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ABSTRACT. We develop a model that describes the runout behavior and resulting deposit of a ra-
dially spreading, suspension-driven gravity current on a surface of negligible slope. Our analysis
considers the separate cases of constant-volume and constant-flux sources. It incorporates expres-
sions for the conservation of volume, a Froude number condition at the current front, and the evo-
lution of the driving suspension due to settling of particles to the underlying bed. The model cap-
tures the key features of a range of experimental observations. The analysis also provides impor-
tant scaling relationships between the geometry of a deposit and the source conditions for the de-
posit-forming flow, as well as explicit expressions for flow speed and deposit thickness as func-
tions of radial distance from the source. Among the results of our study we find that, in the ab-
sence of information regarding flow history, the geometries of relatively well-sorted deposits gen-
erated by flows with source conditions of constant volume or constant flux are virtually indistin-
guishable. The results of our analysis can be used by geologists in the interpretation of some geo-
logically important gravity-surge deposits. Using our analytical results, we consider three previ-
ously studied, radially symmetric turbidites of the Hispaniola-Caicos basin in the western Atlantic
Ocean. From gross geometry and grain size of the turbidites alone we estimate for the respective
deposit-forming events that upon entry into the basin the initial sediment concentrations were ap-
proximately 3% by volume and the total volumes were roughly between 30 km3 and 100 km3.
Each of the suspension-driven flows is inferred to have spread into the basin with a characteristic
speed of 3—5 m s~1, and reached its ultimate runout length of about 60~75 km while laying down

a deposit over a period of about 10—12 hours.

Introduction

A gravity current results from a difference in density be-
tween two fluids. Geologically important gravity currents in-
clude turbidity currents which occur as relatively dense under-
flows in the ocean and in lakes. Turbidity currents derive their
excess density from fine particles which are maintained in
suspension by turbulence generated by the mean flow.
Deposition by turbidity currents occurs primarily on surfaces
of negligible slope.

In this paper we present an approximate model for the prop-
agation of and the deposition from a suspension-driven grav-
ity current spreading radially into a relatively flat basin. In
one application of the model we consider the flow that results
from the instantaneous release of a dense suspension with a
finite volume. A second application pertains to the case in
which the flow is maintained under conditions of constant
flux. The approach we take here represents an extension of the
model developed by Huppert and Simpson [1980] for a saline
gravity current in which buoyancy is conserved. Elsewhere we
have successfully modified the Huppert and Simpson model
to include the effects of buoyancy loss through sediment de-
position in the case of a channelized, constant-volume flow
[Dade and Huppert, 1994, 1995]. Similarly, we have elsewhere
developed a theory for a channelized, deposit-forming gravity
surge propagating down slope and for which the entrainment
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of ambient fluid is important [Dade et al., 1994]. Here, how-
ever, we consider the behavior of a nonchannelized, radially
spreading flow which is progressively diluted owing to sedi-
ment deposition. The results of our analysis are found to agree
well with observations of deposit-forming gravity currents
generated in the laboratory. A more complete but wholly nu-
merical treatment of the fluid mechanics of these phenomena
is given by Bonnecaze et al. [1993; 1995].

In the following section we present an analysis of the equa-
tions that describe the behavior of a gravity current which re-
sults from the release of a particle suspension with finite vol-
ume. Our analysis provides explicit expressions for the posi-
tion of the current front as a function of time and the distribu-
tion of particle deposit as a function of radial distance from
the point of release. We pursue a similar consideration for the
behavior of a flow in which the overall volume flux is held
constant. The results of these analyses are shown to compare
well with experimental observations. We then introduce an
additional level of complexity by discussing briefly the ef-
fects of buoyancy reversal on the runout length of a gravity
current. Finally, we discuss our analytical results in the con-
text of some previously studied turbidites of the Hispaniola-
Caicos basin of the western Atlantic Ocean.

Gravity Currents With Constant Volume
Governing Equations

We begin by considering a well-mixed, suspension-driven
gravity current released from a lock and spreading radially
over a rigid, horizontal surface. A key assumption of this
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model is that the axisymmetric gravity current is instanta-
neously well mixed in both the vertical and radial directions
and evolves en masse as the flow propagates outward. The flow
is thus considered to be an axisymmetrically spreading cylin-
der which has uniform properties at any instant in time. The
total volume of particles is assumed to be a small fraction of
the total volume of the flow. Additionally, we assume that en-
trainment of ambient fluid is negligible and so the volume of
the current is conserved [cf. Hallworth et al., 1993]. At any in-
stant in time the geometry of this radially-spreading flow re-
quires that

qo = Omr?h, )

where g,' is the initial volume of the flow, r is the radial dis-
tance from the origin to the advancing front, and 4 is the radi-
ally averaged thickness of the spreading current. The prefactor
© = 6/2rx is the normalized angle O of the sector through
which the current is propagating; © is unity for a current
spreading uniformly in all directions and 0.5 for a current de-
bouching into a basin from a side entry point. We continue
our analysis for the augmented volume g, = @ ! ¢, and as-
sume that the current spreads uniformly in all directions. This
prefactor will be reintroduced, however, in a consideration of
experimental flows and in the reconstruction of the gravity
currents which resulted in the turbidites of the Hispaniola-
Caicos basin.

Returning to our model, we consider a gravity current to
be driven by particles that have density p, and which are pre-
sent in volumetric concentration ¢. The particles are sus-
pended in an interstitial fluid of density p; and the suspen-
sion-driven flow is spreading into an ambient fluid of density
pa. For an inertial flow the rate of radial advance of the current
front is related to the driving buoyancy through the Froude
number Fr at the front of the current by

L —u=pg, (90
where r=r,at1=0, g =g(pp— P pa, and @, = (P — pi)/(pp_
pi)- The product g,'(¢ — ¢.,) = g' is the reduced gravity of the
bulk flow and quantifies the density difference that drives the
current. The parameter ¢, is the critical ratio of the density
difference between the ambient and interstitial fluids to that
between the particles and interstitial fluid. When ambient and
interstitial fluids have the same density, ¢, = 0. If a gravity
current with light interstitial fluid propagates below a denser
ambient fluid, however, p,is greater than p;and ¢, > 0. As ¢
diminishes with sedimentation to ¢,,, the flow becomes neu-
trally buoyant and is no longer a density-driven undercurrent.
Further loss of driving buoyancy will result in the "lift off" of
the current from the bed. We will return to this scenario later in
the paper.

On the length scale of the head the current can be viewed as
being locally two-dimensional and so the Froude number at
the head of the flow is found experimentally to be given by

Fr=112(hld)'3 hid > 0.075, (3a)
Fr=1.19 hd <0.075, (3b)

]I/Z’ @)

where d is the depth of the ambient fluid [Huppert and
Simpson, 1980]. The depth dependence of Fr in (3a) accom-
modates the effects of a return flow in the shallow layer of am-
bient fluid overlying the gravity current. This correction is re-
quired for an accurate description of many laboratory flows.
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When the surrounding fluid becomes very deep relative to the
thickness of the gravity current, Fr is constant and close to the
value Fr =2 predicted for a perfect, inviscid fluid [Benjamin,
1968]. The difference is due to the momentum loss caused by
turbulent stresses within the head of the current.

The equation that describes the evolution of particle mass
in the well-mixed suspension which drives the flow is given
by

db  wb

dt h

where b = g¢, with the initial condition b, = q,0,, and wy is the
average settling speed of the particles in the suspension. The
first term on the right-hand side of (4) reflects the arrival rate
ws¢ of material settling from the suspension over an area of
the bed g,/h overlain by the current at any instant in time.
Similarly, the term F, represents the total vertical turbulent
flux of sediment at the bed over the same area and quantifies
the capacity of the flow to maintain sediment in suspension or
the competence of the flow to rework newly deposited sedi-
ment.

Applicability of (4) requires that the driving suspension
be well mixed. That is, the ratio of particle settling speed w; to
average flow speed u is much less than unity. We show in
Appendix A that the sediment erosion term F, in (4) should
become negligible within the body of the flow if the ratio w/u
is greater than sinf3, where B is the slope of the bed over which
the gravity current propagates. This constraint reflects the en-
ergetic demands made on the mean flow in the maintenance of
both turbulence and a dense sediment suspension. Thus (4)
with vanishing F, describes the evolution of a fine-sediment
suspension under the conditions

C))

+F,,

sinfB < wylu << 1. )

In general this constraint also obviates the need to consider
entrainment of ambient fluid.

Gravity Currents in Deep Surroundings and ¢.. =0

Consider a flow over a horizontal bed for which h/d <
0.075 and the densities of interstitial and ambient fluids are
equal. Division of (4) by (2), subject to constant Fr per (3b)
and the constant-volume constraint of (1) yields a differential
equation whose solution describes the spatial evolution of the
driving buoyancy in the spreading flow. This expression can
be recast in terms of the dimensionless volumetric fraction of
particles in suspension @ = ¢/¢,, where the subscript o de-
notes initial values and the dimensionless radial distance R =
#/re., Where r., is the final runout length evaluated below. Both
@ and R are independent variables and take on values between
0 and 1. Solving the equations and carrying out the nondi-
mensionalization, we obtain the expression

@=(1-RY, (6)

where for convenience r, is taken to be the origin. The runout
length r, is calculated to be

Foo= Ya(go' q03/ws2)1/89 @]
with
Ya= (64Fr2/m3)1/8, €3]

If Fr = 1.19, then ;= 1.14 (with 1.1 < ;< 1.2 if 1 < Fr<2).
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Note that the concentration of the driving suspension van-
ishes at R = 1. Thus flows initiated from an instantaneous re-
lease of a constant volume will in our model exhibit a finite
runout distance as a consequence of the loss of all dense mate-
rial from the driving suspension. In reality, an inertial gravity
current will overshoot this mark somewhat owing to residual
momentum which must be dissipated by friction before the
flow will come to a complete halt.

We now substitute (6) into the nondimensional version of
(2) (again, subject to constant Fr) and solve the resulting dif-
ferential equation, with R =0 at T = #/t,, = 0 (with the timescale
t., evaluated explicitly below). This yields the expression

In[(1+R?)/(1-R?)] = 2T, )

which relates the position of the spreading current front and
time. Equation (9) can be rearranged to give

R = tanh!2T, (10)
where
t= 1 m 2y 2Fr 1 (go/gy'w 24
= (9o/80'ws)!* (11)

as the appropriate expressions for R and the runout timescale
t... We note that R =0.87 at 7= 1 (or in equivalent dimensional
terms » = 0.87r,att=1¢,) and R=098 at T =2 (» = 0.98r,, at ¢
= 2t,,). Equations (8) and (9) and all following expressions for
R(T) yield estimates for frontal flow speed that become infinite
at the origin if r, is strictly interpreted to be zero. They are
rigorously applicable only for radial distances away from the
source.

Currents in Shallow Surroundings and ¢, =0

Consider now the case in which A/d > 0.075 during the en-
tire history of the spreading current. This is the situation in
many laboratory experiments. As before, consider the densi-
ties of interstitial and ambient fluids to be equal. We again
render (2) into a spatial derivative with the same initial condi-
tions as above but which now includes a Froude number con-
dition with depth dependence per (3a). The solution to the re-
sulting differential equation yields an expression for the ra-
dial evolution of the driving buoyancy in the spreading flow
that is different from that of (6). This is given by

d=(1- R10/3)2, (12)
where the shallow-fluid runout length is now given by
Foo™ ysHl/lO(govq023/9/ws2)3/20 (13)

with H = d/q,'? and 7, = 0.96. This result is subtly different
from that obtained for the case of deep surroundings and in-
corporates a weak dependence of flow runout on the relation-
ship between ambient depth and current volume. The primary
difference occurs during "slumping" of the current from the
lock immediately following release.

Substitution of (12) into (2) subject to (3a), rearrangement
of the result, and subsequent integration yield a relationship
between time and the position of the front of the radially
spreading current in the form

T=£R),
where R =0 at 7= 0 and f{R) is given in Appendix B. Again, 7=

(14)
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t/t.., but now the runout time for flows in shallow surround-
ings is given by

o= (2710) H13 (ru2/g,%q,%) 118

=225 g5 (qo7/go'9ws12)1/30- (15)

The expression f{R) in (14) (and (B1)) cannot be analytically
inverted to obtain an explicit function R(7), but an approxi-
mate, empirical inversion is

R = tanh[1.757] (16)
with R and T defined with respect to the shallow-water values
of r,,and ¢, given in (13) and (15).

Distribution of Deposits

We now present expressions that allow the evaluation of
the distribution of a particle deposit which results from a radi-
ally spreading gravity current. In the case of a radially uniform
flow with constant volume, the local accumulation rate of the
fine-sediment deposit is given by the change of the sus-
pended-particle mass per unit of bed area, —(nr2)~1db/dr.
Integration of this local quantity from any point r to »,, yields
the total mass per unit of area of bed or areal density n of the
deposit at ». This value represents the deposit that could have
accumulated during passage of the spreading gravity flow
from the time it reached » until the time it reached its ultimate
runout distance at r,. Implicit in this approach are the as-
sumptions that the current is spatially uniform and extends
back to the origin. Mathematically, the calculation of the de-
posit in dimensionless terms is given by

L do

1
D=n/n =J———— ax,
av R deX

(17)

where X is a variable of integration and 7,, is the average den-
sity of the deposit and corresponds to the deposit density that
would be observed if the particle mass were uniformly dis-
tributed over the total area ultimately covered by the radially
spreading flow. In the case of deep surroundings this average
value is given by

Nav= PpdoBo/ ONre? = (Do) (TYP) (gows2/ge)! /4
= 0.25 (Pp0o) (gows*/g)"*. (18)

The average deposit thickness is simply 7,,/(pp¢5) Where ¢, =
0.5 is the volume fraction of solids in the bed. Upon substitu-
tion of the derivative of (6) into (17) and integration of the re-
sult, we obtain a general expression for the geometry of the
deposit given by

D=38/3-4R2+4/3RS, (192)
or, equivalently,

Do=1/ny=1-3/2R2+ 13RS, (19b)

where 7, is the density of the deposit near the origin.

The analogous expressions for deposits laid down by ax-
isymmetric currents in relatively shallow surroundings are
given by

D=25/7-5R43 + 10/, 1473,

Dy=1- 7/5 RY3 + 2/5R14/3,

(20a)
(20b)
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where the characteristic density of the shallow-fluid deposit is
given by
Nav= Pp%¢o/7rrw2
= (Pp¢o)/(ﬂ’}’52) H3 (qo7ws18/go'9)l/3o

=035 (pp¢o) H153 (qo7ws18/go'9)l/3o-

21

This approach to the calculation of deposit geometry re-
flects, as has been stated, the notion of a radially uniform flow
which extends back to the origin. Development of strong
shocks or horizontal gradients near the origin [cf. Bonnecaze
et al., 1993; 1995] will render the calculations invalid in that
region. We find that (19) and (20) nevertheless capture the
essence of the far-field runout geometry of surge deposits and
provide basic functional forms which can be compared with
observations or more complicated numerical calculations.

Gravity Currents With Constant Flux
Governing Equations

We now consider a quasi-steady gravity current in which
the volume flux ¢ is uniform and maintained at the source.
These flows are sometimes called "starting plumes" [Simpson,
1987]. Entrainment of fluid and sediment is assumed to be
negligible, and ¢.,= 0 as before. The assumption that flux is
constant through any radial surface at a distance r from the
origin requires that

q =2mrhu, (22)

where, as before, 4 is the thickness and « is the speed of an in-
ertial flow subject to the Froude number constraint of (2). The
flux through a sector with angle 270 is ¢'= Oq.

At any point in a flow there is a general balance between
the local rate of change of sediment concentration, advection,
and the gravitational settling of particles. In mathematical
terms this balance is given by

_...Eu + __Ei = __5_5
ot " or h’ (23a)
or, equivalently, as
la_¢ a_¢ = ;
Yy + > (2w /q)r¢ (23b)

upon rearrangement and substitution of (22). In a relatively
slowly varying but fast moving flow the first term on the left-
hand side of (23b) is negligible, and the essential balance is
one between advection of material from the source and set-
tling. Under these conditions we see that the distribution of
particle mass within a gravity current of constant flux is given
by

@ = exp[-R/], 24

where as before @ is the particle concentration normalized by
that at Ry = 0, but the radial distance is now rendered dimen-
sionless such that Ry= r/r; where the length scale 7 is given
by

rr=(gq /mw)'2. (25)

Unlike the case of a constant-volume gravity current, there is
no finite distance over which the mass of particles is com-
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pletely spent (see (6)) because material is continually intro-
duced at the source for the duration of the flow. Even in the
case of a constant-flux source, however, concentration of sed-
iment nevertheless diminishes rapidly with radial distance in
excess of the decay or runout length scale ry.

Substitution of (22), (24) and (25) into (2) subject to a
constant Froude number condition yields an expression for
the velocity at the front of the flow

u dRy 43 2
Uf =;—f-—-;77—Rf CXp[—Rf/3]’ (26)
where
ur= (202 g ws)""® (272)
and Ty= t/szith
7= rdug= 0.56/%( q Igo'w 2. (27b)

The coefficient y; reflects the value of the Froude number for
the current front which is understood to be near unity for iner-
tial gravity flows. In fact, 0.72 < < 0.93 for 1 < Fr < V2. We
determined % empirically (see below) and found that a reason-
able value is given by 7 = 0.85. This corresponds to Fr = 1.2,
virtually identical to the value for constant-volume flows in
deep surroundings (compare (3b)). If the flow is slowly vary-
ing, then UARy) calculated from (26) provides an estimate of
the quasi-steady flow speed at a point once the flow front has
passed by.
Equation 26 has the analytical solution

3

T, =-104" JX“" exp[- X]dX
0

(28)

=1.04 %213, &)

where i = V-1 and |N(a, £)| denotes the absolute value of the
complex Gamma function [4bramowitz and Stegun, 1965]
evaluated for a = 2/3 and where £ = —Rf/3. A key aspect of this
result is that, unlike the case of currents with constant volume,
Ry increases without bound as time proceeds. There is no con-
venient inversion RATj) for the full range of dimensionless
length and time, but an empirical approximation valid over
the interval 0 < Ty < 10, which should include many practical
applications, is given by

Ry~ 2.8 tanh!2[0.16T). (29)

Equation 29 indicates a functional correspondence with the
result for constant volume flows (compare (10)).

Distribution of Deposits

At any point in the flow the instantaneous downward vol-
ume flux of sediment per unit of bed area is given by w¢. An
estimate of the local deposit density n for a quasi-steady flow
is thus taken as the product of this flux, the particle density,
and the time of duration of the flow at that point. Accordingly,
the geometry of a deposit generated by a gravity current with
constant flux will exhibit the general form

D= n/1,= exp(-RP) [1- TARY/T] ,

where 7, is the deposit density (or thickness) near the origin,

(30a)
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TRy is given by (28) and 7}, is the dimensionless time of du-
ration of the constant-flux current. Note that (30a) reduces to
the expression

D= exp(—Rp) (30b)

as Ty becomes large.

Correlation Between Models for Gravity Currents With
Constant Volume and Constant Flux

We have already noted a general correspondence between
the expressions that describe the rate of advance of constant
volume and constant flux currents. We can rationalize this cor-
relation further by noting that in a gravity current of constant
volume a characteristic flux is given by ¢ = got. .
Substitution of this scaling into (7) and (11) yields the alter-
native forms for a deep water surge r.,= ; (g /wy)!/? = 2r; and
te = 0.9 (g/gyw)V? = 0.6t The dimensionless equivalents
are 2R = Rrand 0.6T = Ty The length and timescales over which
deposit-forming flows with either constant volume or con-
stant flux relax from otherwise analogous source conditions

are thus similar.

Comparison of Theory and Experiment

An extensive experimental program was undertaken by
Bonnecaze et al. [1995] to provide a test of their numerical
calculations for axisymmetric gravity currents. The experi-
ments were performed in radial sector tanks made of clear
Perspex, about 2 m in radial extent and of varying radial ge-
ometry (Figure 1). Individual suspensions comprised silicon
carbide particles (p,= 3.217 g cm™3) which were well sorted
and had a known diameter in any given flow but ranged in size
from 23 pm to 53 pum across all experiments.

Flows With Constant Volume

Individual suspensions were introduced behind a lock and
thoroughly mixed before being instantaneously released into
an adjoining basin. After the release the position of the current
front was recorded as a function of time. After the runout of a
current the resulting particle deposit was sampled as a func-
tion of radial distance from the lock. In all cases, ¢.,= 0. The
relevant details of individual experiments are summarized in
Table 1.

Representative data for the position of the flow front as a
function of time and deposit geometry as a function of radial
distance are shown in Figure 2. For a given grain size we see
that a more concentrated flow moves farther in less time than
does a less concentrated flow (Figure 2a). For a given mass of
sediment in the initial suspension, on the other hand, a flow
transporting finer-grained sediment will travel farther and
thus generate a thinner deposit, on average, than will a flow
driven by a suspension of larger particles (Figure 2b).

Comparisons of our theoretical predictions and all experi-
mental observations are presented in Figure 3. The data have
been normalized by the analytical scalings »,, and ¢, for shal-
low surroundings and the observed value of 7, for each run.
We have shown these comparisons on logarithmic axes to em-
phasize both the early slumping behavior of the laboratory
flows in shallow environments [cf. Huppert and Simpson,
1980; Bonnecaze et al. 1993, 1995; Dade and Huppert 1995]
and the asymptotic nature of the nondimensional flow and de-
posit runout at both large times and radial distances.
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Figure 1. Experimental geometries in plan view used by

Bonnecaze et al. [1995] in their laboratory study of axisym-
metric, suspension-driven gravity currents.

The agreement between theory and experiment is generally
good, with the following qualifications. At relatively large
times (7 > 1) a constant-volume flow does not come to rest
cleanly, as our simple inertial model would predict, but may
rather exhibit weak viscouslike creep beyond the predicted
runout distance (Figure 3a). This possibility was noted earlier.
Additionally, we note that our model for the distribution of a
particle deposit represents a maximal envelope for the geome-
try of a particle deposit (Figure 3b). This reflects the assump-
tion that a flow extends uniformly back to the origin.
Nevertheless, the overall scaling of the runout distance of a
flow is well predicted from (13) for the full range of flow con-
ditions examined, as shown in Figure 4. The consistent over-
prediction of ., revealed in this plot can be accommodated, in
part, with a correction for the amount of particle mass de-
posited behind the lock (Table 1). The small fraction of this
material lost from the driving suspension before a flow is re-
leased does not contribute to the runout behavior of a gravity
current. Additionally, a small reduction in the coefficient 1/2
of (3a), and thus a decrease in the coefficient ¥, of (13), would
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Table 1. Details of Experiments for Suspension-Driven Gravity Currents With Constant Volume

Experiment Diameter, W, 2, r., (Predicted), Moek Mok
um cms™! cms” cm

1 37 0.15 4.7 194.5 0.18 0.06
2 37 0.15 213 175.3 0.24 0.09
3 37 0.15 10.7 158.0 0.32 0.14
4 23 0.07 10.7 202.7 0.15 0.04
5 23 0.07 213 224.9 0.13 0.04
6 23 0.07 42.7 249.5 0.10 0.03
7 53 0.31 42.7 156.8 0.290 0.10
8 53 0.31 21.3 141.3 0.38 0.15
9 53 0.31 10.7 127.4 0.41 0.13
10 37 0.15 42.6 151.6 0.08 <0.01
11 37 0.15 21.3 136.6 0.12 <0.01
12 37 0.15 10.7 123.2 0.16 <0.01
13 37 0.15 19.1 1433 0.27 0.14
14 37 0.15 185 1393 0.14 <0.01
15 37 0.15 19.1 76.0 0.11 0.02

Experiments 1-9 use geometry i, experiments 10—12 use geometry ii, experiment 13 uses geometry iii, experiment 14 uses geometry

iv, and experiment 15 uses geometry v (see Figure 1). Variables

are defined as follows: w, average settling speed of the particles in

suspension; g,’, initial reduced gravity; and r.,, runout length. M, is the fraction of initial mass of particles deposited behind the lock.
M, is an estimate of the fraction of total mass in the lock which is in excess of that expected for a near-origin deposit density n,=
25/7 n,y, calculated from (21). This quantity thus represents an estimate of the fraction of initial mass which settled out before the re-
lease of each constant volume flow and contributed to the observation that 7, predicted from (19) overestimates the actual runout dis-

tance (see Figure 4).

a) e®® 001
O =002 o®°
o s o-..:.rw“
100 ¢ o m" At 0005
r * : A
(cm) . s
i s
| |
a 37 pum particles
]0 —_ L . " PR
1 10 100
1 (s)
b) ¢, =002
0.1 " ° ° 37 um
TI o ¢ °
-2 S B8 o * oe
(g cm ) r 0 o o 23 um
d o
.
0'01 P SR SR U I IR B PSR S R S S |
0 50 100 150 200
r (cm)

Figure 2. Representative data from the study of Bonnecaze et
al. [1995] for gravity currents following the instantaneous re-
lease of a constant volume of dense suspensions. (a) Position
of current front as a function of time since release. The grain
size of the particles in the driving suspension was 37 pm, and
initial values of the particle concentrations ¢, are indicated.
(b) Mass deposited per area of bed as a function of radial dis-
tance from the point of release. Initial particle concentration
@, = 0.02, and grain sizes of particles are indicated

1L @
R
-7 o
- o i
o iii
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[ o v
eq. 16 (shallow)
— — - eq. 10 (deep)
0.1 1
T
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1 E
D [ i
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eq. 20 (shallow)
- eq. 19 (deep)
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0 0.2 0.4 0.6 0.8 1
R
Figure 3. The runout and deposits of axisymmetrically

spreading gravity currents following the instantaneous release
of dense suspensions with constant volume. (a) The dimen-
sionless distance to the current front R = r/r,, as a function of
the dimensionless time 7 = t/t,,. (b) A dimensionless density
of deposit D, = 1n/n, as a function of the dimensionless dis-
tance R = r/r.,. Symbols represent data of Bonnecaze et al.
[1995] for experiments in geometries i—v (Figure 1), with ini-
tial and derived properties summarized in Table 1. Solid and
dashed lines show the predicted relationships for currents in
shallow and deep surroundings, respectively.
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Figure 4. Comparison of predicted and observed runout dis-
tances for constant-volume, axisymmetric gravity currents,
with properties summarized in Table 1. The solid line repre-
sents a one-to-one correspondence.

accommodate the effect of flow Reynolds number on the
Froude number of a gravity current [Riddell, 1969] (also see
the next section).

Flows With Constant Flux

Bonnecaze et al. [1995] also conducted representative ex-
periments to measure the flow radius as a function of time and
the particle deposit as a function of radius for an axisymmetric
gravity current that resulted from the constant flux of a dense
suspension. These experiments were conducted in one of the
sector tanks used for the constant-volume flows (geometry i in
Figure 1), modified to include a system for delivery of the
suspension at constant flux. Further details are presented in
the original study, but we note here that the delivery system
could be adjusted so that the value of Fr of the introduced
flow was near unity, and was designed to minimize entrain-
ment of ambient fluid. The suspensions comprised 37- or 53-
um particles, g,' was either 10 or 20 cm s~2, and ¢' was either
75 or 130 cm? s~! through a sector of 8° (© = 0.022). The dura-
tion of each of the flows was about 70 s. The observations of
Bonnecaze et al. [1995] are shown in Figure 5.

Several buoyancy-conserving gravity currents generated by
the constant flux of saline solution were analyzed to deter-
mine suitable values of y; for the experimental setup of
Bonnecaze et al. [1995]. This analysis can be motivated by
noting that the solution of (2) for a buoyancy-conserving flow
(wg= 0), subject to constant Fr and the constant-flux con-
straint imposed by (22) yields the expression
t3)1/4, @3n
where 7= 0.78 Fr!’2. Values of 7 for three flows generated in
the apparatus used by Bonnecaze et al. appear in Figure 6 as a
function of a characteristic Reynolds number uh/v= q Rarv.
On the basis of this plot we selected a value of = 0.85 for fur-
ther analysis of suspension-driven flows, but we note the weak
dependence of this parameter on the dynamic state of the flow.
Although this dependence is a source of error in our experi-
ments, the magnitude of the error is small, as we shall see, and
is, in any event, expected to be negligible in most geophysical
applications. '

With the estimate of ¥ = 0.85 we reconsider the data of
Figure 5 in the dimensionless forms R(Ty) and D{Ry) for com-
parison with (28) and (30a). These comparisons appear in

r=1( 4
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Figure 5. Data from the study of Bonnecaze et al. [1995] for
gravity currents generated by the constant-flux release of
dense suspensions. (a) Position of the current front as a func-
tion of time since release. (b) Mass deposited per area of bed as
a function of radial distance from the point of release.

Figure 7. The data have been normalized by r,and #; given in
(25) and (27) and by the observed 71, for each run. Again, we
note that our analysis provides a good basis, for the collapse
of the available data. Also shown in Figure 7b are calculations
for deposit geometry given by (19b) in terms of the approxi-
mate correlation R = 2 Ry This comparison reveals one of the
key results of our analysis: delineation of the source condi-
tions, constant volume versus constant flux, would appear to
be practically impossible based on deposit geometry alone.
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Figure 6. The dimensionless radial distance to the current
front as a function of an effective Reynolds number gq/27rv
for constant-flux gravity currents in the sector-tanks used by
Bonnecaze et al. [1995]. See text for further details.
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Figure 7. The runout and deposits of axisymmetrically
spreading gravity currents generated by the constant-flux re-
lease of dense suspensions. (a) The dimensionless distance to
the current front Ry= r/rras a function of the dimensionless
time Ty=t/t;z (b) A dimensionless density of deposit Dy= 1/1,
as a function of the dimensionless distance R = r/rz. Symbols
represent data of Bonnecaze et al. [1995] for experiments with
geometry i (Figure 1). The solid curve shows the predicted re-
lationship. The dashed curve in Figure 7b shows the corre-
sponding relationship for a constant volume-flow with 7., =
2r;. See text for further details.

The Effect of Reversing Buoyancy on Runout

When the density of the ambient fluid exceeds that of the
interstitial fluid of a suspension-driven gravity current, the
deposit-forming flow is subject to a reversal of buoyancy.
This possibility was introduced in our presentation of (2), and
here we consider briefly the effects of this phenomenon on the
runout length of a radially spreading flow.

When a reversal in buoyancy occurs, a gravity underflow
will stall and then "lift off" from the bed at the radial distance
rcr where the particle concentration ¢, progressively lost
through deposition, equals ¢, (see (2)). Beyond r,, the den-
sity-driven underflow will terminate per se, and any material
still in suspension will be carried aloft and dispersed over an
area determined by residual momentum of the gravity current
and background flow in the ambient fluid. This complication
can be of considerable environmental importance. Buoyancy
reversal and turbidity current "liftoff" may, for example, con-
tribute to the formation and maintenance of some deep-sea
nepheloid layers, or result in the generation of "hemitur-
bidites' which can in some instances be distinguished from
turbidites [Stow and Wetzel, 1990]. More spectacularly, buoy-
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ancy reversal of a subaerial, pyroclastic ground surge (a sus-
pension-driven gravity current which is analogous to turbid-
ity currents in many respects) contributes to the formation of a
co-ignimbrite cloud associated with some volcanic eruptions.
Examples include the co-ignimbrite phenomena associated
with the eruptions of Mount St Helens in 1980 and Mount
Redoubt in 1991. These clouds may pose hazards to local air
traffic, affect regional air quality, and influence global cli-
matic conditions.

In the case of gravity flows with constant volume, we as-
sess the effects of buoyancy reversal in broad terms by again
rewriting (4) in terms of a spatial derivative but with nonzero
¢, The resulting equation has analytical solutions whose
roots provide estimates of r.,.. These values are given in di-
mensionless terms as

Rcr= ((1_(I)cr)”2 - ¢cr1/2 arCtan{[(l_q)cr)/(pcr]l/z})p (32)

where the critical radial distance and concentration are normal-
ized by r., and @,, respectively, and the exponent p is 0.25 and
0.3 for deep and shallow surroundings, respectively.

In the case of a flow with constant flux, (24) yields the es-
timate

Rper= [HIn(®)]"2. (33)

Beyond the straightforward predictions of (32) and (33), the
descriptions for flow and suspension histories of a buoyancy-
reversing gravity current require numerical analysis. As a first-
order approach to the problem, however, we suggest that a
gravity current can be evaluated, as described in our basic
model, up to R, (or Rg,). In the case of a constant-volume flow
the assumption that a marine turbidity current runs out to near
the full length given by R = 1 is, in any event, a reasonable
one.

Consider, for example, a deep-sea turbidity current driven
by a suspension of particles with the density of quartz and
present in an initial concentration corresponding to ¢,= 0.05.
If the flow is a constant-volume surge propagating into a
basin of water that is 3% more dense than the interstitial water
of the surge (corresponding, say, to the typical difference in
density between surface and abyssal seawater and thus repre-
senting what one might expect as a maximal difference in fluid
densities), then @, = 0.4 and from (32) we find that R, = 0.7.
That is, the flow would either stall or lift off and the underly-
ing surge deposit thus be truncated at approximately 70% of
the radial distance predicted by (7) and for which any differ-
ence in density of the interstitial and ambient fluids was ig-
nored. At this reduced distance the deposit would have dimin-
ished to approximately 1/3 of the maximal thickness observed
near the origin.

We point out that (32) and (33) represent minimum values
for the distance to the current front at the instant of buoyancy
reversal. Although we noted earlier that the constraint posed
by (5) makes consideration of fluid entrainment unnecessary
in general, assimilation of even small amounts of ambient
fluid into a flow head [e.g., Hallworth et al., 1993] will tend to
bring the densities of interstitial and ambient fluids of that
part of the gravity current into equilibrium, and thereby delay
reversal.

Summary of the Analysis

We have developed a straightforward model that retains the
essential physics of a deposit-forming gravity current which
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undergoes radial collapse while propagating into a relatively
flat basin. In our development of this model we assumed that
the densities of interstitial and ambient fluids are equal, that
entrainment of sediment and ambient fluid are negligible, and
that the suspension of particles driving the gravity flow can
be well characterized with a single settling velocity. Our
model captures key aspects of experimental observations of
flows driven by the release of either a constant volume or a
constant flux of dense suspension.

Among the results of our analysis that should prove useful
to geologists are the relationships between the radial extent or
average thickness of a deposit and the initial properties of the
deposit-forming flow generated by the release of a constant
volume of dense suspension. These relationships are embod-
ied in the expressions for r,, given in (7) and (13), and 7n,,
given in (18) and (21) for deep and shallow surroundings, re-
spectively. Analogous scalings for deposit geometry and the
length and timescales pertaining to a flow driven by the con-
stant-flux release of a dense suspension are given in (25), (27),
and (30).

We have also discussed briefly the relevance of buoyancy
reversal to the runout length of a deposit-forming gravity cur-
rent. Predictions for the runout length of a turbidity current
given by the basic models, however, are nevertheless probably
accurate to within a factor of about 2, regardless of the poten-
tial for buoyancy reversal. We now extend the results of our
analysis to the interpretation of some geologically significant
deposits.

A Geological Application: Turbidites of
the Hispaniola-Caicos Basin

Bennetts and Pilkey [1976] described the characteristics of
three turbidites which are prominent features of the sedimen-
tary fill of the Hispaniola-Caicos basin of the western Atlantic

e Cores in which turbidite is present
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Ocean. The basin itself underlies approximately 4 km of water
and is well defined by steep surrounding slopes. The rela-
tively flat floor of the basin is characterized by regional
slopes of 1/1000 or less and has an area of approximately
9500 km2. In general, the deposits are oolitic- or bioclastic-
rich calcarenites with CaCO; contents ranging from 44% to
81% by weight. Each deposit exhibits a roughly radial geome-
try (Figure 8), indicating that the spreading of the respective
parent flows was roughly axisymmetric. Bennetts and Pilkey
concluded from their analyses of constituent particles in each
turbidite that each of the flows originated in the calcareous,
shallow-water banks and shelves surrounding the basin but
that each flow also accumulated a significant amount of fine
material while descending the marginal slopes and into the
basin. Each of the turbidity currents is speculated to have en-
tered the basin by way of a narrowly channelized flow and then
to have debouched and laid down its driving suspension to
generate the turbidites now preserved. Relevant details of each
deposit are summarized in Table 2.

We applied the scalings for deposit geometry derived from
our model to infer the initial conditions of each of the sedi-
ment transporting flows as it entered the Hispaniola-Caicos
basin. The following assumptions were made. Each of the tur-
bidity currents was considered to have been a gravity surge of
constant volume. The difference between interstitial and ambi-
ent fluid densities for each flow was negligible, and thus there
was little or no potential for buoyancy reversal. Although the
assumption that ¢, = 0 would follow from vigorous fluid en-
trainment during descent into the basin, we further assume
that any effects due to entrainment became negligible once the
current debouched upon the relatively flat floor of the basin.
The characteristic grain size d for each suspension was taken
to be the geometric mean of the minimum and maximum size,
Amin and ap,. We chose ay,i, = 4 pm, which corresponds to the
lower limit for silt-sized particles, and thus represents a natu-

10 cm contour interval
GRAY

40 cm contour interval
GREEN

20 cm contour interval
TRICOLOR

Figure 8. Isopach maps of turbidites of the Hispaniola-Caicos basin (redrawn from Bennetts and Pilkey

[1976]).
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Table 2. Reconstruction of Deposit-Forming Flows for Turbidites of the Hispaniola-Caicos Basin

Turbidite
Property Definition Gray Green Tricolor
Deposit Properties Reported by Bennetts and Pilkey [1976]

g, km® sediment volume 0.9 3.1 2.6
Nays M average thickness 0.33 0.97 0.60
Qpax>- €M maximal diameter 0.038 0.144 0.059
Probable oolitic arenaceous arenaceous

rock type biosparite lithosparudite biosparudite

Assumed or Derived Properties of the Deposit
a,, cm average diameter 0.004 0.008 0.005
w,,cms™!  average fall speed 0.1 0.36 0.15
Derived Properties of the Deposit-Forming Flow

g, km® initial volume of flow 35 94 79
'8 initial sediment concentration 0.026 0.033 0.033
7., km runout length 59 64 74
t.., hours runout timescale 5.5 35 53
4,ms™! average speed 3.0 5.0 4.0

Turbidite colors refer to stratigraphic designation.

ral cutoff for turbidite muds and sands which are noncohesive.
The maximum grain size ap,, corresponds to the average
largest clast size observed in each deposit by Bennetts and
Pilkey [1976] and reported in Table 2. Nominal fall velocities
for d were calculated using Stokes law for the settling of fine
solitary particles and p,= 2700 kg m™3.

For a surge entering from a channel (treated as a point
source) at the side of the basin, @1 = 2. For the sake of expe-
dience we assume y; = 1. For a known volume of sediment with
a solids fraction of 0.5 and a grain size distribution set by the
deposit itself, there are no further degrees of freedom. Thus
initial concentration can be calculated from a rearrangement of
(18), for which ¢, = (O7*¢,*n,,%g," g, ws)V/2. All other pa-
rameters that can be derived from our model then follow. The
total flow volume g,' is simply g,/9,, and g, the idealized to-

radial distance (km)

tal volume for a flow spreading in all directions, is given by
©1q,'". The runout distance r., is calculated from (7), the char-
acteristic runout time ¢, is calculated from (11), and an esti-
mate of a characteristic propagation speed of the front of the
debouching current is i = r,/t,,. The results of this analysis
are summarized in Table 2. A reconstruction of the Tricolor
turbidity current and its deposit based on these results and
(1), (10), and (19) appears in Figure 9.

In general, each of the turbidity currents considered here is
inferred to have entered the Hispaniola-Caicos basin with a to-
tal volume of approximately 30-100 km3 and a suspended
solids concentration of about 0.03 (corresponding to a sus-
pension density of about 80 kg m=3). Each of the currents de-
bouched into the basin with a characteristic speed of between
3 and 5 m s! and generated a deposit during a period of no

b)

| S— |
50 km
"-\20 cm contour interval

entry
point

Figure 9. A reconstruction of the Tricolor turbidity current and deposit. (a) The thickness and propagation
speed of the spreading, deposit-forming flow shown as functions of radial distance and time since entry into
the Hispaniola-Caicos basin. The gradation in shading over time is meant to indicate the progressive loss of
particles from the driving suspension. (b) Isopach map of the resulting model deposit (compare Figure 8). The
arrows indicate axisymmetric flow of the deposit-forming event. The dashed line indicates the predicted
runout length of 74 km, beyond which the deposit should essentially vanish. These reconstructions are based
on calculations from our model for a constant-volume gravity current and the deposit properties summarized

in Table 2.
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more than about half a day. As the respective flows came to
within 5 km of the ultimate runout distance each would have
been about 10 m thick and advanced at a speed of less than 1
m s™1. At this late stage, Coriolis effects may have become im-
portant, but we do not address those effects in this reconstruc-
tion. We note that even the coarsest material observed in the
deposit by Bennetts and Pilkey [1976] would have been well
mixed throughout the density current for most of the flow his-
tory, and so the settling law of (4) is consistent with our
model flow conditions. Accordingly, the reconstructed de-
posit that resulted from the model Tricolor event reflects well
the overall geometry of the actual turbidite. It diminishes from
a maximal thickness of 160 cm expected near the origin to its
"average" thickness of 2gy/mdpr..2 = 60 cm at about 50 km ra-
dially distant from the point of entry into the basin. The de-
posit thins rapidly thereafter and vanishes at radial distances
beyond r,,= 74 km.

In contrast, the Black Shell turbidite in the Hatteras basin
has a sedimentary volume of about 100 km3 [Elmore et al.,
1979]. A similar exercise in reconstruction of the flow which
generated that approximately two-dimensional deposit [Dade
and Huppert, 1994] suggests that upon entry into the Hatteras
basin the Black Shell turbidity current had a similar concen-
tration of suspended sediment but was approximately 10
times greater in initial volume than the individual turbidity
currents of the Hispaniola-Caicos basin. As a result the Black
Shell current travelled with a characteristic speed that was
about twice that of, and lasted about four times as long as, the
smaller events of the Hispaniola-Caicos basin. Relating the
differences between the extent of deposits and magnitude and
duration of the deposit-forming flows to the magnitude and
probability of respective trigger events remains an outstand-
ing geological problem (e.g., P. Beattie and W. B. Dade, Is scal-
ing in turbidite deposition consistent with forcing by earth-
quakes, submitted to Journal of Sedimentary Research, 1995).
Our models provide a basis for such inquiries, and it is our in-
tention to continue to address these and other aspects of sus-
pension-driven gravity currents.

Conclusions

We have developed an analytical model for the runout and
deposition from a nonentraining gravity current driven by a
dense suspension of fine particles and spreading axisymmet-
rically. In this model we incorporate simple flow geometries;
source conditions of either constant volume or constant flux;
a momentum equation that incorporates previously estab-
lished Froude number conditions existing at the flow front;
and a settling law for fine particles that exhibit a single, char-
acteristic settling speed and that are in well-mixed suspen-
sion. The results of our study provide a useful basis for the
analysis of a range of experimental observations and for the
interpretation of geological deposits. We show, for example,
that from limited information about a turbidite one can calcu-
late the initial conditions and evolution of the parent flow as
it debouched into a basin.

One important result of our study is that the overall geome-
tries of well-sorted deposits generated by gravity currents
with analogous source conditions corresponding to either
constant volume or constant flux are virtually indistinguish-
able. Given this limitation, however, our model allows realis-
tic reconstruction of a significant deposit-forming event
based on the bulk properties of the resulting deposit alone.
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Appendix A: Constraints on Sediment Erosion
and Reworking

The ability of a gravity current to entrain sediment due to
near-bed turbulence can be delineated in terms of the layer-av-
eraged equations which describe the evolution of total vol-
ume, mean-flow momentum, and sediment volume for a flow
section with constant radius. For a current which is not en-
training ambient fluid these are, respectively,

(A1)

) 19 5, 91 | . o 2
guh-f;gru h+§5gp oh" =g, ¢sinf-Cpu” (A2)

i oh+ -l——a—ruq)h =-wh+we', (A3)
ot r or

where all symbols are as defined in the main text and with the
introduction of the areally averaged turbulent flux of sedi-
ment at the bed w'¢' (= Fyh/q per (4)). Equations (Al) and
(A3) reflect the notion that sediment volume is a small frac-
tion of the total volume. Equation (A2) reflects the assump-
tions that vertical accelerations of the flow are negligible and
that the essential momentum balance is one of inertial and
buoyancy forces. The first two terms on the left-hand side of
(A2), for example, are the total change in mean-flow momen-
tum in time and space. The third term quantifies a hydrostatic
pressure field that depends on the local density of the current.
The first term on the right-hand side of (A2) reflects the
downslope component of buoyancy which contributes to flow
momentum, and the second term reflects momentum loss due
to drag at the bed quantified by the coefficient Cp.

For our purposes here the body of a gravity current can be
considered to be slowly varying (thus d/dt = 0) and the veloc-
ity field nearly uniform (du/dr = 0). Under these conditions
(A1)—(A3) can be combined to yield a relationship for the
Froude number of the body of the flow given by

u =
gp' Oh

Equation A4 is a modified Chezy equation [e.g., Middleton,
1993] which accommodates the effects of a gradient in hydro-
static pressure due to local sediment flux at the bed.

With (A1)-(A4) we additionally consider the equation
which describes the evolution of the total turbulent kinetic
energy kh in a section of the flow. Parker et al. [1986] demon-
strated that this fourth equation was necessary for an accurate
interpretation of a sediment-transporting gravity current. For a
current that is not entraining fluid this equation is given by

) sinﬁ+%(ws/u—w—'—q;/u¢)

Fr
Cp

(A4)

2
b

%km;‘%khr:c,)zﬂ —Eh——;—gp' h(ws¢+w' ¢'), (A5)
[cf. Parker et al., 1986]. The left-hand side of (A5) is the total
change in the turbulent kinetic energy. The first term on the
right-hand side of (AS5) represents the rate of turbulence pro-
duction due to mean-flow shear. In the second term, € repre-
sents the layer-averaged rate of turbulence dissipation due to
viscosity. These two terms typically constitute the bulk of a
balance between sources and sinks of turbulent kinetic energy
in a well-developed flow. If fine sediment in suspension is
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present, however, the final term quantifies the work done by
the flow at the expense of turbulent kinetic energy in main-
taining the negatively buoyant suspension and in increasing
the potential energy of the flow by way of sediment entrain-
ment.
Following the reasoning of Parker et al. [1986], it is clear
from (AS) that if the inequality
31 -
Cou’ > g, h(ws¢+w ¢) (A6)
is not satisfied, then the turbulence in the body of the current
will vanish. That is, the energetic demands on the dense sus-
pension will exceed energy production, typically consumed
primarily by viscosity in any event. As a result, maintenance
of turbulence and particle suspension will occur only at the
expense of mean-flow kinetic energy and thus the current it-
self will lose viability. Substitution of (A4) into (A6) and
subsequent rearrangement of the resulting expression thus
yield a constraint on the turbulent flux of sediment at the bed
given by

w ¢  usinb
w¢ _usinb

we W A0

Equation (A7) corresponds to one form of the Knapp-Bagnold
criterion for autosuspension, the condition under which a
gravity current on a slope may accelerate dramatically due to a
progressive increase in excess buoyancy by way of sediment
entrainment at the bed [Bagnold, 1962; Parker et al., 1986].
Here, however, we note an additional aspect of this constraint.
In the case of a flow on a relatively shallow slope, that is if
wg/u > sinf3, not only is autosuspension energetically impos-
sible to achieve, as has been noted by earlier workers, but also
the ability of the flow to erode additional underlying sedi-
ment or even rework newly deposited material must be
severely limited relative to the rate of fallout of suspended
sediment wg¢. The high speed front of the current may indeed
be erosive, but for our purposes we conclude that the term
F, in (4) becomes negligible for most of the flow length if
wg/u > sinf. Suspension-driven flows on beds of negligible
slope, in other words, are necessarily and predominantly de-
posit-forming phenomena.

This conclusion is consistent with the notion that near-
bed turbulence over most of the length of a deposit-forming
gravity current is suppressed by a "moving bed." A moving
bed, we speculate, consumes shear stress and reduces the com-
petence of the flow to entrain sediment through the combined
effects of buoyancy stratification and particle interactions.
The thickness of such a layer must be limited by grain-flow in-

“teractions, and features in the resulting deposit, such as planar
laminations and climbing ripples as are commonly seen in
turbidites, should reflect its dynamics [e.g., Allen, 1984; Lowe,
1988; Pickering et al., 1989]. As a part of this process, mate-
rial newly arrived at the bed from the overlying suspension is
thus undoubtedly subject to current reworking. Indeed it is
difficult to imagine that the flow speeds of several meters per
second considered here for deposit-forming turbidity currents
in the Hispaniola-Caicos basin would not be capable of bed
reworking to some extent (see, for example, Garcia and Parker
[1993]). We suggest, however, that the downstream displace-
ment of newly deposited material due to near-bed reworking
from where we would have it come to rest following suspen-
sion fallout, is a higher-order aspect of the problem of tur-
bidite deposition on low-angle slopes.
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We provide here a possible explanation as to why a turbid-
ity current debouching into a deep-sea basin must be predom-
inantly depositional. The overall flow is driven by a density
difference owing primarily to the overwhelming majority of
mass of particles in suspension. This suspension is in ener-
getic disequilibrium and, as we propose in the text, sediment
mass must be lost from the main body of the suspension to
create a deposit at a rate corresponding to the downward flux
of sediment w¢. Because the suspension is in disequilibrium,
this can occur even in a gravity current propagating at what
might otherwise be considered a strictly erosive speed.

Appendix B: Expression for T = f{R) that
Describes the Propagation of a
Suspension-Driven Gravity Current
Shallow Surroundings

into

Here we present the explicit relationship
T=AR)= —i[ln(l —Rm)
10

4
+3 cos(2nm/5) ln[l +RY3 _ o3 cos(mt/S)]

n=1

-2 sin(4n7z / 5) ( arctan {[R”3 - cos(nn: / 5)] / sin(nir / 5)}

(BI)

~(2n-5)m/ 10)]

between dimensionless time 7 and radial distance R intro-
duced in (14).
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