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Patterns of sedimentation from
polydispersed turbidity currents
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Particle-driven gravity currents, as exemplified by either turbidity currents in the
ocean or ignimbrite flows in the atmosphere, are buoyancy-driven flows due to the
suspension of dense particles in an ambient fluid. They are formed naturally from
sediment-laden outflows from rivers into coastal waters, from submarine landslides
along coastal shelves or as the result of volcanic eruptions. The porous rock and
sand of both consolidated and unconsolidated oil-reservoirs are often derived from
the sediment deposited from turbidity currents over geological time. A knowledge of
the genesis of these reservoirs may provide better methods to estimate their porosity
and permeability distribution, which would improve evaluation and management of
these valuable resources. This paper presents a theoretical model for the dynamics
and deposition of a two-dimensional particle-driven gravity current composed of a
polydispersed suspension of dense particles and compares the theoretical predictions
against data obtained from laboratory experiments. After developing a scaling anal-
ysis of the governing equations, we propose a simple algebraic method to compute
the areal density of deposit, or mass deposited per unit area, and the distribution
of particle-sizes within deposits arising from either two-dimensional or axisymmetric
currents. The resulting formulae suggest an inverse method to estimate the density
of deposit and the distribution of particle sizes as a function of position in a reservoir
from a limited number of cores.

1. Introduction

Regardless of the price of a barrel of oil, the optimal management of oil reservoirs is a
critical issue in the production of petroleum. To evaluate the viability and potential
profitability of a production method, say water-flooding or hydrofracturing, com-
putational simulations are performed on its detailed implementation in a reservoir.
To perform the simulations, however, one must know the porosity and permeability
throughout the reservoir. Unfortunately, especially during the initial development
of an oil field, very little information is available on the porosity and permeability,
except from drilling cores at a few locations in the reservoir.

Geostatistics, particularly ‘kriging’, is one method used to estimate the distribu-
tion of porosity and permeability within a reservoir from a limited number of cores
(Isaaks & Srivastava 1989; Journel 1989). Kriging is the method of best linear, un-
biased interpolation of data, which assumes that the property in question is statisti-

Proc. R. Soc. Lond. A (1996) 452, 2247-2261 © 1996 The Royal Society
Printed in Great Britain 2247 TEX Paper



2248 R. T. Bonnecaze, H. E. Huppert and J. R. Lister

cally stationary. It should be noted that kriging does not incorporate any information
about the physical processes that brought about the distribution of porosity and per-
meability in the first place; it is a purely statistical method based on the available
data.

However, much is known about the processes that form reservoirs. The porous rock
and sand of many reservoirs, such as those off the coast of Southern California, are
derived from the deposits of particle-driven gravity currents, or turbidity currents
(Wesser 1977). These are flows driven by the bulk density difference or buoyancy due
to the suspension of dense particles in a less dense ambient fluid. Often such turbidity
currents are formed and their sediment deposited as follows. Sand and silt derived
from coastal erosion or from the outflow of rivers are redistributed by the action of
waves and currents and accumulate on the submarine shelf along a coastline, partic-
ularly at the head of submarine canyons. Eventually, sufficient sediment accumulates
on the edge of the open shelf or, more typically, at the head of an existing canyon
(McGregor & Bennett 1977, 1979) for it to be unstable, and, due perhaps to a minor
earthquake or large storm, some breaks away and slides down the slope at the edge
of the shelf (figure 1). This submarine landslide entrains fluid, which suspends the
sediment, and when it reaches the basal plain, the dense suspension spreads like a
gravity current. As this turbidity current propagates, it deposits its sediment on the
basal plain, reducing its buoyancy, and therefore, its rate of advance. Hence, the
dynamics and deposition of the flow are coupled processes. Clay particles are also
suspended during the entrainment of the fluid as the sediment slides down the slope.
These very fine particles settle out last and form a relatively impermeable barrier on
top of the deposit that can later trap oil that might migrate to the deposit. Multiple
events of this kind, ranging from a few to hundreds, may occur at a particular site
over millions of years to form the reservoir (Wesser 1977). We note that turbidity
currents can be generated by mechanisms other than slumping, notably underflow
from flooded rivers, but these will not be considered further here.

The deposits on the basal plain are often observed to be nearly two-dimensional,
indicating that the current follows a channellized local topography, as is the case for
the Black Shell turbidite in the Hatteras Abyssal Plain analysed recently by Dade &
Huppert (1994). For very large flows, the deposits can form radial fans (Mutti 1992;
Dade & Huppert 1995). Also, the flow down a canyon is often sufficient to erode any
sediment accumulated in the thalweg, or stream channel cut into the base, and even
to erode the entire bed of the canyon itself (Inman et al. 1976; McGregor & Bennett
1977, 1979). Erosion and entrainment of sediment during the flow along the basal
plain may or may not occur depending on the magnitude of the buoyancy force and
the size of the particles.

In this paper we present a model that describes the dynamics and deposition
of two-dimensional and axisymmetric particle-driven gravity currents composed of
polydispersed particles spreading over a horizontal surface, such as the basal plain
adjacent to a coastline. The flows are assumed to be sufficiently vigorous that the
suspensions are vertically well-mixed. However, we neglect entrainment in the current
of both particles from the base of the flow and fluid from the ambient. Predictions
of the deposition patterns from the model are successfully compared with data from
laboratory experiments of two-dimensional polydispersed gravity currents. Encour-
aged by this successful comparison, we propose a simple algebraic method based on a
scaling analysis of the governing equations to compute the areal density of deposit, or
mass deposited per unit area, and the distribution of particle-sizes within a deposit
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Figure 1. Schematic of the genesis of a turbidity current on a submarine shelf near a coastline
and the resulting deposition patterns.

from a polydispersed turbidity current. The resulting formula suggests an inverse
method using a limited number of cores to estimate the density of deposit and the
distribution of particle-sizes as functions of position in a sandy reservoir emplaced
by such a current. We conclude with a discussion of how these results may be used
with other correlations to estimate the porosity and permeability distribution within
such a reservoir.

2. Model

Bonnecaze et al. (1993, 1995) have developed a rigorous model for the dynamics
and deposition from two-dimensional and axisymmetric particle-driven gravity cur-
rents, or turbidity currents, composed of dense particles of one size spreading over
a horizontal surface. Here we extend the model to account for polydispersity of the
suspended particles.

Consider a particle-driven gravity current created by the release of a fixed volume
of a well-mixed suspension of bulk density p. into a deep ambient body of fluid of
lesser density p,. The bulk density of the current, which is the local volume average
of the density of particles p, and the density of the interstitial fluid, here assumed
to be the same as the ambient, is given by

pe(P) = (Pp = pa) P + pa, (2.1)

where @ is the total volume fraction occupied by particles of all sizes.
The initial flow following an instantaneous release of a gravity current of finite-
volume is usually complex, three-dimensional and unsteady, but quite rapidly after
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initiation the current has spread sufficiently that its length zx(¢) is very much greater
than its height h(x,t), which is a slowly varying function of the horizontal position
x and time t. For such conditions, it is reasonable to neglect vertical accelerations
in the flow and to assume a hydrostatic pressure distribution. We also assume that
the Reynolds number of the flow is sufficiently large that viscous forces are negligible
and that the dynamics of the flow are dominated by a balance between buoyancy
and inertial forces. Since viscous forces are negligible, we may also assume that away
from the head the horizontal velocity field u(z,t) in the current is vertically uniform.
These assumptions lead to the shallow-water equations, which describe conservation
of mass and momentum and, for a two-dimensional turbidity current, take the form

oh 0
i _ — 2.2
O 2y =0 22)
and
9wy + L wh + 1g'(@)h?) = 0 (2.3)
ot or 2 ’ ’

where the reduced gravity ¢'(®) = [p.(P) — palg/pa is a function of the volume
fraction of particles. We have assumed that @ is small compared to unity and used a
Boussinesq approximation which neglects O(®) terms in the equations of mass and
momentum conservation except for the gravitational terms. In the above equations
we have also assumed that the ambient fluid is very deep compared with the depth
of the gravity current, so that the effects of the overlying fluid on the dynamics of
the current can be neglected, and that there is negligible entrainment of the ambient
fluid by the current. Effects due to entrainment are discussed by Hallworth et al.
(1994, 1996). The effects of the overlying fluid are included by addition of mass
and momentum balances for the upper layer. This has been considered in detail by
Bonnecaze et al. (1993, 1995) for a monodispersed suspension, and the extension to
a polydispersed suspension is described in Appendix A.

The particle concentration varies along the current due to advection and settling.
In this paper we neglect particle entrainment into the current from the bottom over
which it flows on the assumption that the slope of the bottom is sufficiently small
and the fluid velocities are insufficient to lift deposited sediment into the current.
We consider the flow sufficiently vigorous, however, that turbulent mixing maintains
a vertically uniform particle concentration in the current, without any detrainment
of particle-free fluid at the top of the current. We assume that particles of type 1,
which have settling velocity v;, leave the current only through the viscous sublayer
at the base with a downward flux v;¢;, where ¢; denotes the volume fraction of that
particle size. The equation describing the transport of each type of particle is thus

Op; O o
where the total volume fraction of particles ¢ = 3. ¢;. As well as having been
presented by Bonnecaze et al. (1993, 1995), equations similar to (2.2)-(2.4) have
been derived by Garcia (1994) for a steady-state current.

The boundary conditions for equations (2.2)—(2.4) are

u(0,t) =0, (2.5)

for the case of instantaneous release of a fixed volume of suspension, and the general
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condition
U(IN(t)a t) = Fr(g/(éN)hN)lﬁa (26)

where Fr is the Froude number, which relates the velocity at the front of the current
to the pressure head ¢'(®Pn)hn at the front. (We use the subscript N to refer to
values of the dependent variables evaluated at the nose or front of the current.)
For gravity currents intruding into a deep ambient fluid with no viscous dissipation,
Benjamin (1968) showed theoretically that Fr = /2, while experimentally Huppert
& Simpson (1980) found a value of 1.19. The experimental value of the Froude number
is somewhat lower because of viscous drag and turbulent Reynolds stresses, which
cause additional momentum transfer at the head and further retard the flow of the
current. These effects are only important at the three-dimensional turbulent head
of the current. In addition, we must specify the initial height hy and length zq of
the current and the volume fraction of particles ¢;9. Equations (2.2)—(2.6) are solved
numerically with a combined finite-difference and characteristic method, which is
discussed in detail by Bonnecaze et al. (1993). Note that the model has no adjustable
parameters; the settling velocities of the particles are computed assuming Stokes
settling and the Froude number has been determined independently by Huppert &
Simpson (1980) for saline currents. Similar equations for axisymmetric particle-driven
gravity currents are presented in Appendix B.

In the next section we discuss the results of some laboratory experiments against
which the theoretical predictions are compared. A significant fraction of the settling
in these experiments occurs when the depth of the overlying fluid is comparable to the
depth of the turbidity current, which affects the velocity and depth of the current and
hence the deposition. Unfortunately, it is difficult to perform experiments such that
the effects of the overlying fluid can be ignored. Thus we cannot directly compare the
predictions of the ‘single-layer’ model presented earlier and must, instead, augment
the model to include the momentum balance of the overlying fluid, as described in
Appendix A. Although this ‘two-layer’ model has the additional effect of the overlying
fluid, the essential mechanisms for transport of both particles and fluid are identical.
Hence, a successful comparison of the two-layer model with the experiments still
validates the single-layer model as a description of the dynamics and deposition of
turbidity currents in deep ambient fluids, which is more commonly the case in nature.

3. Experiments

A series of laboratory experiments were conducted to verify the predictions of the
model. The experiments were performed in a glass tank 10 m long and 26 cm wide,
which was filled to a height of 30 cm with tap water. A Perspex gate with foam seals
around its edges was placed 15 cm from an end wall, so that the volume of fluid
behind the gate was 11700 cm?®. The polydispersed suspension for the current was
made by mixing various amounts of five different sizes (13, 17, 23, 37 and 53 pm
diameter) of fairly monodispersed silicon carbide particles (p, = 3.217 gcm™) in
the water behind the gate. For all the experiments reported here the initial reduced
gravity of the suspensions was 22.7 cm s~ 2.

The particles were well mixed in the lock, and the gate was quickly lifted to
release the current. After the current had reached the end of the tank and all the
particles settled, the surface density of deposit was measured along the length of the
tank by the following method. A Perspex cylinder approximately 20 cm high with
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Figure 2. The experimental measurements (symbols) and theoretical predictions (lines) of the
areal density of deposit for three polydispersed turbidity currents composed of silicon-carbide
particles. The distribution of the five particle sizes (13, 17, 23, 37 and 53 pum) are plotted in the
inset of each figure.

an internal diameter of 9.35 cm was placed vertically on the bottom of the tank at
several downstream locations. All the sediment lying within it was vacuumed with
a siphon tube. The particles were collected in a beaker, the water decanted and the
particles dried and weighed to determine the mass per unit area.

Figure 2 presents the total density of deposit for three different particle-size distri-
butions, which are plotted in the inset of each figure. Generally, the density of deposit
decreases downstream since there are fewer particles to deposit from the current as
time progresses. However, near the origin of the flow, there is a maximum in the
density of deposit. This is perhaps due to particles that have already settled being
transported downstream in the form of a bedload by the flow. Smaller particles are
more easily transported than larger particles, causing the magnitude and position
downstream of the maximum to increase with decreasing average particle size.

The theoretical predictions of the two-layer model are also plotted in figure 2. The
agreement is very good, except near the origin where the model assumes that no
bedload transport occurs for deposited sediment. However, the discrepancies between
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theory and experiment are relatively small. Unfortunately, at this time we are unable
to measure the density of deposit for each particle size to compare with the theory.

The good agreement between the theoretical predictions from our two-layer model
and the experimental data gives us confidence that the single-layer model presented
in §2 accurately describes the dynamics and deposition of a polydispersed gravity
current spreading in a deep ambient fluid. This latter type of flow occurs often
in natural settings, such as in the formation of turbidites. In the next section we
develop a simple method to predict the density of deposit from a polydispersed
gravity current spreading in a deep ambient fluid based on a scaling analysis of the
governing equations.

4. An algebraic prediction of the density of deposit

The density of deposit, defined as the mass per unit area, is a measure of the
thickness of the deposit. It would be extremely valuable to be able to determine this
density and the particle-size distribution throughout a deposit, such as a sandy oil
reservoir, from observations based on only a few drill-cores. Given the particle-size
distribution, one could then use correlations to determine the porosity and perme-
ability of the deposit. Specifically, we might determine values of the unknown initial
conditions of the current that produced the deposit, that is, the volume fraction
distributions and the initial volume of the current, by adjusting these parameters
in the model (equations (2.2)—(2.6) or (A1)—(A6)) until the predicted deposition
best matches that measured in the cores. However, this is not the most convenient
method for parameter-estimation of the forward problem, since it requires repeated
numerical solution of partial differential equations. Instead we propose an approxi-
mate, but much more convenient, algebraic representation of the density of deposit
of each type of particle. We derive the result for a two-dimensional current here and
that for an axisymmetric current in Appendix B.

For many naturally occurring turbidity flows, the depth of the turbidity current is
much less than the depth of the ambient fluid, and so we may use (2.2)—(2.6) as the
model equations. However, as we discuss presently, the results below are true whether
the current is released in a shallow or deep ambient fluid. We commence by non-
dimensionalizing equations (2.2)—(2.6) for a current composed of a monodispersed
suspension. If we non-dimensionalize z by ¢/28; >/°, ¢ by ¢*/28%/° v, h by ¢'/22/°,
and u by g(')l/ qu/ 4[3;/ 5 where v is the settling velocity of the monodisperse particles,
q = Tohyg is the initial volume per unit width of the current and 8, = v/ (gf,l/ 2ql/4y,
equations (2.2)—(2.6) become

oh 0, -
9 any + 2 (@?h 4 Loh?) =
85(Uh) + er: (@*h + 59h%) =0, (4.2)
00 00 @
o e = (43)
E(O»E) =0, (44)
w(Zn(#),8) = Fr(oyhy)'?, (4.5)

where the overbarred quantities are dimensionless. In addition, the dimensionless
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Figure 3. The dimensionless areal density of deposit for a point release of a monodispersed
suspension of particles for (a) a two-dimensional turbidity current and (b) an axisymmetric
turbidity current (see Appendix B). These ‘master curves’ (solid) are fitted by the algebraic
functions (dashed) also illustrated on the figures.

initial conditions then become

h(z,0) = (ho/q"/?)8;%?, (4.6)
Zn(0) = (z0/q"%)8}°. (4.7)
From this rescaling we can see that, for 3, sufficiently small that

(ho/a"/?)B;%° > 1 and (20/¢'*)B}° < 1,

the initial shape of the suspension is essentially a delta function, and thus we expect
the resulting dynamics and deposition to depend only on the initial volume and not
on the details of the initial shape. One can then solve equations (7)—(13) numerically
for this initial condition to compute a ‘master curve’ for the dimensionless density
of deposit, W(Z), which is illustrated in figure 3a. The dimensional density of de-
posit from a monodispersed suspension is then given by w = ppql/ 2 @ﬂg/ 5W(:f) A
convenient and accurate empirical representation of W (Z) is given by

W(z) = 0.820/(1 + 0.683z° + 0.0172%). (4.8)

These conclusions apply whether the current is released in a shallow or deep am-
bient fluid, provided that (zo/q/?)3>/® < 1 since this condition implies that very
little settling will occur until the current has spread sufficiently that its depth is
much less than that of the ambient fluid. Similar conclusions have been verified for
axisymmetric currents in numerical experiments by Bonnecaze et al. (1995).

In order to obtain a simple and rapid estimate of the density of deposit from a
current composed of a polydispersed suspension of particles, we propose the following
method of superposition. We assume that the dynamics and rate of propagation of
the current are determined mainly by the total sediment load and volume of the
current and depend only weakly on the details of the particle size distribution. As
we shall see, this assumption works extremely well. By rescaling the master curve,
the density of deposit w; of particles of the ith size is thus given by

wi(z) = ,Opql/2¢io,3§i/5W(ﬁ;{sx/ql/z)7 (4.9)

where 8,; = v;/(gn/*q"/*) is the settling factor for particles of the ith size. Note that
the settling factor 3, which is used to scale the master curve for each particle size is
defined using the total initial reduced gravity g4 = g(pp — pa) ?/pa based on @, but
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the multiplying factor in the density of deposit uses only the initial volume fraction
¢io of the ith type of particle in order to conserve mass of this species. The total
density of deposit from a two-dimensional turbidity current is thus

N
w(@) = ppg"/? Y pioB W (B2 /q"/?). (4.10)
=1

We tested the approximation embodied in equations (4.9)-(4.10) by comparing
their predictions with those from the exact numerical solution of the single-layer
model for bidispersed two-dimensional turbidity currents, which are illustrated in
figure 4. The initial ratio of the mass fractions of large and small particles in the
turbidity current is assumed to be unity for the test. For the large particles, the
settling factor B, = 1073, and the settling factor for the small particles 3,5 was varied
such that 3, = B4/ B,s ranged from 4 to 1024. This corresponds to a ratio of diameters
of the large particles to the small particles ranging from 2 to 32, assuming Stokes
settling in which the velocity of sedimentation is proportional to the square of the
diameter of the particles. As can be seen, the agreement between the approximation
and the exact numerical solution is excellent. Indeed, the difference between the two
methods is practically indistinguishable.

We also tested the method for a roughly log-normal distribution of initial particle
sizes in a heptadispersed current, which is illustrated in figure 5. The seven initial
relative particle sizes ranged over a factor of 64, and since the Stokes settling velocity
is proportional to the square of the diameter, the values of 3, ranged over a factor of
4096. The solid lines are the predictions from equations (4.9) and (4.10) and the dot-
ted lines the exact numerical predictions. The agreement is very good. Discrepancies
are only noticeable for the furthest downstream portion of the deposit and well past
more than 99% of the deposit. In summary the algebraic method of superposition
of the rescaled master curve provides a rapid and accurate alternative to numerical
solution of the model equations for the prediction of the density of deposit of the
current.

5. Conclusions and discussion

We have presented a numerical model of the dynamics and deposition of poly-
dispersed turbidity currents and verified it by successful comparisons to laboratory
experiments. In addition, in order to estimate more readily the density of a deposit
from such a current, a simpler approximate algebraic method was derived from the
detailed partial differential equations that describe the behaviour of a particle-driven
gravity current.

Alternatively, and of great practical value for petroleum engineering, one can es-
timate the necessary parameters of the approximate algebraic model, namely the
initial particle-size distribution and volume of the current, from a few cores and sub-
sequently use this model to determine the density of deposit throughout sandy oil-
reservoirs emplaced by turbidity currents. Our results suggest the following strategy
to determine the thickness of a two-dimensional deposit from the assumed turbidity
flows modeled here and the vertically averaged particle-size distribution as a function
of position. We identify the density of deposit from M cores and divide the continu-
ous distribution of particle sizes throughout the deposit into N — 1 discrete particle
sizes, where M > N. The density and settling velocity of each discrete particle
size is known, so we can estimate the N parameters, ¢1, ¢o,...,Pn_1,¢, in equation
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Figure 4. Comparison of the density of deposit for a bidispersed turbidity current from the full
numerical solution (dashed) and the approximate algebraic method (solid) of equations (4.9)
and (4.10). The initial ratio of large to small particles is unity in the suspension. The settling
factor for the large particles 8y = 1072 and 8, = 841/04s is (a) 4, (b) 16, (c) 100.

(4.10) from the known density of deposit w at the M locations using, for example,
an algorithm for a least-square fit to a nonlinear function. Once the parameters are
determined, we can compute the density of deposit for the entire two-dimensional
reservoir.

We may also determine the vertically averaged particle-size distribution as a func-
tion of position along the length of the deposit, and the vertically averaged mass-
fraction of the ith particle x; = w;/w. Further, from available correlations, say for
spherical particles (Yu & Standish 1987), we may estimate a vertically averaged
porosity and convert the density of deposit into a depth of deposit, if the deposit is
a sandy petroleum reservoir that has not been significantly compacted. This would
be very useful for estimating the volume of oil in a newly discovered reserve from a
few cores. Given the distributions of porosity and particle-sizes of the polydispersed
deposit, we may also compute the permeability with available correlations (Martys
et al. 1994), which would be valuable for feasibility studies on methods of extraction
of oil from the reservoir.
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Figure 4. Cont. (d) 256 and (e), (f) 1024. Figure 4e is replotted on a log-log scale in (f) to see
the comparison more clearly.

Of course turbidites are often subjected to secondary geological processes, such
as compaction and cementation, before they become filled with oil. However, other
models (Panda & Lake 1995) are available to describe these processes given inputs
provided by our model. To account for the sequential application of various geological
processes to determine the porosity and permeability of an oil reservoir is certainly
a complex problem of nonlinear parameter estimation, but not without solution.
Although our model does not describe all processes that emplace and affect the
structure of turbidites, we propose here a paradigm for estimating the properties of
oil reservoirs based on geophysical models.

Our model contains much more information than presented here which could be
used to give a more detailed description of the properties of a turbidite. The particle-
size distribution can be determined not only as a function of the extent of the deposit
but also as a function of its depth. Thus, using the inverse method for the vertically
averaged density of deposit, one could compute the necessary initial conditions to
perform the complete numerical simulation to construct the point-wise particle-size
distribution in a deposit. Again, with correlations that relate the porosity and perme-
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Figure 5. Areal density of deposit for a heptadispersed current computed numerically (solid lines)
and with approximate method of equations (4.9) and (4.10) (dotted lines). The initial particle
size distribution ¢o and ratios of the particle diameters to the largest particle size, d;/d;, are
listed in the inset of the figure.

ability to the particle sizes and the particle-size distributions, one could construct a
detailed three-dimensional map of the porosity and permeability in a deposit. These
would be quite valuable for constructing simulations of petroleum reservoirs.

There are other potential applications of our model to the characterization of
oil-reservoirs. Further analysis of the model may indicate how the variation of the
particle-size distribution in a single core can be used to define or constrain further
the properties of the reservoir. Also, for reservoirs composed of multiple turbidites, it
is a common practice to describe the entire reservoir using synthetic bedding planes
constrained by the few available cores (Langlais & Doyle 1992) Our method allows
the construction of these synthetic bedding planes on the basis of a deterministic
geophysical model, rather than some ad hoc statistical analysis.

Although the model for the deposition of particles has been verified by laboratory
experiments, the method needs to be compared with field data. To this end we are
currently searching for such data to check the approach presented here. Finally, other
aspects of the dynamics and deposition of particle-driven gravity currents must also
be incorporated into the model for deposition to increase its applicability. We are
currently augmenting the model to include the effects of topography and of the
resuspension and subsequent redeposit of particles by erosive currents.

We are grateful to W. B. Dade and two anonymous reviewers for their helpful comments on

an earlier version of this manuscript. This work was partly supported by research grants from
NERC.

Appendix A. Two-layer model for two-dimensional polydispersed
turbidity current

When the depth of a turbidity current is comparable to the depth of the overlying
fluid, a ‘two-layer’ model must be used to describe accurately the dynamics and
resulting deposition from the current. The derivation for a monodispersed particle-
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driven gravity current is described in detail by Bonnecaze et al. (1993). Here we list
the two-layer equations and boundary conditions for a polydispersed current.
The two-layer model is composed of the conservation of mass of the current,
oh 0

the two-layer conservation of momentum,

%(uh) - <1 - %) %[u% + 19/ ()R] + %%[zﬁiﬂ(f] —-h) =0 (A2

and the conservation of each type of particle,

06 00 __ &

ot Or “h’
where H is the combined depth of the current and overlying fluid. Equation (A 2) is
derived from a linear combination of the momentum balances of each layer and use

of the fact that

(A3)

u(z, t)h(z,t) + uy(z, t)hy(z,t) = 0, (A4)
where u, and h, are the velocity and depth of the the overlying fluid, since there is
no flow at x = 0 for the release of a fixed volume of suspension.

In addition to the no flow boundary condition u(0,t) = 0, there is the Froude
condition at the nose of the current,

u(zn(t),t) = Fr(g (dxn)hn)"2. (A5)

For currents intruding into relatively shallow surroundings the Froude number Fr
varies with the ratio of the depth of the gravity current to the depth of the ambient
fluid. Experimentally, Huppert & Simpson (1980) found that

Fr=1.19 (0 < hn/H < 0.075),
= 0.5(H/hn)*/? (0.075 < hy/H < 1). (A6)

For the case of a release of a fixed volume of dense fluid whose initial depth is close
to that of the ambient fluid, a two-layer hydraulic jump forms shortly after initiation
of the flow. As discussed by Bonnecaze et al. (1993), this alters the structure of the
current and significantly changes the deposition pattern compared to that predicted
by the single-layer model. However, note that the two models have the same equations
to describe transport of particles. Since equations (A 1)—(A 3) and (A 5)—(A 6) reduce
to equations (2.2)—(2.6) in the limit of h/H < 1, it is reasonable to assume that
successful comparison of the two-layer model to experiments where the overlying
fluid is of comparable depth to that of the current validates the single-layer model
for currents intruding into deep ambient fluids.

Appendix B. Deposition from an axisymmetric turbidity current

The dynamics and deposition for an axisymmetric gravity current composed of a
polydispersed suspension are described by the equations (Bonnecaze et al. 1995)

oh 10
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0 19, , 3 1 oy

E(Uh)_i_ ;E(ru h) + 87‘(29 (®)h°) =0, (B2)
06 | 0% o
ot " Yor T Vi (B3)

where 7 is the radial distance. The boundary conditions for equations (B1)-(B3)
are given by equations (2.5) and (2.6), as in the case for a two-dimensional gravity
current.

To determine the equations that describe the master curve for deposition from an
axisymmetric particle-driven gravity current, we non-dimensionalize

roby V.Mt by VYRBYY)u,

hoby VIBRB/Y w by g VoS,

where V is the initial volume of the current and By = v/(gs’/*V'/¢). In non-
dimensional form equations (B 1)—(B 3) and their boundary conditions become
Oh 10 _ -
2 Y (Fah) = B
o T faf(ruh) 0, (B4)
0 10 0 -
2 (ah) + - = 2 (1g(d)R2) =
O k) + 12 (k) + O (59 (9)%) =0, (85)
8¢z _8¢i ¢’z
> 2 B
o TVor T VR (B6)
R(7,0) = (ho/ V)85, (B7)
N (0) = (ro/ V)8, (BS)

where the overbarred quantities are dimensionless, rq is the initial radius of the cur-
rent and rx(t) is the radius of the current. As for the case of a two-dimensional
particle-driven gra\nty current, for By sufficiently small that (ho/V?/ 3)ﬁ~1 ">
and (ro/V'*)B3/* < 1, the dynamics and deposition of the current are practically
independent of 1ts 1n1t1al shape. Thus, one can solve equations (B 4)—(B8) numeri-
cally, on the assumption that the initial shape of the current is a delta function, to
compute the dimensionless density of deposit W (), which is shown in figure 3b and
can be conveniently fitted by the empirical function

W (7) = 0.508/(1 + 0.3207° + 0.0117). (B9)

The dimensional density of deposit from a monodispersed axisymmetric current is
w = p, V388 W (F).

Following the method discussed in §4, the density of deposit of particles of size i
from a polydispersed axisymmetric particle-driven gravity current is then given by

wz(,’.) — ppV1/3¢zOﬁ1/2 ( 1/4T'/V1/3) (B 10)
and the total deposit is

w(r) = pp V”f”Zdaoﬂ” (Bifir V3, (B11)

where fBy; = v/ (g /> V/6).
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