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Entrainment of ambient fluid into both two-dimensional and axisymmetric gravity 
currents is investigated experimentally using a novel neutralization technique. The 
technique involves the titrative neutralization of an alkaline gravity current which 
intrudes into and entrains an acidic ambient, and is visualized using a pH indicator 
solution. Using this technique, we can determine quantitative results for the amount 
of dilution in the head of the current. The head of the current is able to entrain 
ambient fluid both by shear instabilities on the current/ambient interface and by 
over-riding (relatively light) ambient fluid. Guided by our experimental observations, 
we present two slightly different theoretical models to determine the entrainment 
into the head of the current as a function of distance from the source for the 
instantaneous release of a constant volume of fluid in a two-dimensional geometry. 
By dimensional analysis, we determine from both models that the dimensionless 
entrainment or dilution ratio, E ,  defined as the ratio of the volumes of ambient 
and original fluid in the head, is independent of the initial reduced gravity of the 
current; and this result is confirmed by our experiments in Boussinesq situations. 
Our theoretical evaluation of E in terms of the initial cross-sectional area of the 
current agrees very well with our experimental measurements on the incorporation 
of an entrainment coefficient a, evaluated experimentally to be 0.063 f 0.003. We 
also obtain experimental results for constant-volume gravity currents moving over 
horizontal surfaces of varying roughness. A particularly surprising result from all 
the experiments, which is reflected in the theoretical models, is that the head remains 
essentially unmixed - the entrainment is negligible - in the slumping phase. Thus 
the heads of gravity currents with identical initial cross-sectional areas but different 
initial aspect ratios (lock lengths) will begin to be diluted by ambient fluid at different 
positions and hence propagate at different rates. A range of similar results is 
determined, both theoretically and experimentally, for the instantaneous release of a 
fixed volume of (heavy) fluid in an axisymmetric geometry. By contrast, the results 
of our experiments with gravity currents fed by a constant flux exhibit markedly 
different entrainment dynamics due to the continual replenishment of the fluid in the 
head by the constant input of undiluted fluid from the tail. 

1. Introduction 
Gravity currents occur whenever fluid of one density intrudes primarily horizon- 

tally into fluid of a different density. The density contrast may be due to differences 
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in temperature, composition or bulk properties of particle suspensions, and represen- 
tative examples of all these situations are found frequently in nature. For instance, 
many mesoscale meteorologic~l phenomena such as katabatic winds and sea-breezes 
are gravity currents driven by thermally controlled density differences between ad- 
jacent air masses. Differences in salinity account for the spreading of fresh river 
water above seawater in estuarine environments, whilst the horizontal intrusion of 
volcanic eruption columns at their neutral buoyancy level in the stratosphere and 
the flow of sediment-laden turbidity currents along the ocean floors provide natural 
examples of particle suspension currents. Laboratory modelling of gravity currents 
has elucidated many features of their dynamics on larger scales. A comprehensive 
and informative review of such modelling and its application to the environment is 
contained in Simpson (1987). 

Gravity currents are driven by the excess buoyancy between the intruding fluid 
and the ambient. They can propagate at high Reynolds number (typically greater 
than lo3), when the buoyancy forces are balanced by inertial forces, at low Reynolds 
number (typically less than lo), when the buoyancy forces are balanced by viscous 
forces, or at intermediate Reynolds number, which is the least-investigated, but also 
least-frequent, regime. 

Gravity currents that flow at high Reynolds number are unsteady and turbulent, 
and tend to entrain ambient fluid. The consequences of such entrainment, and the 
resulting dilution of the original intruding fluid, can be quite important. For example, 
many industrial pollutants are discharged into the atmosphere or hydrosphere with a 
contrasting density to their ambient surroundings. The dilution with distance of any 
resulting gravity currents by entrainment has important implications for toxicity levels 
and the degree and extent of contamination. Although the importance of entrainment 
has been known for quite some time, very little quantitative work has been devoted 
to this topic. The research reported in this paper aims to redress this imbalance and 
greatly augment an earlier, preliminary report (Hallworth et al. 1993). 

The propagation of turbulent gravity currents was first investigated quantitatively 
by von Karman (1940), who argued that the depth, h, and the forward velocity, u, of 
an invi_scid, relatively heavy, two-dimensional, Boussinesq gravity current propagating 
along a horizontal surface into an otherwise quiescent ambient fluid would be related 

Fr = u/(g’h)’/2 = 4, ( 1.1 a,b) 

by 

where Fr is the (dimensionless) Froude number of the current and 

g’ = gAP/Py (1.2) 

is the reduced gravity, where g is the gravitational acceleration and Ap is the excess 
in density of the current over the density of the ambient, p. In a later paper 
Benjamin (1968) showed that von Karman used Bernoulli’s theorem inappropriately, 
but nevertheless a rigorous approach led to the identical condition (1.1). Subsequent 
laboratory experiments by Huppert & Simpson (1980) indicated that in reality (1.1) 
should be replaced by 

Fr = 1.19 (1.3) 
for the situation where the ambient fluid is very much deeper than the intruding 
current. The smaller Froude number in a real fluid represents the extra retarding 
effects due to Reynolds stresses and viscous drag at the head of the current, as 
discussed further by Bonnecaze, Huppert & Lister (1993). 
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FIGURE 1. Diagram depicting the box-model collapse of a two-dimensional gravity current of 
initial volume do through a series of rectangles of equal cross-sectional area. 

The conditions (1.1) or (1.3) represent but one relationship between two unknowns 
~ the depth h and the velocity u. Another relationship between these two variables 
is required to close the problem, and this relationship is dependent upon whether the 
gravity current is the result of the instantaneous release of a fixed volume of fluid or the 
continuous release of fluid with possibly a time-dependent flux. For the fixed-volume 
case, a simple, but powerful, analysis can be made by considering the current to take 
the shape of a series of non-entraining rectangles or boxes of constant cross-sectional 
area d (Huppert & Simpson 1980), as sketched in figure 1. Denoting the length of 
the current by &, and equating d&/dt with u, we thus obtain the two equations 

( 1.4a7b) h f = d  and - = Fr(g’h)’l2. 

Inserting (1.4~) into (1.4b) and integrating the result with the assumption that the 
current initially has zero length, we obtain the relationship 

dL‘ 
dt 

(1.5) 8 = (1.5 

Rigorous solution of the inviscid Euler equations (Fannelop & Waldman 1972; 
Hoult 1972; Chen 1980; Bonnecaze et al. 1993) leads to a long-term similarity solution 
which yields relationships for h and u as functions of the downstream coordinate x. 
The horizontal extent of the current is the same as that given by (1.5) except that 
the pre-multiplicative function of Fr is slightly altered. The similarity solution sets 
in after an initiation or ‘slumping’ phase (Huppert & Simpson 1980) during which 
time a bore travels back from the front of the current, reflects off the back wall and 
catches up with the head (Rottman & Simpson 1983; Bonnecaze et al. 1993). During 
this time the current propagates at a fairly constant velocity and travels a distance 
known as the slumping distance, xs, which has been determined empirically to be 
given by (Rottman & Simpson 1983) 

x,/x, = 3 + 7.4h0/H, (1.6) 
where x, is the length of the lock, h, is the initial height of the fluid behind the lock 
gate and H is the total depth of ambient fluid. 

The theoretical prediction (1.5) is in excellent agreement with experimental results 
from many different studies (see, for example, Simpson 1987 or Bonnecaze et al. 1993 
and references therein) even though the theory neglects any effects of entrainment, 
which must presumably have been present in all the experiments. Part of the reason for 
this agreement is that the variables g’ and d only appear in (1.5) as the product g’d‘,  
and if any ambient fluid is entrained uniformly into the gravity current it increases the 
cross-sectional area and decreases the reduced gravity in such a way that buoyancy is 
conserved and g ’ d  remains constant. On the other hand, however, the entrainment 
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induces a drag on the current, which must slow it down in comparison with the 
two-thirds formula of (1.5). Part of the aim of the present work is to evaluate each of 
the two contributions g’ and a? separately, as well as the actual rate of propagation 
of the current. 

A novel experimental approach to measure quantitatively the amount of entrain- 
ment into a gravity current is presented in $2. The technique relies on the titrative 
neutralization of an alkaline gravity current by entrainment of acidic ambient fluid. 
Related, but different techniques involving chemical reactions have been used to 
study mixing in turbulent jets, thermals and wakes (see, for example, Breidenthal 
1981; Koochesfahani & Dimotakis 1986 and Johari 1992). The neutralization point 
is visualized by using a universal pH indicator solution which exhibits identifiable 
colour changes from purple (pH > 10) through green (pH = 7) to red (pH < 4). 
From a series of experiments with different initial ratios of acid to base, the degree 
of entrainment into the head of a gravity current can be evaluated as a function 
of its length. The results of such measurements act as a guide to the theoretical 
development presented in $3. That section concentrates on the two-dimensional cur- 
rents that ensue from the instantaneous release of a fixed volume of fluid. The 
style and degree of entrainment is discussed for currents propagating over either a 
smooth or a rough horizontal bottom, or below a free surface. The entrainment into 
axisymmetric, fixed-volume currents is considered in $4. Currents due to a continuous 
flux are discussed in $5 and it is shown that the result of the entrainment in this 
case is quite different and much more difficult to quantify. A series of conclusions 
and some indication of how our quantitative concepts can be applied to natural 
and industrial situations is presented in the final section. We also quantify there the 
relative contribution of different entrainment processes to the overall dilution, and 
discuss the importance of different initial aspect ratios on the subsequent evolution 
of the current. 

2. The experimental technique 
A number of different channels of rectangular cross-section, all with horizontal 

floors, were used for the experiments. For each experiment the channel was filled 
to the desired height, H ,  with tap water and a vertical lock gate was inserted at 
the desired distance, x,, from one end of the tank (figure 2a). Known amounts of 
salt, sodium hydroxide (NaOH) solution and some universal pH indicator were then 
added to the water behind the lock to produce the desired density excess and turn 
the final alkaline mixture purple (pH > 10). The ambient fluid ahead of the gate 
was acidified using sufficient hydrochloric acid to achieve a pH of less than 4. For 
some experiments the depth of saline solution behind the lock, h,, was (considerably) 
less than the depth of the ambient H ,  and so, after the addition of the NaOH and 
pH indicator to this solution, fresh water was carefully floated on top of it to make 
up a total depth behind the lock of H .  In order to produce light gravity currents 
flowing below the free surface, salt was added to the acidified ambient fluid rather 
than behind the lock. 

After all fluid disturbances had died away, the lock gate was raised out of the 
fluid and the ensuing alkaline gravity current entered the slumping phase depicted 
schematically in figure 2(b,c). As it progressed, considerable mixing occurred at 
the interface between the two fluids through Kelvin-Helmholtz instability, in which 
waves made up of fluid from the current entrap ambient fluid, a fundamental situation 
discussed by Corcos & Sherman (1976, 1984) and references therein. This process 
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FIGURE 2. Schematic sequence showing the developing stages following the instantaneous release of 
a two-dimensional, constant-volume alkaline gravity current into an acidified, less-dense ambient 
fluid. (a )  Initial configuration; (b,c) collapse and shortening of the head within the slumping phase; 
(d)  well-formed head at the slumping distance x, ; ( e )  typical flow profile within the inertia-buoyancy 
regime; (f, neutralization of the head by entrainment of sufficient acidic ambient fluid; ( g )  further 
downstream advance, showing thc reduction in the volume of the head as fluid is detrained into the 
tail and diffuse wake, and the effective ‘freezing-in’ of the neutralization point in the tail. 

was evident from the formation of a diffuse, red envelope of acidified fluid streaming 
off the upper surface of the advancing, unmixed purple current below, which left 
behind a diffuse mixed wake. Undiluted, purple fluid was also laid down behind the 
advancing head in a thin tail layer. Both the trailing tail and overlying wake displayed 
only weak residual forward motion. 

At the slumping distance (figure 2 4 ,  the reflected bore had effectively caught up 
with the front of the current, the head having been progressively reduced in length into 
its characteristic inertial form of approximately semicircular cross-section. Thereafter, 
even though the head was continually entraining ambient fluid, the volume of the 



294 M.  A. Hallworth, H .  E .  Huppert, J .  C .  Phillips and R. S. J .  Sparks 

(4 

FIGURE 3. Photographs of a two-dimensional gravity current formed by the instantaneous release of 
a fixed volume of alkaline salt solution containing pH indicator into an acidified freshwater ambient 
environment. Initial conditions: A, = 65 cm2, x, = 5.0 cm, h, = H = 11.3 cm and gk = 20 cm sP2. 
(a)  Slumping phase; (b)  inertia-buoyancy phase; (c) the head at the position of neutralization. 

(4 

FIGURE 12. Schematic comparison between entrainment mechanisms and regions for (a) 
constant-volume, and (b)  constant-flux gravity currents. 
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head decreased monotonically with downstream distance due to mixed fluid being 
left behind in the tail (figure 2e-g). Note that in this regime the form of entrainment 
is quite different from that envisaged for a vertically rising buoyant plume, for which 
the entrainment from the ambient takes place along the entire length of the plume, as 
first described in the famous paper by Morton, Taylor & Turner (1956) and reviewed 
recently by Turner (1986). 

In currents generated by an instantaneous release, turbulent mixing within the 
head was vigorous and the concentration of salt, and base, in the head was fairly 
uniform. Beyond the slumping distance, our measurements of the length of the current 
as a function of time agreed well with the prediction (1.5). At a specific distance 
downstream, which we could measure to within about +1 cm, sufficient acidified 
ambient fluid had been entrained into the head to neutralize the NaOH present 
(figure 2f). This point, which was dependent on the initial concentration of NaOH, 
was easily identified because it coincided with an abrupt, homogeneous change in 
colour of the pH indicator from purple to red throughout the whole head. A series 
of photographs depicting this transition is shown in figure 3. Beyond the position of 
neutrality, the head continued to advance, but thereafter the passive tail left behind 
was also red (figure 2g). The transition point was therefore effectively ‘frozen-in’ to 
the tail, and only slowly migrated downstream a few centimetres due to weak residual 
forward motion in the tail. 

A number of experimental series were performed with systematic variation of the 
initial conditions gh, xo, h, and H ,  as presented in table 1. Typical values of the 
Reynolds number at the transition point were between lo3 and lo4. Within each 
series, several experimental runs were conducted, with each particular run having 
a different initial concentration of NaOH, but otherwise identical initial conditions. 
Titration of a sample of acidic ambient against a sample of the initial alkaline current 
before each run led to the determination of the volumetric mixing ratio of the two 
fluids necessary to achieve neutralization. The experiment itself then yielded the 
distance along the tank at which the neutralization occurred. In this way it was 
possible to map out the volumetric proportion of ambient fluid entrained into the 
gravity current as a function of distance from the source. 

3. Two-dimensional, constant-volume currents 

entrainment ratio as defined by 

where A, and Ab are the volumes of acidic ambient and original basic fluid per unit 
width in the head respectively. The value of E will initially be zero (because there is 
not yet any entrainment) and tends to infinity with increasing proportion of entrained 
fluid. Figure 4 presents measurements of E as a function of x, the distance downstream 
from the back of the gate, for a range of different initial conditions including three 
different lock lengths, x,. For some distance there is virtually no entrainment into the 
head. Beyond this distance, E increases significantly downstream. From the data we 
can equate the beginning of the significant mixing phase with the slumping distance, 
x, (1.6). For experiments with the same lock length, xo, the value of E at a fixed value 
of x decreases monotonically with increasing inital volume of fluid behind the gate. 

A systematic collapse of all these data can be obtained by dimensional analysis. 
We denote by A0 the initial cross-sectional area, or volume per unit width, of the 

In order to quantify the experimental results, we denote by E the dimensionless 

E = Aa/Ab, (3.1) 
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(4 X O  hO H xs A0 
Series (cm) (cm) (an) (cm) (an2) 

5.0 9.3 9.3 52.0 46.5 
23.3 

A (s) 
2.5 9.3 9.3 26.0 
5.0 6.0 6.0 52.0 30.0 

B (4 
52.0 67.5 

c (4 
5.0 13.5 13.5 

50.0 
D (4 
E (s) 10.0 5.0 40.0 39.2 
F (s) 10.0 5.0 35.0 40.6 50.0 
G (s) 10.0 5.0 30.0 42.3 50.0 
H (s) 10.0 6.5 6.5 104.0 65.0 
1 (s) 10.0 13.0 13.0 104.0 130.0 
J (s) 10.0 23.0 23.0 104.0 230.0 
K (s) 5.3 10.0 10.0 55.0 53.0 
L (s) 5.3 10.0 10.0 55.0 53.0 
M (s) 5.3 10.0 10.0 55.0 53.0 
N (s) 5.3 10.0 10.0 55.0 53.0 

g: 
(cm s-*) 

20.0 
20.0 
20.0 
20.0 
18.7 
37.3 
10.3 
20.3 
20.3 
20.3 
10.0 
20.0 
40.0 
80.0 

5.3 10.0 10.0 55.1 53.0 20.0 
40.0 

0 (r) 
p (r) 5.3 1'0.0 10.0 55.1 53.0 

Q (f) 5.3 10.0 10.0 55.1 53.0 20.0 

( b )  r, ho 
Series (cm) (cm) 
R (s) 30.0 10.0 
S (s) 30.0 10.0 
T (s) 30.0 10.0 
U (s) 30.0 10.0 
V (s) 30.0 20.0 
W (s) 42.4 10.0 
X (s) 60.0 10.0 

H rS  VO g; 
(cm) (cm) (cm3) (cm s - ~ )  
10.0 90.0 28274 20.0 
10.0 90.0 28274 10.0 
10.0 90.0 28274 40.0 
10.0 90.0 28274 80.0 
20.0 90.0 56549 20.0 
10.0 127.2 56478 20.0 
10.0 180.0 113097 20.0 

TABLE 1. Initial conditions of the experimental gravity currents for instantaneous constant-volume 
release in (a)  two-dimensional and ( b )  axisymmetric geometries. Flows over a smooth floor, 
roughened floor and at a free surface are denoted by (s), (r) and (f) respectively. The two-dimensional 
experiments were conducted in a channel of width W = 29.1 cm, apart from Series E, F, G, 1 and 
J, where W = 20.8 cm. 

intruding fluid. Dimensional arguments in this Boussinesq situation, guided by the 
variables in (1.5), then suggest the hypothesis that the proportion of ambient fluid 
entrained into the gravity current head will depend on: A,, of dimension L2; the 
initial reduced gravity gb = g A p / p ,  of dimension L T 2 ;  and the length of the gravity 
current x, of dimension L ;  and possibly non-dimensional shape factors like x, /h , ,  
the aspect ratio, and h , / H ,  the relative depth of the initial configuration. Because E 
is dimensionless, it is seen immediately that it must be independent of gb, the only 
external parameter dependent on 7'. This conclusion was verified by the results of 
experiments at different values of gb, all of which collapse onto the same curve of E 
against x, as shown in figure 5. Turning this argument around, the collapse shows 
that some other variable that is dependent upon T cannot play a fundamental role 
in the entrainment process. In particular, the kinematic viscosity v, of dimension 
L2T-', cannot be important over the range of Reynolds number used here, as might 
(incorrectly) have been suggested. 

For 0 < x < xs, E w 0 which indicates that right to the end of the slumping 
phase the head remains essentially undiluted. This is a surprising result, given that 
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FIGURE 4. Measured entrainment ratio E for the head of a two-dimensional gravity current as a 
function of distance from the back of the lock. Each point corresponds to a different run within 
a particular series, the initial conditions for which are presented in table 1. Data shown include 
series at three different initial lock lengths (with the corresponding slumping distances arrowed) 
and a range of initial volumes. The error in this and subsequent figures in determining each point 
is less than the size of the symbol. Smooth curves have been drawn through the data to facilitate 
visualization of the trend. 

some mixing definitely occurs through shear instabilities at the interface of the gravity 
current (see figure 2c,d). Our measurements indicate quite clearly, however, that the 
mixed fluid does not penetrate into the head. We do  not at present have a good 
physical argument as to why this is so, but it is a definite fact which arises from all 
our experimental measurements. To accommodate this, we introduce the new variable 
y = x - x,. Further use of dimensional analysis then indicates that the dimensionless 
variable E must be a function of y/AX'* and the initial shape factors. Replotting all 
our data in this way we obtain a satisfactory collapse, as shown in figure 6. 
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FIGURE 6. Measured entrainment ratio E as a function of y/Air2 for all data from two-dimentional 
constant-volume currents moving over a smooth horizontal solid floor (Series A to N). The dotted 
line shows a smooth best-fit curve to the data. 

The observations can be explained as follows. The cross-sectional area of the head 
beyond the slumping phase, A,  increases by entrainment of ambient fluid into the head 
and simultaneously decreases by leaving fluid behind in the tail. During the slumping 
phase, however, no entrainment takes place into the head although fluid is still left 
behind in the tail. Beyond the slumping distance, consider the infinitesimal change in 
cross-sectional area of the head, SA, that occurs when the current propagates forward 
an infinitesimal distance S y.  The explicit relationship between these two will be linear 
and can only depend on A,  because any general entrainment law cannot depend on 
the initial cross-sectional area A0 or the distance y .  Thus, by dimensional analysis, 
6 A  cc A'j26y,  where A1/2 represents a characteristic lengthscale for the head. As we 
discuss further below, the head is observed to have an approximately semi-elliptical 
cross-section, with a maximum height h being some fraction of All2.  We can hence 
use the height of the head, defined by 

h = SA1i2, (3.2) 

where S is a shape factor, as the relevant lengthscale for entrainment. We will assume 
that S is constant beyond the slump distance. The most general form accounting for 
entrainment into the head and the loss of fluid from the head to the tail is then 

6 A  = (ESA"~ - kSA' /2)6y ,  (3.3) 
where CI is an entrainment constant and the constant k reflects the ratio of the height 
of the tail to that of the head. Taking the limit 6 y  + 0, we thus find that 

The introduction of the shape factor might seem unnecessary, since only the products 
ES and k S  explicitly appear; and the analysis could continue by setting S = 1. 
However, as will be shown later, the shape of the head depends on the roughness of 
the surface over which the flow moves. By tailoring the value of S to suit a particular 
surface we afford a means of determining a more generally applicable entrainment 
constant, rather than deriving different entrainment constants for different surfaces. 
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To (3.4) we need to add the boundary condition that 

A =A,  ( y  = O), (3.5) 

where A, is the cross-sectional area of the head at the end of the slumping phase. 
Our model, as presented so far, does not allow A, to be evaluated directly. The 

approach adopted by Hallworth et al. (1993), which we herein refer to as model I, 
was that the amount of fluid left behind in the tail at the end of the slumping phase 
could be neglected with respect to that in the head at this time, leading to 

A, = A,. (3.6) 

This approximation is clearly not absolutely correct, because A, is observed to be 
significantly less than A, in our experiments. 

An improvement to this first model is to consider the tail at the end of the slumping 
phase to be a rectangular box of length x ,  and height k S  Abi2. In this second approach, 
referred to as model 11, 

which we can solve as a quadratic for A,:” to obtain 

A,  = A ,  - ~ S X , A ~ ’ ~ ,  (3.7) 

= [ -kSx,  + ( k  2 2 2  S X, + 4Ao)1i2] , 

or 

A, = A, - k S x ,  [A, + k2S2x:] + f k2S2X:. (3.9) 
This second model does not rely on any processes which occur within the slumping 

phase; it merely develops an approximation for the volume of the head at the end of 
this phase in terms of the product of the two constants S and k which appeal in (3.4). 
Indeed, a full description of the slumping phase is too complex to model in detail, in 
view of the fact that the shape factor S within this phase is far from constant, but 
varies significantly with y from an initial value of ( h , / ~ , ) ~ ’ ~  at y = -xs, through the 
various adjustment stages of collapse and head shortening, to its final steady value at 
y =o.  

Having determined an expression for A,, we can solve (3.4) with the boundary 
condition (3.5) to obtain 

A/As = [l + kS(ct - k ) ~ / A t / ~ ] ~  ( y  2 0). (3.10) 

Equation (3.10) suggests that the head considered as a separate entity runs out of 
volume at 

y = y,  = 2A,1I2/S(k - a). (3.11) 
Beyond yc the fluid in the tail must continue to move slowly forward, driven by 
horizontal density gradients. In almost (but not absolutely) all natural or laboratory 
situations, viscous effects dominate before the current has reached y = y, and (3.10) 
is no longer valid there. 

To determine an expression for E ,  we need to keep account of the ambient fluid 
and original fluid individually. Since no entrainment into the head occurs in the 
slumping phase, the relevant equations, following (3.4), are 

p)SAl i2 ,  (3.12a,b) 

Ado) = 0, Ado) = A,, (3.13a,b) 
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Model I 
using S = (2/7~)’/~ 

cc k 
2D Smooth floor 0.079 0.195 
3D Smooth floor 0.089 0.176 
2D Rough floor 0.103 0.258 
2D Free surface 0.021 0.213 

Model I1 Model I1 
using S = (2/7c)’/* using measured S 

cc k S x k 
0.058 0.127 0.71 0.065 0.142 
0.065 0.128 
0.064 0.161 0.83 0.062 0.155 
0.013 0.140 0.55 0.019 0.203 

TABLE 2. Summary of the best-fit values of the entrainment constant CI and the tail/head height ratio 
k in both two-dimensional (2D) and axisymmetric (3D) geometries, evaluated using S = (2/n)’/’ 
for model I (where A, = A,  ) and model I1 (where A, is given by (3.9)). Also presented are the 
model IT results using the directly measured S values. 

where p = & / A  and 1 - p  = &/A.  Equations (3.10), (3.12) and (3.13) represent three 
consistent equations for two of the unknowns A,, &, and A = A,+&. Any two of the 
equations would suffice, but we present each one because of their different physical 
interpretation. Substituting the expressions for p ,  with A represented by (3.10), into 
(3.12) and (3.13) and integrating the result, we find first that 

&/A,  = [l + - k ) ~ / A d ’ ~ ]  (3.14) 
2k / (k -a )  

and then that 

(3.15) 

Dividing the right-hand sides of (3.14) and (3.15), as indicated by (3.1), we deduce, 
after a little re-arrangement, that 

2 112 2k/iL-a) 
&/A,  = [l + $ S ( X  - k j ~ / A ; ’ ~ ]  - 11 + iS(ct - k)y/A, ] 

(3.16) 

which becomes infinite as y + y,. 
It would now be intellectually most satisfying to evaluate ct and k from theoretical 

arguments. This we cannot do, but are somewhat mollified by the realization that 
even though the famous Morton et al. (1956) model for the entrainment into a 
turbulent plume was put forward almost 40 years ago, and has been worked on 
and used extensively since, no purely theoretical calculation for the value of their 
constant a has been possible - only experimental determinations have been presented. 
Similarly, we must rest content with experimental determinations of the constants CI 

and k. 
The explicit evaluation of ct and k themselves from (3.16) relies on choosing a 

suitable value of the shape factor S for y > 0, although only the products ctS and 
k S  appear in all the equations. If the cross-sectional shape of the head were an 
exact semicircle, then (3.2) yields S = ( 2 / ~ ) ’ / ~  = 0.798. However, we observed from 
our experimental gravity currents moving over a smooth floor, a roughened floor 
and along a free surface that the shape of the head varies with the frictional drag 
imposed at the boundary. Analyses of video frames taken of our laboratory runs 
allowed us to measure mean values of S of 0.71 rt 0.002 and 0.83 5 0.03 for the 
smooth floor and roughened floor respectively, which are fairly close to the value for 
a semicircle. Measurement of a mean S value for the free surface currents proved 
more problematical because the head in this case was flattened into the form of an 
extended wedge, the height of which barely exceeded that of the following tail region. 
It was thus difficult to define a discrete area for the head. However, our rather 

1‘2 W - k )  
E = [1+ $(a - k ) y / A ,  ] - 1, 
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Free surface 
mean S=0.55 

Rough floor 
mean S=O.83 

Smooth floor 
mean S = 0.7 1 

FIGURE 7. Representative tracings reproduced from video frame analyses showing the relative 
cross-sectional shape of the head (dark stipple) for the three different boundary surfaces. 

subjective measurements suggested a mean S value of 0.55 2 0.03. Representative 
tracings of the head profiles are depicted in figure 7. Further consideration of the 
shape factor is deferred for later discussion, and a comparison of the results obtained 
using different values of S is presented in table 2. 

Using the approximation S = (2/7~) ' /~ for heavy gravity currents moving over 
a smooth, horizontal floor, data for all these experiments are presented in figure 
8(a) as a plot of E against y /Ai i2 ,  where was determined from (3.9) using 
a k value iteratively matched to that evaluated (along with a) from the curve of 
least-squares best-fit through the data in the form of (3.16) in the following way. 
A reasonable initial estimate of k was chosen to evaluate A, from (3.9), and the 
functional form of (3.16) was then plotted against the data to determine the result- 
ing best-fit values of a and k .  Replotting the data using this improved value of 
k to evaluate A,, the curve-fitting was then repeated, and the operations iterated until 
successive values of k matched to within 1%. This procedure yields a = 0.058 f 0.001 
and k = 0.127 +_ 0.002. 

The series of experiments for heavy gravity currents over a roughened floor were 
conducted in a tank whose floor had been covered by a thin layer of granules with 
a mean grain diameter of = 2 mm. The evaluation procedure described above, 
again using S = (2/z)'j2, gave Q = 0.064 & 0.004 and k = 0.161 &- 0.001. The data 
and appropriate curve are presented in figure 8(b). Note that using the alternative 
approximation (3.6) of Hallworth et al. (1993) leads to a = 0.079, k = 0.195 for the 
smooth floor case, and a = 0.103, k = 0.258 for the rough floor.? 

t The values reported in Hallworth et nl. (1993) of a = 0.078 and k = 0.147 were based on the 
notation that S = 1, and taking measurements from the gate rather than from the back of the lock, 
since the position of the gate is more relevant to the concepts behind model I. 
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FIGURE 8. Measured entrainment ratio E as a function of y/Af/' for the two-dimensional con- 
stant-volume currents moving over (a) a smooth, rigid surface; (b)  a roughened, rigid surface; and 
(c) a free surface. Best-fit curves of the form (3.16) are shown in each case (using S = ( 2 / ~ ) ' / ~ ) ,  
along with the corresponding evaluated values of a and k.  
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Our experiments with light gravity currents spreading beneath a free surface were 
rather inconclusive. It became apparent that entrainment in this situation was 
much less than in the previous cases, and the length of our tank (150 cm) was 
only sufficient for relatively small values of E to be measured. The data are thus 
somewhat ill-conditioned with respect to fitting a curve of the form (3.6), but are 
nonetheless presented in figure 8(c), and yield a and k values of 0.013 k 0.001 and 
0.140+_0.001 respectively using the (less appropriate in this case) value of S = ( 2 / 7 1 ) ‘ / ~ .  
Although the application of our model may not be completely satisfactory for free 
surface currents, it is undoubtedly clear that the entrainment into such currents is 
significantly less than that observed for flows over a rigid boundary. 

We are now able to evaluate g’, g’A and the rate of propagation of the current. 
From the definitions of A, and Ah, and the use of (3.10) and (3.14) it follows that 

2a/(k-a) 
g’ = g;A& = g:, [1+ $(a - k)y/4/2]  

and 

(3.17a) 

(3.17b) 

To evaluate the rate of propagation of the current we employ the head condition 
(1.la). Since, from (3.2), (3.10) and (3.17a), 

we can write 

(3.18) 

(3.19) 

a differential equation to which must be added the boundary condition 

y = 0 ( t  = t,), (3.20) 

where t, is the time for the initial current to attain the slumping distance x,. The 
solution of (3.19) and (3.201, in terms of the non-dimensional distance 

Y = 1S(k  2 - a)y/A,’j2 y / y c  (3.21a,b) 

and non-dimensional time 

is 

(3.2 1 c) 

(3.22) 

This relationship does not at first sight look much like the two-thirds similarity form 
of solution (1.5). However, incorporating a = 0.058 and k = 0.127, the model I1 values 
presented in table 2 for flows over a solid boundary, and plotting (3.22) as done in 
figure 9, we see that the two are of the same form for a wide range of t .  In addition, 
the curves obtained by using any of the pairs of values in table 2 hardly differ from 
the one presented. This general agreement helps to explain why predictions based on 
the similarity solution (lS), obtained without recourse to the effects of entrainment, 
are in good agreement with data obtained from real, entraining gravity currents. The 
agreement also acts as a confirmation that our determinations of a and k are in the 
appropriate range. 
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T 
FIGURE 9. Log-log plot of non-dimensional distance Y against non-dimensional time T of the 
form (3.22), using a = 0.058 and k = 0.127. The dotted line indicates the two-thirds power law 
dependence of distance on time according to the similarity solution (1.5). 

4. Axisymmetric, constant-volume currents 
In this section we concentrate on axisymmetric gravity currents that result from 

the instantaneous release of a fixed volume of heavy fluid Y. Adjusting the argument 
that lead to (1.4) and (1.5) so as to be applicable to axisymmetric currents, we find 
that the radius of the current, r, as a function of time is given by 

r = ( 4 g ’ ~ ~ r ~ / n ) l / ~  t1/2. (4.1) 

The slumping distance, rs, has been determined only for the situation when the initial 
depth of the current, ha, equals that of the ambient fluid, H .  Our experiments in this 
case indicate that 

rsh-0  = 3, (4.2) 
where ro is the radius of the lock gate. 

The derivation of the governing equations in the axisymmetric situation is more 
subtle than in the two-dimensional case but is guided by it. We seek to determine 
how the volume V of the axisymmetric gravity current head evolves as the radius 
of the current increases. It is easier to use the volume of the head, rather than 
the cross-sectional area, in the axisymmetric case because as the current spreads the 
volume of the head changes only in response to entrainment and loss of fluid to the 
tail. In contrast, the cross-sectional area of the head changes additionally due to the 
geometric effects of radial spreading. As we demonstrated in the two-dimensional 
case, the spatial rate of both the entrainment and the amount of fluid left behind 
in the tail per unit width is directly proportional to the height, h, of the head. We 
assume, as before in (3.2), that the height scales with the cross-sectional area of the 
head A by h = SA1/2, where the shape factor S is again constant beyond the slumping 
phase. The volume of the head, I/, is 2nrA, so 

h = S  ( & ) l i 2 .  (4.3) 

Thus, as the current moves forward an amount 6r ,  the change in volume, 6 V ,  due to 
entrainment and loss of fluid to the tail is directly proportional to the circumference 
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2rcr, h and 6r .  With the same definitions of ct and k as in the two-dimensional case, 
the governing equation then becomes 

= (a - k)~(2rcrv)’/2 ( r  > r.F), (4.4) 

V = v, ( r  = r s ) ,  (4.5) 
dr 

where V, is the volume of the head at the end of the slumping phase. 
As before, two different models can be considered to generate V, from V,. For 

model I 

For model I1 
v, = v,. 

1 /2 

v, = v, - rcksr: (“) 
2nr, 

= V , - k S  (4) - , . 3 /2~1 /2  , 

which can again be solved as a quadratic in V,’” to obtain 

kSr5/2 + ( q k 2 S 2 r l  + 4V,,)1’2] , 

or 
V, = V, - (5) ‘I2 kSrfi2 [ V, + Ek’S’rj] + - 7.L k 2 S 2 r s .  3 

8 4 
We are now in a position to integrate (4.4) and (4.5) to determine that 

Defining F as the axisymmetric generalization of E by 

F = va/vb, 

(4.6) 

(4.7a) 

(4.7h) 

(4.8) 

(4.9) 

(4.10) 

(4.1 1) 

where V, and Vb are the volumes of acidic ambient and original basic fluid in the 
axisymmetric head respectively and proceeding as before, we find that 

(4.12) 

Seven sets of experiments with different initial values of g:, h, = H and the radius 
of the lock r, were carried out with heavy gravity currents propagating over the 
base of a smooth Perspex sector tank of angle lo” and radius 2.3 m. The initial 
conditions are shown in table 1. Within each set, several experiments were performed 
with different initial concentrations of alkali in the salt solution behind the lock. 
Experimental data are presented in figure 10. 

The results confirmed that F was independent of g:, as required by the dimensional 
arguments presented in the last section and the explicit form of (4.12). All the data 
for F as a function of (r3/’ - r:’2)/Vi/2 are presented in figure 11 along with the 
best-fit curve to (4.11). Using S = ( 2 / ~ ) ’ / ~  as before, and iteratively matching the 
best fit value of k to that used in evaluating V, from (4.9) following the procedure 
outlined in the previous section, we obtain a = 0.065 & 0.002 and k = 0.128 & 0.001, 
which are very similar to those values determined for the two-dimensional situation. 
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r,(&)=90 180 180 r (cm) 

FIGURE 10. Measured entrainment ratio F for the head of axisymmetric constant-volume gravity 
currents as a function of radius, for experimental series at three different initial lock radii and 
various initial volumes and density differences. Full initial conditions are given in table 1 (R-X). 
Slumping distances are arrowed, and smooth curves are drawn through selected data series to aid 
examination of trends. 

Smooth floor 
x = 0.065 
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FIGURE 11. Measured entrainment ratio F as a function of (r3/* - rf'2)/VJ/s1/2 for all the axisym- 
metric constant-volume gravity currents moving over a smooth horizontal surface, with the best-fit 
theoretical curve in the form of (4.12), and corresponding values of CI and k .  

5. Constant-flux currents 
Our original intention was to apply the neutralization technique to study the 

entrainment into the head of a gravity current fed at source by a constant input. To this 
end we designed a flow delivery system for both two-dimensional and axisymmetric 
fixed-flux currents, and performed a number of sets of experiments in each of the 
two geometries. From these experiments we conclude that the consequence of the 
entrainment into the head of a gravity current fed by a constant flux is quite different 
to that arising from the instantaneous release of a fixed volume of fluid. In contrast 
to this latter case, there was no abrupt and permanent colour change in the head at 
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a specific distance. Instead, the fluid in the bulk of the head and in the following 
tail remained purple at all times although, almost from the source, the head was 
surrounded by a thin envelope of mixed fluid of greens, reds and purples. This 
occurred for all the values of g: and input flux, which strongly suggests that the result 
was not due to the constraining effects of the finite length of the tank. 

We interpret this difference as being due to the continual replenishment of the fluid 
in the head by the constant feed of undiluted fluid from the tail. The velocity of this 
input is approximately 10% larger than that of the head itself, as first documented by 
Britter & Simpson (1978) and called the overtaking speed by them. We believe that 
the input from the tail continually combines with the fluid entrained from the ambient 
and is then left behind as a diffuse wake by the shear instabilities that occur at the 
head. We conjecture further that a similar process operates during the slumping phase 
of an instantaneous release of a finite volume of fluid, during which our measurements 
suggested that there was no entrainment into the head. A schematic sketch contrasting 
these different styles of entraining behaviour is shown in figure 12 (see p. 294). 

6. Discussion and conclusions 
A summary of our determined values of a and k for both two-dimensional and 

axisymmetric constant-volume-release currents is presented in table 2. The results 
obtained using model I, in which the volume of the head at the end of the slumping 
phase is equated directly to the initial volume, display fairly large variations in both 
a and k for the different situations. The values obtained using model I1 are always 
lower than those of model I, and for the solid boundary cases display greater self- 
consistency. The a values determined for the free surface currents are roughly 1/4 
those for flows over solid boundaries in both models. 

The model I1 results presented in table 2 were computed either using an S value 
of (2/n)'I2, equivalent to approximating the cross-sectional shape of the head to a 
semicircle, or using the direct measurements of S made from our experiments. It is 
noticeable that using the directly measured S values serves to tighten the agreement 
between values of CI for the different solid boundary cases. The flow over a roughened 
floor still displays a marginally higher value of k than for flows over smooth floors, 
but this only implies an increased tail thickness relative to the head for the rough floor 
case, which is physically reasonable in terms of basal shear-generated turbulence, and 
is consistent with the higher S value measured for this case. 

Using the directly measured S value of 0.55 for the free surface currents, the best-fit 
values of a and k are increased to 0.019 and 0.203 respectively, but the entrainment 
coefficient still remains approximately one-third that of the mean value for flows 
over a solid floor. We remarked earlier, however, that our measured value here is 
questionable due to the highly subjective nature of defining a discrete head region for 
this no-slip situation. To achieve an entrainment coefficient of approximately 0.063 
consistent with the solid boundary cases would require values of S and k of 0.156 and 
0.715 respectively. While this is reasonable for the value of k (the height of the head 
is observed to be only slightly greater than that of the ensuing tail for these flows), it 
would require the cross-sectional shape of the head to be some 50 times longer than 
it is high, which questions the existence of a discrete head at all. We offer two possible 
explanations for this behaviour: either the head region by our definition does not 
exist for free surface flows, or the mechanism of entrainment is dramatically different 
for this rather special free-slip boundary condition. We prefer this latter explanation 
on the following grounds. 
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FIGURE 13. Data of Beghin et al. (1981) showing the linear variation of c( with slope angle (8) in 
the range 5" < H < 90" for inclined thermals. The best straight line fit through the data gives an 
extrapolated intercept of G( = 0.058 for the horizontal situation. 

Entrainment has previously been attributed to both mixing through Kelvin- 
Helmholtz instabilities along the upper surface of the head, and to over-riding 
and engulfment of ambient fluid in billows and clefts beneath the nose of the head 
(Britter & Simpson 1978). For free surface currents with theoretically zero basal 
shear, the over-riding mechanism may not contribute to the overall entrainment of 
ambient fluid at all, thus yielding a lower overall entrainment coefficient. Comparing 
the values of a of 0.065 and 0.019, determined using the measured values of S for a 
smooth floor and a free surface respectively (table 2), we imply that the over-riding 
mechanism accounts for approximately two-thirds of the total entrainment into the 
head for flows over a rigid surface. 

The consistency of the model I1 results and its physically more realistic description 
of real flows are clearly preferable to the approach of model I. For flows over a rigid 
surface we determine experimentally a mean entrainment coefficient of 0.063 +_ 0.003, 
with the ratio for the height of the tail to the height of the head k = 1/7. We point 
out here that by our definition, the tail includes all fluid left behind the head, and 
treats it as a vertically homogeneous single layer. In reality, this fluid is observed to 
exhibit a vertical compositional gradient, comprising a thin lower dense tail region 
overlain by a much thicker, diffuse lower density wake. 

Our mean value of a compares favourably with previous experimental determina- 
tions of the entrainment coefficient for buoyancy-driven flows. Beghin, Hopfinger & 
Britter (1981) describe experiments investigating entrainment into two-dimensional 
thermals moving along inclined, smooth, rigid boundaries, and evaluate values of a 
which vary linearly with slope angle 6 over the range 5" < 0 < 90". Extrapolation 
of their results to the horizontal situation yields an entrainment coefficient of 0.058 
(figure 13), which is gratifyingly similar to our reported value. Fischer et al. (1979) 
report experimentally determined entrainment coefficients of 0.054 and 0.083 for tur- 
bulent jets and plumes respectively. While these situations are quite different to the 
behaviour of turbulent gravity currents moving over a rigid boundary, they serve to 
illustrate general agreement for the entrainment constant. 

Our experiments indicate that entrainment into gravity currents is spatially non- 
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FIGURE 14. Ratio of the volume of the head at the end of the slumping phase to its initial 
volume plotted as a function of the initial length to height ratio of the released volume, for both 
two-dimensional and axisymmetric gravity currents. 

uniform, and occurs predominantly into the head of the flow, as opposed to being 
uniform along its full length as envisaged for turbulent plumes. The point at which 
the head begins to entrain fluid has considerable implications for mixing and dilution 
with distance, as outlined below. 

Our theoretical model (3.16) predicts the composition of the head E at a given 
distance y beyond the end of the slumping phase as a function of the volume of the 
head at the end of the slumping phase A,, where A, is given by (3.9). Dividing both 
sides of (3.9) by A, = x,h,,, and setting x, = 1 0 . 4 ~ ~  (for h = H), we arrive at the ratio 

where p = 10.4kS. 
Similarly, for the axisymmetric case using V, = 27cr,Zh, and (4.2), we find that 

where y = 3(3kS/2~) ' /~ .  
In both cases, the volume of the head at the end of the slumping phase as a fraction 

of the initial volume is seen to be a function of the initial aspect ratio (x,/h,, or 
ro/ho) of the released volume, as plotted in figure 14. Since subsequent entrainment 
into the head depends on A, ( or Vs), variation in the initial aspect ratio can greatly 
influence the resulting dilution with distance. 

For example, an initially low aspect ratio flow (x, , /ho or r,/h, << 1) delivers a 
relatively large fraction of the initial volume as an undiluted head at the end of a 
relatively short slumping distance, which then entrains ambient fluid as it proceeds 
downstream. Conversely, a high initial aspect ratio flow with the same initial volume 
has a component which remains essentially undiluted for a much longer distance 
to x,, where a relatively smaller volume head emerges. As xo/h ,  or ro /h ,  increase, 
a behaviour approximating constant-flux release is approached, and some undiluted 
fluid can potentially reach great distances. To illustrate this point, figure 15 depicts 
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FIGURE 15. Maximum concentration expressed as a fraction of the initial concentration (1 / (1  + E ) )  
plotted against normalized distance from the source for two gravity currents with identical initial 
volumes but different initial aspect ratios (xo/ho) .  Data evaluated using (3.14) with S = ( 2 / ~ ) ' / ~ ,  
CI = 0.063 and k = 0.127. 

the predicted dilution at the foremost point of two constant-volume-release gravity 
currents with identical initial volumes but different initial aspect ratios, measured 
with respect to normalized distance from the release point. It can be seen that 
the maximum concentration witnessed at given distances can vary quite markedly 
between the two cases. 

Many natural and industrial flows are initiated with widely different aspect ratios, 
for example the collapse of tall, vertical volcanic eruption columns (low x , /h , ) ,  and 
the storm-generated suspension of sediment over wide areas in shallow seas ( high 
x, /h , ) .  For flows where the slumping distance is very much shorter than the final 
length of the turbulent flow, this effect may be irrelevant. However, for flows that 
achieve final lengths only a few multiples of the slumping distance, properties and 
behaviour that depend on dilution, such as sedimentation of particles, toxicity and 
chemical precipitation, will be strongly influenced by the release configuration. 

We see then that the entrainment of ambient fluid into turbulent gravity currents is 
not as straightforward as conventional self-similar solutions describing their dynamics 
might suggest, and special consideration must be given to the spatially non-uniform 
character of entrainment into constant-volume-release flows. 

We conclude that entrainment into the head of two-dimensional and axisymmetric 
fixed-volume gravity currents moving along a horizontal rigid boundary is well 
described using a general entrainment coefficient of a = 0.063 0.003. The amount 
of entrainment at any given distance from the source beyond the slumping phase 
then depends on a relevant lengthscale of the head, which is some function of the 
volume of the head at that distance. We propose that the lengthscale applicable to 
these particular flows is the height of the head, and employ a shape factor S to relate 
the height of the head to its cross-sectional area. The shape factor depends on the 
frictional drag imposed at the base of the current, but is usefully approximated by 
S = (2/7c)'/' for flows over a solid boundary. The volume of the head at any point 
beyond the slumping phase depends on the loss of original volume to the tail during 
that phase, which is in turn a function of the initial aspect ratio at release. 

Our neutralization method has proved to be successful for directly measuring the 
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entrainment into constant-volume gravity currents, and although the technique could 
not be applied quantitatively to constant-flux currents, it remains useful for the 
qualitative elucidation of mixing dynamics. 

We thank Brian Dade and Jim Rottman for interesting discussions on the material 
of this paper, and Charlotte Gladstone for conducting several experiments in the 
constant-flux regime. This research is partially supported by grants from the NERC. 
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