we evaluate

∫ ∞
0
η dξ and ensure that∫ ∞

0

|η| dξ > 1
100

∣∣∣∣∫ ∞
0

η dξ

∣∣∣∣ . (5.12)

As an illustrative calculation we set γ = 0 and find the temporal development
of the erosion profiles shown in figure 11(b). These profiles closely resemble those
observed by Rajaratnam (1981). We plot the temporal development of the maximum
scour depth in figure 12. We find that for intermediate times there is indeed a period
when the maximum scour depth increases approximately linearly with the logarithm
of time. We note that the implementation of an upper bound on the gradient of
the profile after each timestep may influence the steady state attained by (5.7)–(5.10)
because during each timestep the number of particles moved downstream may be
exactly balanced by those moved upstream by the relaxation procedure. In calculating
the results of the integration of the equations, shown in figures 11(b) and 12, the
timestep was equal to one non-dimensional unit at large times and we find that we
achieve a steady-state maximum eroded depth within 2% of that calculated in §4. For
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a subsequent run in which the timestep at large times was 10 non-dimensional units
the steady-state maximum eroded depth was to within 0.5% of that calculated in §4.

The timescale of the erosion may be estimated from the temporal scaling given by
equation (5.4). For the specific conditions of the experiment performed by Rajaratnam
(1981), for which the temporal development of the eroded profiles is plotted in
figure 11(a), we find that a dimensionless unit of time corresponds to approximately
10 s. The numerical integration of the Exner equation (5.7) demonstrates that it is not
until the jet has been flowing for 100 dimensionless units of time that the maximum
eroded depth attains approximately 90% of its steady-state value. Hence for the
specific experimental conditions, which correspond to the profiles plotted in figure
11(a), this is equivalent to a duration of 1000 s. This estimate is consistent with the
experimental observations which indicated a relatively rapid rate of erosion during
the first 1000 s of the jet flow, followed by a much slower rate of erosion until the
steady state was attained after approximately 15000 s (Rajaratnam 1981).

6. Conclusion
We have considered the erosive action of a two-dimensional turbulent wall jet on an

initially flat bed of non-cohesive particles and have elucidated a number of features
of this process. We have demonstrated that turbulent wall jets, flowing over rough
boundaries, may not be simply approximated by the free-jet scalings, because these
neglect the importance of the boundary. Instead the spatial variation of the wall-jet
characteristics are weakly dependent on the roughness length of the boundary (§2).

We have modified the results for flows over fixed boundaries to study those over
erodible boundaries. We balanced the mobilizing and resisting moments on the parti-
cles at the surface of the sloping bed, to obtain critical conditions for incipient particle
motion. This enables the prediction of the characteristic dimensions of the steady-state
scour pit to be made and reconciles the previously unresolved differences between
the experiments performed with air and water jets. By adopting a simple model of
the distribution of shear stress, the shape of the eroded profiles was found to be in
good agreement with the experimental results. The calculation of steady-state erosion
profiles relied on a simple model of the distribution of shear stress, which neglects
regions of flow separation and recirculation. While future developments will no doubt
contribute to an improved model of the flow, the simple approach described here has
enabled the explanation of many of the experimental results of Rajaratnam (1981).

We have also formulated a model of the progressive erosion of the scour pit. This
model invokes a bed-load model of the rate of particle transport and follows the evo-
lution of the bed by utilizing an expression for the conservation of sediment volume.
Inherent in such an approach are a number of additional assumptions. This model
neglects, for example, the particles which are transported downstream in suspension.
Nevertheless, this analysis produces eroded profiles which are similar to those found
experimentally. We find that the maximum eroded depth at intermediate times varies
linearly with the logarithm of time, and that the time taken to achieve the steady-
state erosion can be very long. This has significant implications for the operation
of jet-scour devices, because there is a trade-off between the volume of mobilized
sediment and the time during which the jet impinges upon a particular area of the
bed. Ongoing research will aid the development of optimum operational procedures.

The financial support of the Ministry of Agriculture, Fisheries and Food (UK) and
NERC is gratefully acknowledged.



338 A. J. Hogg, H. E. Huppert and W. B. Dade

Appendix. Incipient motion on a sloping bed
In this Appendix we derive the critical conditions for incipient particle motion

for a spherical particle in repose on a planar bed, composed of similar particles,
which has both longitudinal and lateral slopes. This calculation yields a critical
Shields parameter which is in accord with previous expressions (Fredsøe & Deigaard
1992). Kovacs & Parker (1994) developed a vectorial formulation of this problem
and obtained expressions for the critical Shields parameter. The analysis developed
below is also a vectorial formulation of the critical conditions for particle motion but
is based upon the turning moments exerted on a particle at the bed surface and the
angle of repose, rather than the mobilizing forces and a friction coefficient used by
Kovacs & Parker (1994). Nevertheless, it yields results which are identical to those of
Kovacs & Parker. In this analysis we identify the angle of repose as the maximum
inclination of the free surface of a given granular material at which there is no particle
motion, in the absence of any other flow (Savage 1989).

We consider a particle in repose on a planar, but non-horizontal bed, over which
fluid flows. The fluid motion exerts a torque on the particle which is resisted by the
stabilizing moment arising from the particle weight. We define an orthonormal basis
of vectors for this plane (n̂, ŝ, t̂), where n̂ is the normal to the plane, ŝ is parallel with
the direction of flow and t̂ = n̂ × ŝ. The angle between the flow direction and the
direction of steepest descent on the plane is denoted by ψ and the angle of inclination
of the plane is β. Hence a vertical unit vector is given by

ŷ = cos βn̂+ sin β(cosψŝ− sinψt̂). (A 1)

At incipient motion, a particle pivots on the adjacent particles at the angle of repose
with a direction which makes an angle φ with the direction of flow. Hence a unit
vector between the axis of rotation and the centre of the particle is given by

r̂ = − cos αn̂+ sin α(cosφŝ+ sinφt̂). (A 2)

The flow exerts a drag force on the particle given by

F = CDπd
2τbŝ, (A 3)

where τb is the shear stress, d is the particle diameter and CD is a constant drag
coefficient. The submerged particle weight is

W = − 1
6
π∆ρgd3ŷ, (A 4)

where ∆ρ is the excess density and g is the gravitational acceleration. Denoting the
moment of inertia and angular velocity of the particle by I and Ω, respectively, we
find that the equation of motion of the particle is given by

I
dΩ

dt
= (W + F )× d/2r̂. (A 5)

Hence the particle is set into motion if (W +F )× d/2r̂ > 0. This condition yields the
following expression:

6CDτb
∆ρgd

(
cos αt̂ + sin α sinφn̂

)
> (cos α sin β cosψ + cos β sin α cosφ) t̂

+ (cos α sin β sinψ − cos β sin α sinφ) ŝ

+ (sinψ sin β sin α cosφ+ cosψ sin β sin α sinφ) n̂.

(A 6)
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At incipient motion, we identify the critical value of the Shields parameter θc =
τb/∆ρgd and find that

| sinφ| =
∣∣∣∣ tan β sinψ

tan α

∣∣∣∣ < 1, (A 7)

6CDθc = sin β cosψ + sinψ sin β cotφ. (A 8)

The condition (A7) specifies the direction of motion and gives a criterium which if
exceeded implies that the bed is unstable and ‘slumping’ occurs. The condition (A8)
may be rewritten in terms of the angles of repose, longitudinal and lateral slopes
(α, β, ψ) and the critical Shields parameter on a flat bed, θcrit = 1

6
tan α/CD , as

θc = θcrit

(
cosψ sin β + (cos2 β tan2 α− sin2 ψ sin2 β)1/2

tan α

)
. (A 9)
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