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Axisymmetric gravity currents that result when a dense suspension intrudes under a 
lighter ambient fluid are studied theoretically and experimentally. The dynamics of 
and deposition from currents flowing over a rigid horizontal surface are determined 
for the release of either a fixed volume or a constant flux of a suspension. The 
dynamics of the current are assumed to be dominated by inertial and buoyancy 
forces, while viscous forces are assumed to be negligible. The fluid motion is modelled 
by the single-layer axisymmetric shallow-water equations, which neglect the effects 
of the overlying fluid. An advective transport equation models the distribution of 
particles in the current, and this distribution determines the local buoyancy force in 
the shallow-water equations. The transport equation is derived on the assumption that 
the particles are vertically well-mixed by the turbulence in the current, are advected 
by the mean flow and settle out through a viscous sublayer at the bottom of the 
current. No adjustable parameters are needed to specify the theoretical model. The 
coupled equations of the model are solved numerically, and it is predicted that after an 
early stage both constant-volume and constant-flux, particle-driven gravity currents 
develop an internal bore which separates a supercritical particle-free region upstream 
from a subcritical particle-rich region downstream near the head of the current. For 
the fixed-volume release, an earlier bore is also predicted to occur very shortly after 
the initial collapse of the current. This bore transports suspended particles away from 
the origin, which results in a maximum in the predicted deposition away from the 
centre. 

To test the model several laboratory experiments were performed to determine 
both the radius of an axisymmetric particle-driven gravity current as a function of 
time and its deposition pattern for a variety of initial particle concentrations, particle 
sizes, volumes and flow rates. For the release of a fixed volume and of a constant flux 
of suspension, the comparisons between the experimental results and the theoretical 
predictions are fairly good. However, for the current of fixed volume, we did not 
observe the bore predicted to occur shortly after the collapse of the current or the 
resulting maximum in deposition downstream of the origin. This is unlike the previous 
study of Bonnecaze et al. (1993) on two-dimensional currents, in which a strong bore 
was observed during the slumping phase. The radial extent R of the deposit from 
a fixed-volume current is accurately predicted by the model, and for currents whose 
particles settle sufficiently slowly, we find that R = 1.9(g6V3/vf)1'8, where V is the 
volume of the current, us is the settling velocity of a particle in the suspension and g; 
is the initial reduced gravity of the suspension. 
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1. Introduction 
Particle-driven gravity currents are suspensions of dense particles that intrude 

laterally into an ambient fluid due to the difference between the bulk density of 
the suspension and that of the ambient fluid. Since the buoyancy force depends 
on the concentration of particles, there is a strong coupling between the sediment 
transport and the dynamics of the gravity current. The behaviour of particle-driven 
gravity currents has application to many geological, oceanographic and environmental 
situations. These currents, often called turbidity currents, play a major role in the 
formation of submarine canyons and the transport of silt to the abyssal plains of 
the deep oceans (Inman, Nordstrom & Flick 1976). In some cases the sedimentary 
deposits from ancient turbidity currents have become valuable oil reservoirs (Perrodon 
1985). The effects of potentially damaging turbidity currents are often a consideration 
in the design of reliable submarine structures, such as cables and pipelines (Simpson 
1987). In the form of industrial effluents, particle-driven gravity currents are an 
important means for the transport of pollutant-laden sediment. For example, ash 
from coal-fired power plants or tailings from mines located near a coast have been 
dumped into inlets producing turbidity currents (Normark & Dickson 1976; Hay 
1987). The fate of these particles, which often contain toxic metals, is of significant 
environmental concern. 

In a previous paper (Bonnecaze, Huppert & Lister 1993, hereafter referred to as 
BHL) we studied the dynamics and deposition of two-dimensional particle-driven 
gravity currents produced by the instantaneous release of a fixed volume of a dense 
suspension. Here we consider axisymmetric currents for both fixed volumes and fixed 
fluxes, though some of the salient features of BHL need to be reviewed so that the 
present paper can be understood on its own. We developed a model in which the 
dynamics of the current are controlled by a balance between the inertial forces of the 
moving fluid and the buoyancy forces derived from the suspension of dense particles. 
In the model the flow of the current is described by the shallow-water equations, 
which are derived from the usual hydraulic assumptions of vertically uniform flow 
and a hydrostatic pressure distribution within the current, modified to include the 
contribution of the particles to the buoyancy force. Gain or loss of fluid at the top of 
the current is taken to be negligible. The particles are transported within the current 
by advection, and they are assumed to settle out through a viscous sub-layer at the 
bottom without re-entrainment. At any position along the current the concentration 
of particles is assumed to be vertically uniform due to turbulent mixing. The head of 
the current is modelled as a sharp moving front where a Froude-number relationship 
is applied between the velocity at the front and its height (Benjamin 1968; Huppert 
& Simpson 1980). 

The experimental results in BHL for two-dimensional particle-driven gravity cur- 
rents showed that when the depth of the current was comparable to the depth of the 
ambient fluid, the dynamics of the fluid overlying the current must also be included in 
the model. The same hydraulic assumptions were applied, and the so-called two-layer 
model includes the conservation of mass and momentum of the overlying fluid, which 
is coupled to the flow of the current. The model is only slightly more complicated, 
but the improvement in comparisons between the theoretical predictions and our 
experimental results was substantial. 

The numerical solution of these model equations showed that two types of travelling 
shocks can occur in such particle-driven gravity currents. An internal travelling shock 
occurs in -the later stages of the propagation, whether computed with the single-layer 
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or the two-layer model. The shock separates a particle-free, jet-like flow in the rear of 
the current from a dense, buoyancy-driven flow near the front. The other type of bore 
is observed to occur only during the initial collapse or slumping phase of currents that 
have an initial height comparable to the depth of the surrounding fluid. The bore, 
which is captured numerically only by the two-layer model, is formed when overlying 
fluid moving in to replace the slumping current reflects from the endwall. The bore 
occurs irrespective of whether the current is homogeneous or particle-driven, but it 
strongly affects the particle transport and the dynamics of the current for particle- 
driven flows. It sweeps particle-laden fluid away from the endwall, which results in 
a slight maximum in the particle deposition away from the wall and a greater depth 
of deposit downstream compared to that predicted by the single-layer model for a 
current in a deep ambient fluid. Indeed it is the more important shock for modelling 
the experiments and is critical for the accurate prediction of the deposition patterns 
of the sediment. 

The agreement between the theoretical predictions using the two-layer model and 
the experimental measurements for the lengths of particle-driven currents as functions 
of time and their deposition patterns was very good. The agreement is especially 
significant because the model has no adjustable parameters. The Froude-number 
condition at the nose was determined from previous independent experiments on 
homogeneous gravity currents, and the settling velocity was just that determined 
from theoretical Stokes flow around equivalent spherical particles. 

In this paper we apply the method developed in BHL to axisymmetric gravity 
currents produced by the release of either a fixed volume or a constant flux of a 
dense suspension. In $2 we describe the details of our model for radially spreading, 
particle-driven gravity currents. As for a two-dimensional current, the model assumes 
that the dynamics of the current are dominated by a balance between gravitational 
and inertial forces and that the flow is sufficiently turbulent for the particles to be 
well mixed. The axisymmetric shallow-water equations account for the conservation 
of mass and momentum of the fluid, with the gravitational force depending on the 
concentration of particles. A vertically averaged advective conservation equation, 
which includes the effects of settling, accounts for the transport of the particles. A 
Froude-number condition is required at the front, which relates the velocity, height 
and reduced buoyancy at the front. As in the two-dimensional case, the model 
contains no adjustable parameters. 

In $3 we discuss the behaviour of axisymmetric particle-driven gravity currents 
created by the release of a fixed volume of fluid. From the numerical solution of the 
model equations, we present typical height, velocity and concentration profiles. In 
particular, we discuss how some knowledge of the structure of the current due to the 
internal shocks, or bores, is necessary for an accurate prediction of the deposition 
pattern. We also present a simple relationship for the length of the deposit based on 
scaling analysis and numerical simulations. 

We then describe some laboratory experiments in which a fixed volume of suspen- 
sion was released in a radial sector tank. Experimental measurements of the radial 
position of the current as a function of time and the sedimentation pattern are then 
compared to the numerical predictions of the model. It is rather surprising that 
for an axisymmetric particle-driven gravity current, the single-layer shallow-water 
equations with a modified nose condition are sufficient to predict our experimental 
measurements. This is unlike the previous work by BHL on two-dimensional cur- 
rents, in which, as mentioned earlier, it was necessary to include the effects of the 
relatively shallow overlying ambient fluid in the theoretical model to simulate the 
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bore that occurs during the slumping phase. While this bore would be predicted to be 
even stronger and its effect on the deposition more dramatic using the axisymmetric 
two-layer shallow-water equations, experimentally it is not observed to occur. 

In $4 similar numerical and experimental results are presented for axisymmetric 
particle-driven gravity currents created by the release of a constant flux of suspension. 
Finally, in $5 we summarize our results and conclude with a discussion of future av- 
enues of research into the behaviour of particle-driven gravity currents. An appendix 
presents the analytic results from a simple box model with uniform properties in both 
the horizontal and vertical directions, against which our more rigorous numerical 
results can be compared. 

2. Theory 
2.1. Model 

We consider an axisymmetric particle-driven gravity current of bulk density pc(r,  t ) ,  
where r is the radial position and t is time, spreading over a horizontal surface into a 
deep body of ambient fluid of lesser density pa. The current is composed of particles 
of density p p  suspended in an interstitial fluid of density pi. The density of the current 
is given by 

where b(r , t )  is the volume fraction of particles in the suspension. 
The gravity current considered here is produced by the release of either a fixed 

volume or a constant flux of a well-mixed suspension into a radial sector. The flow is 
axisymmetric within the angle 8 of the sector, which may be up to 2x. Initially, the 
Reynolds number of the current is sufficiently large that viscous forces are negligible 
and the dynamics of the current are dominated by a balance between inertial and 
buoyancy forces (Huppert 1982). At its inception the current is a complicated three- 
dimensional unsteady flow, but soon after the current has spread sufficiently that its 
radius r N ( t )  is very much greater than its slowly varying height h(r,t). Further, the 
velocity of the current, denoted by u(r, t ) ,  is predominantly in the radial direction and 
there is only a small vertical component. Thus, we may neglect vertical accelerations 
and assume a hydrostatic pressure distribution within the current, which depends on 
the local density of the current, pc(4 ) .  

Under these conditions we may describe the current by the radial shallow-water 
equations, which in dimensionless form are given by 

~ 4 4 )  = ( p p  - pi14 + pi, (1) 

ah 1 a 
at r ar 
- + --(ruh) = 0, 

where we have non-dimensionalized lengths, time and velocity by h, ( h / g ; ) ' j 2  and 
(g&)'/', respectively. Here h is the characteristic height of the current, which is 
either the initial height of the current for the instantaneous release of a fixed volume 
or the height at the inlet for a constant flux of suspension, gb = (p, - pi)&g/pa is 
the contribution of the particles to the initial reduced gravity of the current, and 40 
is the initial volume fraction of particles. In equation (3), and throughout the rest of 
the paper, the volume fraction of particles 4 is rescaled by 40. We have assumed that 
40 <. 1 and used the Boussinesq approximation, which includes only the effect of 4 
on the buoyancy terms and neglects the contribution of the particles to the mass and 
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momentum balances. The parameter y = (pa - pi ) /  [(p, - pi)40] is the contribution 
of the interstitial fluid to the reduced gravity. In this paper we only consider cases in 
which the densities of the interstitial and ambient fluid are equal, so that y = 0. This 
is in contrast to an earlier study on two-dimensional currents (Sparks et al. 1993), 
which also considered positive values of y. 

The hydrostatic pressure distribution and driving buoyancy force in the current 
depend on the local volume fraction of particles. The concentration of particles 
varies throughout the current due to advection and settling. Here we neglect particle 
entrainment from the base on the assumption that the current velocities are insufficient 
to lift deposited sediment into the current. We consider the flow to be sufficiently 
vigorous, however, that turbulent mixing maintains a vertically uniform particle 
concentration in the current, without any release of particle-free fluid at the top of 
the current. We assume that the particles leave the current only through the viscous 
sublayer at the base with a flux us$, where us denotes the settling velocity of an 
isolated particle, which is appropriate when the particle concentration is small. This 
model of particle settling has been used successfully in the study of two-dimensional 
particle-driven gravity currents (BHL; Sparks et al. 1993) and in earlier studies of 
sedimentation from turbulent suspensions (Einstein 1968; McCave 1970; Martin & 
Nokes 1988, 1989). The dimensionless equation for the conservation of particles is 
then given by 

where the settling number /3 = ~,/(g&,)~/’ is the dimensionless settling velocity. 
Various boundary conditions are necessary to complete our mathematical descrip- 

tion of the current. Von Karman (1940) and Benjamin (1968) showed that the velocity 
of the nose of the current uN is proportional to the local shallow-water wave speed. 
Huppert & Simpson (1980) determined experimentally the proportionality constant 
for gravity currents created by the release of a fixed volume. Their results can be 
expressed as 

( 5 4  UN = Fr [(4N - Y h ]  ll2, 

for a particle-driven gravity current, where the Froude number Fr is given by 

Fr = 1.19 (0 < hN/H < 0.075) 

= 0 . 5 ( / 1 N / H ) - l / ~  (0.075 < h N / H  < l), (5b) 

and hN and 4N are the height and volume fraction of the current at the front and H 
is the depth of the ambient fluid. For a gravity current produced by a constant flux 
of dense fluid with h N / H  4 1, Huppert & Simpson (unpublished data, 1980) found 
that 

(5c) 
so that Fr = 0.72 in this case. This so-called Froude condition is a convenient means 
of parameterizing the unsteady three-dimensional motion at the head of the current 
at a consistent level of description with the shallow-water equations. As a result of 
this parameterization, the velocity and height profiles in the shallow-water equations 
end abruptly at the head. For a constant-flux current, fluid continually flows into the 
bottom of the head from the body of the curent and is shed from the top, which 
is unlike the case for a current produced by the release of a fixed volume. These 
different dynamics are thought to be the cause of the differing Froude conditions at 

UN = 0.72 [(#N - y ) h ~ ]  1/2, 
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the front of currents of constant flux and fixed volume. Note that the experimentally 
determined Froude numbers include the effects of viscous drag and Reynolds stresses 
along the head of the current. 

For an axisymmetric release of a fixed volume of a suspension, the second boundary 
condition is that the velocity vanishes on a cylindrical wall at r = ro, or 

4r0, t )  = 0, (6)  

where ro may be zero. For an axisymmetric gravity current created by a constant 
input of suspension into a sector of angle 8 at r = ro, where 0 < 8 < 2n, the flux Q 
is specified by 

( 7 4  
Because equations ( 2 H 4 )  are hyperbolic in character, the number of boundary con- 
ditions required to obtain a unique solution is equal to the number of characteristics 
that propagate from the boundaries into the flow domain. If the flow at the source is 
either critical or supercritical then there are two inwardly propagating characteristics 
(BHL), and we must specify the height at the inlet, 

~ o W ~ O ,  t)h(ro, t )  = Q. 

h(ro,t) = 1, (7b) 
by our assumed non-dimensionalizations. For subcritical inlet conditions, or for the 
release of a fixed volume of suspension, equations ( 5 )  and (7a) are sufficient. Finally, 
the initial radius and height of the current must also be specified. 

2.2. Similarity solutions for /l = 0 
Suppose that the total volume of the radial current is given by At“. With this 
supposition currents of fixed volume and constant flux correspond to a = 0 and 1, 
respectively. When /l = 0 and there is no settling, equations ( 2 H 7 )  may possess 
long-time similarity solutions (Hoult 1972; Chen 1980) of the form 

(8) &, t )  = f: (t)H(Y),  

-114 

c = [ ( F ) 2 1 Y H ( Y ) d Y ]  7 

and the similarity variable y = r/rN(t) .  Substituting equations (8) and (9) into (2)  and 
( 3 ) ,  we obtain the coupled nonlinear ordinary differential equations 

y H U ’ + y ( U - y ) H ’ +  [ U + 2 ( a - 2 ) / ( a + 2 ) y ] H  = 0 ,  ( 1 2 4  

(12b) (U - y)U’ + H’ + (K - 2)/(~r + 2)U = 0. 

H ( y )  = i ( y 2  - 1 )  + Frd2 

For a current of fixed volume (a = 0) in deep surroundings the self-similar height 
and velocity are given by 

and 
( 1 3 4  

W Y )  = Y7 (13b) 
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FIGURE 1. The self-similar velocity V ( y )  and height H ( y )  for a homogeneous gravity current created 
by the release of (a) a fixed volume with Fr = 1.19 at  the nose and (b) a constant flux with Fr = 
0.72. For the latter case, the shock is assumed to be located at y, = 0.85. 

which are illustrated in figure l(a) for Fr = 1.19. In this case C = 1.29. The velocity 
increases linearly from zero at the tail to the velocity of the nose at the head, and the 
height of the current increases quadratically from the tail to the head. The variation 
in the height of the current creates an adverse pressure gradient, which decelerates 
the flow. This loss of momentum throughout the current may be attributed to the 
nose condition, which represents a sink of momentum. This is qualitatively identical 
to the behaviour of two-dimensional homogeneous currents. 

For radial currents where a > 0, a continuous similarity solution on y E [0,1] 
does not exist, as was shown by Grundy & Rottman (1986). However, since the 
shallow-water equations are hyperbolic, Grundy & Rottman suggested, though never 
showed, that self-similar solutions with shocks may exist. This is in fact the case for 
a radial current produced by a constant flux (a = 1). For a weak solution to be 
self-similar, the shock speed must be given by Us = ysrN(t), where y, is the location 
of the shock in similarity space. The location of the shock depends on the details of 
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the flow near r = 0. Such shocks also occur for two-dimensional currents and have 
been considered in detail by Gratton & Vigo (1994). 

Figure l (b)  illustrates typical profiles of the self-similar velocity and height for a 
constant-flux radial current, assuming Fr = 0.72 at the front and, as an example, 
y ,  = 0.85. To construct these profiles, equation (12) was integrated backwards to 
y, with the boundary condition U(1) = 1 and H(l) = Fr-*. The conjugate states 
were then found at ys using the shallow-water shock equations (e.g. Whitham 1974), 
and the backward integration was continued to near y = 0. For this particular 
profile C = 0.96. The location of the shock in similarity space depends on the inlet 
conditions, as discussed by Grundy & Rottman (1986). 

The profiles for different inlet conditions are qualitatively similar. The velocity 
increases rapidly near the inlet and then more gradually until the shock, where it 
changes discontinuously to a lesser value. The velocity then decreases only very 
slightly to the head of the current. The height of the current decreases rapidly at 
first near the inlet of the current and then much less rapidly until the shock, where it 
jumps to a greater value that increases slightly to the head. 

The formation of the shock can be explained by considering the Froude condition 
at the nose and conservation of fluid. Away from the inlet, the velocity is nearly 
constant and the height decreases as y-' or r-' such that reuh = Q is constant. 
Since the height is small, the local Froude number, uh-'/*, is large and the flow 
is supercritical. The flow at the head, however, is subcritical due to the imposed 
condition Fr = 0.72 at the front. In order to match these flows, a shock or bore must 
be formed. 

As was observed in BHL and as we shall see here, the loss of particles and the 
resulting changes in the local density of the current markedly change the shape of 
the profiles from those in figure 1. In particular, it is found from numerical solution 
of (2)-(7) that additional shocks develop in a fixed-volume current with p # 0 and 
that the magnitudes of the shocks in a constant-flux current are larger. However, at 
intermediate times the general structure of the computed radial particle-driven gravity 
currents for f i  # 0 resembles that of the similarity profiles for f l  = 0. The numerical 
method used to obtain these results is a simple adaptation to cylindrical coordinates 
of the method described in BHL, to which we refer the interested reader for details. 

3. Currents of fixed volume 
3.1. Numerical projiles 

The height, velocity and concentration profiles for a radial gravity current created by 
an instantaneous fixed-volume release are presented in figures 2 and 3. Initially, the 
fixed volume of fluid is at rest and its radius is twice the starting height. For these 
profiles, the settling number B = 5 x lop3, which is in the range of our experimental 
values. 

As was the case for two-dimensional particle-driven gravity currents, the dynamics 
of radial particle-driven gravity currents can be approximately divided into three 
phases: an initial phase, during which the fixed volume of fluid collapses, forms a 
weak internal shock and very few particles have settled; a transition phase, in which 
particles are preferentially removed from the rear of the current and the fluid in the 
tail decelerates less rapidly than the nose; and a travelling shock phase, during which 
a bore develops within the current and separates a particle-free jet-like region from a 
relatively particle-rich gravity current region. 
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FIGURE 2. The numerically determined profiles of (a) height h(r,t) ,  ( b )  velocity u(r, t )  and (c) 
concentration &, t )  at early times of a collapsing particle-driven gravity current of fixed volume. 
The current starts from rest with dimensionless height hi = 1 and radius r N ( 0 )  = 2. The settling 
number j = 5 x The successive non-dimensional times are noted by each profile. 

Figure 2 illustrates the profiles during the initial phase. The fluid initially collapses 
from the front of the current and creates a wave that travels backwards towards 
the origin. This wave is eventually reflected toward the front, ultimately becoming 
a weak shock as seen at t = 7.5. The formation of this shock is most apparent in 
the velocity profiles depicted in figure 2(b). However, by the time the shock becomes 
pronounced, the conditions on either side of it are such that the shock is moving 
backwards, as though it were reflected off the forward section of the current. The 
shock travels backwards and at the origin of the current is again reflected between 
t = 7.5 and 20.0 (figure 3). It then travels forward in the form of a small wave, which 
moves more slowly than the nose of the current and thus never reaches the front. 
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RGURE 3. The numerically determined profiles at later times for the current described in figure 2. 
Note that the ordinate on the right is used for the volume fraction (dashed curves) at later times. 

This initial sequence of events is also observed for a homogeneous current with no 
settling, though eventually the velocity and height in that case attain their self-similar 
profiles. 

As particles settle out of the current, however, the structure changes markedly from 
that of a homogeneous current. After about t = 20 in figure 3 the fluid at the rear 
of the current no longer decelerates as rapidly as the nose and the maximum velocity 
occurs in the body of the current. During this transition phase, the height of the 
current near the front increases and the concentration of particles in the rear of the 
current decreases rapidly. Finally, a travelling shock forms in the current for t > 40, 
which separates a particle-free jet-like region in the rear from a relatively particle-rich 
region near the front. Note that the oscillations and slight overshoot for the height 



Axisymmetric particle-driven grauity currents 103 

of the current near the shock are due to the limitations of the numerical method, but 
generally do not influence the results, as we confirmed by varying the grid size, time 
step and dissipation parameter. 

The formation of the first shock after the collapse of the current is unlike the 
behaviour of two-dimensional currents modelled with the single-layer shallow-water 
equations, where only the travelling shock in the later stages of the current is 
observed. This initial shock is due to the axisymmetric nature of the flow. Because 
of the diverging character of the flow, the radius of the current increases less rapidly 
than the radial position of the shock or wave. This wave pushes fluid towards the 
front, and eventually the height and velocity on the downstream side of the shock 
front are such that the wave is reflected backwards, much like a wave reflecting off 
a moving wall. This does not occur for two-dimensional currents because the front 
of the current travels faster than the wave, which results in the wave being stretched 
and disappearing into the current. 

The formation of the subsequent travelling shock is due to differential settling of 
particles along the length of the current, as in the case of two-dimensional particle- 
driven gravity currents. We recall that the variation in height from the head to the 
tail of the current establishes a pressure gradient that decelerates the fluid behind 
the nose. As shown by equation (4), the volume fraction of particles decreases more 
rapidly at the rear of the current, where the height is small. Consequently, the density 
and pressure gradient in the tail are reduced, and the fluid there is not decelerated 
as rapidly as at the nose. The difference in velocities becomes so great that a shock 
develops to match the particle-free jet-like region to the relatively particle-rich near- 
head region. We see from figures 2(c) and 3(c) that the differential settling is apparent 
at around t = 7.5 and its effect becomes significant between t = 20 and 40. 

3.2. Experimental results 
Several experiments were performed to determine the radius of a fixed-volume gravity 
current as a function of time and its resulting deposition pattern for comparison with 
our numerical model. The experiments were performed in a radial sector tank of 
half-angle 4" made of clear Perspex, as depicted in figure 4(a). The tank was 20 cm 
high and about 210 cm long. A rectangular lock 30.6 cm long and 3.8 cm wide was 
attached to the tank instead of a sharp apex. This allowed us to mix the suspension 
easily and prevent sedimentation in a sharp corner. The tank was filled with tap 
water to a depth of 14 cm, and a Perspex gate with foam seals around its edges was 
placed at either 15 or 30 cm from the endwall of the rectangular lock. 

The suspension for the current was made by mixing fairly monodisperse, non- 
cohesive silicon carbide particles ( p p  = 3.217 g ~ m - ~ ) .  As a precaution, a small 
amount of Calgon was added to prevent any coagulation of the particles. Two 
combinations of particle diameter and lock length are presented: 23 lm-diameter 
particles (us = 0.064 cm s-l) in a 30 cm long lock and 37 pm-diameter particles (us = 
0.17 cm s-l) in a 15 cm long lock. The masses of particles added were such that the 
initial values of the reduced gravity of the suspensions were 41, 21 and 11 cm s-*. 
Under these conditions, f l  ranged from 2.6 x 

After the suspension had been well-mixed, the gate was lifted to release the gravity 
current. As the current propagated down the tank, the position of its front was 
marked on the clear wall of the tank at 3 s intervals, and the positions were recorded 
at the conclusion of the experiment, when all the particles had settled. The tank was 
divided into annular sections and the sediment in each sector was vacuumed with 
a siphon tube into a beaker. The water was decanted and the particles dried and 

to 1.4 x 
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FIGURE 4. Plan views of the tanks used in the experimental studies: (a) sector tank with rectangular 
lock used for most of the experiments on the release of a constant volume or constant flux of 
suspension; (b) sector tank with true apex; and (c) large rectangular tank with semi-circular lock 
for some experiments on the release of a constant volume of suspension. 

weighed to determine the mass of deposit per unit area. Comparison with the initial 
total mass indicatess that these measurements were accurate to within 3%. 

Figure 5 presents the radius as a function of time for the axisymmetric particle- 
driven gravity currents. Because the tank had a rectangular lock instead of a sharp 
apex, radial positions were measured with respect to a virtual origin given by the 
extended intersection of the tank walls (figure 4a). At early times, during the so- 
called slumping phase (Huppert & Simpson 1980), the radius of the current increased 
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FIGURE 5. The radius as a function of time for axisymmetric gravity currents composed of 
suspensions of (a)  37 and (b) 23 pm-diameter silicon carbide particles released into a tank of fresh 
water. The radial positions were measured with respect to the virtual origin in figure 4(a). The 
symbols are from experimental measurements and the curves are from the numerical solution of 
the theoretical model. The properties of the current are listed in the legend. 

linearly with time, which is captured in the model by the varying Froude number at 
the front of the current (equation (5 ) ) .  At later times the radius increased more slowly. 
As we would expect, the radius of a current at any time increased with increasing 
initial reduced gravity, since there is a greater buoyancy force driving the flow. Also, 
currents composed of the smaller 23 pm-diameter particles travelled further than 
those composed of the larger 37 pm-diameter particles, since the latter settled more 
rapidly and reduced the buoyancy force. In addition to the experimental data, figure 
5 presents the numerical prediction of the radius of the currents as a function of 
time. It is seen that the agreement between the two is excellent. For comparison, 
the experimental results and numerical prediction for the propagation of a saline, 
rather than particle-driven, gravity current are also shown in figure 5(a). Though 
the initial rate of propagation is the same as that of the particle-driven current of 
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FIGURE 6. The final areal density of the deposit after the axisymmetric release of a fixed volume of 
suspension for (a) 23 and (b)  37 p-diameter particles. The radial positions were measured with 
respect to the virtual origin in figure 4(a). 

equivalent density, the saline current decelerates more slowly since its total buoyancy 
is conserved. 

We also confirmed that these currents were dominated by inertial and not viscous 
forces. The time t' for transition from an inertially to a viscously dominated homo- 
geneous axisymmetric flow occurs at approximately t' = 0.75(Q/8gbv)'13, where v is 
the kinematic viscosity (Huppert & Simpson 1980). As discussed in BHL, this time 
of transition is longer for particle-driven currents, so we may use the above formula 
as a conservative estimate of the transition time. From this estimate we find that all 
the currents remained in the inertial flow regime for the duration of the experiment 
with the exception of the current with 23 pm-diameter particles and 81, = 11 cm s-'. 
For this exception, the transition time is estimated to be about 51 s, and indeed the 
predicted radius as a function of time begins to deviate from the observed value at 
about that time. 

The areal density of the deposits as a function of the downstream radial position 
is presented in figure 6 for the 23 and 37 pm-diameter particles. Generally, the 
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experimental measurements of the density of a deposit decreased monotonically 
downstream, dropping most rapidly near the origin. The magnitude of the deposit 
increased with increasing initial reduced gravity, or equivalently, increasing initial 
particle loading. The rate of decrease with downstream distance for the density of 
deposit was less for the smaller diameter particles since they settled out more slowly 
and were advected further downstream. 

For the suspensions composed of 23 ym-diameter particles the numerical prediction 
of the density of deposit matches the experimental measurements closely, except near 
the origin and for the largest value of the initial reduced gravity. The model predicts a 
slight maximum (figure 6a) around 50 cm, which was not observed in the experiments. 
The predicted maximum in the density of deposit occurs because of the initial shock 
that forms during the collapse of the current. Recall in figure 2(a) that when this shock 
occurs, particle-laden fluid is swept forward, which leaves relatively fewer particles 
to settle out near the origin. The trends are qualitatively similar for the suspensions 
composed of 37 ym-diameter particles. 

Although the agreement between the numerical predictions and the experimental 
measurements is fairly good, we made several attempts to improve it. Originally, we 
assumed that the two-layer shallow-water equations would be necessary to account for 
the overlying fluid, since for some time after release of the suspension the depth of the 
current and ambient fluid are comparable. Such a modification greatly improved the 
predictive power of our numerical model for two-dimensional particle-driven gravity 
currents. Compared to the single-layer model, however, the axisymmetric two-layer 
model predicts a greater maximum in the density of deposit which is located even 
further downstream. A stronger shock occurs on collapse in the two-layer model 
because of the counterflow of the ambient fluid (BHL). This sweeps more fluid 
further downstream and leaves even fewer particles to settle out near the origin. 
This modification though does improve the agreement between the numerical and 
experimental deposition patterns far downstream. However, a close examination of a 
video recording of the collapse of the current in the experiments did not reveal the 
formation of a strong forward propagating shock as predicted by the two-layer model. 
The sequence of events depicted in figure 2(a) is much closer to what is observed. 
Unfortunately, exact details of the structure of the current are necessary to predict 
accurately the pattern of deposition due to the sensitivity of the rate of settling to the 
height of the current. 

We considered the possibility that the discrepancies might be due to the rectangular 
lock. To test this hypothesis we conducted experiments in two sector tanks with a 
sharp apex, as depicted in figure 4(b). These tanks were each about 250 cm long 
and had half-angles of 5" and 15.5'. However, experimental measurements of the 
density of deposit in these tanks were effectively the same as those in the tank with the 
rectangular lock under equivalent initial conditions. We also considered the additional 
drag due to the proximity of the sidewalls near the apex, which is not included in the 
numerical model. To this end an experiment was performed in which a semi-circular 
cylinder of suspension was released into a large rectangular tank (figure 4c). Again, 
the density of deposit measured was similar to our initial experiments. Apparently, 
the sidewalls do not the cause the discrepancies. 

What then is their cause? The deposition patterns do not quite match near the 
endwall since we predict a bore that is not observed. Unfortunately, it is not clear 
to us why this should be the case in this geometry and not in a two-dimensional 
flow. One possibility is that the deficit in the mid-range and excess in the tail of the 
experimental density of deposits compared to the numerical predictions may be due to 
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sedimented particles being swept forward along the floor by the flow. The magnitude 
of this effect should increase with the velocity of the current. Indeed the discrepancy 
between the measurements and predictions increases with increasing initial reduced 
gravity and thus tne speed and turbulence of the flow, as seen in figure 6. 

In summary the comparisons between the numerical predictions and experimental 
measurements of the radius of the current as a function of time are excellent. The 
comparisons between the numerical and experimental deposition patterns, while fair, 
are not as good as for two-dimensional, fixed-volume particle-driven gravity currents. 
There are no adjustable parameters in the numerical model presented here and, on 
balance, the model, which predicts the experimental observations fairly well, is useful 
in its present form. 

3.3. Prediction of the extent of deposition 
The radius of the current as a function of time and the extent of its deposit is well- 
predicted by our model (figures 5 and 6). We can thus confidently use the numerical 
simulations of the model to derive a general quantitative relationship that predicts 
the extent of the deposit produced by the axisymmetric release of a fixed volume of 
a suspension. 

We start from the observation that when b 4 1 we expect the current to propagate 
many times the initial lock length before sedimentation is complete so that the initial 
shape of the current is forgotten and its later behaviour depends chiefly on its initial 
volume V.  We therefore seek a rescaling of (2)-(7), in terms of the volume and initial 
reduced gravity of the current and the settling velocity of the particles. Instead of 

-114 I 3 the characteristic dimensions listed in $2.1, we non-dimensionalize r by Pv V 1 , h 
by hV = &/2V1/3, t by hv/u, and u by (g; lhv)1/2,  where the modified settling number 
fiv = us/(g$V)1/6.  These scalings are chosen so that the form of (2), (3), (5) and (6) is 
unchanged, while equation (4) for the conservation of particles, which is now given by 

no ?,anger depends on 8. The modified settling number f l v  appears only in the new 
dimensionless initial conditions, which are given by 

h(r,O) = /3k1/2(h0/V1/3), ( 1 5 4  

r N ( O )  = B:/4(Ro/V1/3), ( 15b) 
where & is the initial dimensional radius of the current. 

From this rescaling we may draw two conclusions. First, if &V-'/3fii'4 = rN(0) 4 1 
then the initial dimensionless shape of the current approximates a delta function 
(corresponding to point release), and the extent of the deposit is independent of the 
details of the initial conditions. Second, if this condition is satisfied then the scaling 
of the dimensional extent of the deposit R is given by 

Note that these conclusions are true whether the current is released in a shallow 
or deep ambient fluid, since the modified settling number does not enter into the 
Froude-number condition imposed at the front of the current. This is to be expected 
since it is necessary that BV Q 1 and/or 4 V1l3 if the extent of the deposit is to be 
independent of the initial conditions, and for these conditions there will not be much 
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settling during the initial collapse of the current. In such cases all currents of volume 
V and initial reduced gravity gb will behave in the same way regardless of their initial 
depths relative to the ambient fluid.? 

Several numerical simulations were performed to determine the constant of pro- 
portionality in equation (16) and define the limits of its applicability. Since the extent 
of deposit never truly vanishes, we choose to define R as the distance at which 99.9% 
of the sediment has been deposited. The simulations were performed for currents 
with varying initial aspect ratios ( V / g  ranging from 0.1 to 100) and modified settling 
numbers fiv ranging from to 5 x lo-'. The initial depth of the current was 
assumed to be either equal to ( h / H  = 1) or very much less than (ho/H 4 1) that of 
the ambient fluid. These two extremes should bracket the extent of the deposit for 
intermediate values of h / H .  Note also that we have assumed here that the current 
spreads within an angle 2a - if the current flows within a sector of angle 8, the 
volume of the current should merely be replaced by 27cV/8. 

Figure 7(a) presents the dimensionless extent of deposition as a function of the 
modified settling number. For very small values of and &/ho, we observe that 
the scaling in equation (16) is indeed correct and that the extent of the deposit is 
quantitatively predicted by 

R = 1.9V'/3&'/4. (17) 
The range of applicability of this relationship is best determined from a plot of 
RV-1/3#4 against &V-'/3&/4 (figure 7b). When RV-'/3&!4 does not vary with 
&V-'/3pb/4 the extent of the deposit is predicted by (17). Otherwise, the extent of 
the deposit depends on the initial height and radius of the current. From figure 7(b) 
we conclude that the extent of deposition is independent of the initial disposition of 
the current and is predicted by equation (17) when 

Finally, we note that when equation (18) is not satisfied, the upper bound for the 
extent of deposit is defined by (17) and an empirical lower bound is defined by 

R = 0.92V'/3&'/3, (19) 

at least for the range of experimental and numerical data presented here. 
The constant 1.9 in equation (17) depends of course on the definition of the extent 

R of deposition as the distance at which 99.9% of the particles have been deposited 
or 0.1% of the particles remain in suspension. The constant was also determined 
for values up to 10% of particles remaining in suspension. The results are presented 
in figure 8, from which we see that the constant increases from 1.2 for 90% of the 
particles deposited to 1.9 for 99.9% of the particles deposited. Though the model 
predicts that a small proportion of the particles propagate to very large distances, it 
is clear that the neglected effects of viscous dissipation will eventually halt the weak 
remnant current and lead to a deposit of finite extent. 

f A similar rescaling of the equations in BHL for two-dimensional particle-driven gravity currents 
shows that L a Y'1/2&?5 if @5(&/V'1/2) 4 1, where L is the extent of the deposit, is the initial 
length of the current, Y' is the volume per unit width and /3vt = I J , / ( ~ ~ ~ V ' ) ' / ~  is the modified 
settling number. This relationship has been verified experimentally (Dade & Huppert 1994) and the 
constant of proportionality determined to be 3. 
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FIGURE 7. (a) Numerical computation of the extent of deposit R from a fixed-volume current as a 
function of the modified settling number Bv, and (b) the data replotted to determine the validity of 
equation (17). 

4. Currents from a constant-flux input 
4.1. Numerical profiles 

The theoretical height, velocity and concentration profiles for an axisymmetric 
particle-driven gravity current produced by a constant flux are illustrated in fig- 
ures 9 and 10. In this simulation the suspension issues at r = 9 with a dimensionless 
velocity and height of unity. (The Froude number at the entrance is thus unity.) In 
order to use our numerical technique, we must have some initial volume of fluid, 
which for this simulation was assumed to be stationary with ho = 1 and extending 
from r = 9 to T = 10. Provided the starting volume is reasonably small, the initial 
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I ~ G U R E  8. The scaled radius RV-1/3flb'4 at which a given percentage of particles remain in suspension 
in a fixed-volume current, as determined from calculations similar to those of figure 7. The value 
of the scaled radius with 0.1% of particles remaining in suspension defines the constant in (17). 

conditions have negligible effect on the subsequent dynamics. The value of the settling 
number fl  is 0.02, which is within the range of those in our experiments. 

The current can be divided into two regions: an upstream section where the flow 
is supercritical and a downstream section where the flow is subcritical. As seen in 
figure 9, the qualitative nature of the profiles is established very quickly after the flow 
begins and is maintained throughout the simulation (figure 10). In fact the structure 
of the current is like the self-similar profiles in figure l(b) for a homogeneous current 
produced by a constant flux even though there is a substantial variation in 4 along 
the current. 

After the current leaves the inlet, its height drops rapidly and its velocity increases 
to a plateau value. This flow becomes increasingly supercritical as the height of the 
current decreases. Eventually, this supercritical flow encounters the subcritical flow 
downstream, and a travelling shock forms between them. We note that the subcritical 
nature of the downstream flow is determined by the Froude condition at the front of 
the current. 

In the region of supercritical flow, the concentration of particles decreases down- 
stream of the inlet. In this region the concentration is independent of time. Down- 
stream of the shock, however, the concentration is slightly higher than that just 
upstream. This is due to the greater height and hence lesser rate of settling there. The 
average concentration of particles in the subcritical region of the flow decreases with 
increasing time, and this is the cause of the increasing height near the front. At the 
shock a larger hydrostatic pressure, represented by 4h, is required in the subcritical 
region of the flow as the conjugate state to the much lower pressure (essentially zero 
since the particle concentration is very small) in the supercritical region of the flow. 
As particles settle out, 4 decreases and thus h must increase to maintain the pressure. 

4.2. Experimental results 
Several experiments were performed to measure the radius as a function of time and 
the areal density of deposit for axisymmetric gravity currents produced by a constant 
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flux of suspension. The experiments were performed in the sector tank described 
earlier and depicted in figure 4(a). The rectangular section was modified to include 
an input system for the suspension, which is illustrated in figure 11. The input system 
consisted of a vertical tube inserted through a Perspex sheet 23.2 cm long with foam 
seals around the edges to fit snugly in the lock. The sheet was placed roughly 3 cm 
above the floor of the tank, which was filled to a depth of 14 cm. The presence 
of the sheet significantly reduces entrainment of the ambient fluid as the suspension 
is injected into the tank. The suspension was fed to the inlet through the tube, 
which was connected to a tank containing a well-mixed suspension of silicon carbide 
particles. 
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FIGURE 10. The numerically determined profiles at later times For the current described in figure 9. 

The suspensions were composed of 37 and 53 pm-diameter particles (us = 0.17 cm 
SKI and 0.36 cm s-l, respectively). The mass of particles in the tank was such that the 
initial value of the reduced gravity was either 10 or 20 cm s - ~ .  Under these conditions 
the value of f l  ranged from 0.030 to 0.065. A valve allowed control of the flow rate, 
which was approximately 75 or 130 cm3 s-l. The distance between the Perspex plate 
and the floor was adjusted so that the Froude number at the inlet was near unity. 
This also significantly reduced entrainment of ambient fluid into the current at the 
inlet. The duration of the input flux was about 70 s for each run. The radial position 
of the current and the density of deposit were measured in the same manner as for the 
fixed-volume currents. Note that the sediment in suspension when the input ceased 
was allowed to settle to the floor and was included in the measurement of the density 
of deposit. 
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FZGW 11. Profile of the input device used to feed suspensions into the rectangular section of the 
sector tank depicted in figure 4(a) for the experiments with constant flux. 

Figure 12 presents the radius as a function of time for the particle-driven gravity 
currents. The result of an experiment with a saline current is also shown for 
comparison. Note that the radial distance was measured from the inlet. The radii 
of the saline current and of the particle-driven current with the same initial reduced 
gravity were the same for about the first 10 s. The radius of the particle-driven 
current then increased less rapidly as more particles settled out, decreasing the driving 
buoyancy force. Generally, at any given time, the radius of a current increased with 
increasing reduced gravity and with the rate of input. 

The numerical predictions of the radial extent of the currents were also computed 
and are presented in figure 12. The suspension issuing from the tube quickly spread 
to fill the 3.8 cm width of the rectangular section of the tank. So for simulations 
with the numerical model, it was assumed that the inlet radius was 27.1 cm, which 
corresponds to the radius of an 8" sector with an arc of 3.8 cm. This is clearly an 
approximation to the true geometry, but probably does not significantly affect the 
results. The radial extent of the saline current is well described by the model for 
all times, and it increased like t3I4 as predicted by the similarity solution (equation 
(10)). The radial extent of the particle-driven gravity currents is well described by 
the model for most of the duration of the experiment. Towards the end of the 
experiment, the numerical predictions exceed the measured radial position. At these 
later times, the front of the current was moving very slowly and the Reynolds number 
of the current had become sufficiently small that viscous forces became important 
and further retarded the motion. 

Figure 13 presents the density of deposit as a function of radial position for the 
above particle-driven currents. As we would expect, the density decreased downstream 
and, for a fixed position, decreased with the initial reduced gravity (or equivalently 
initial mass loading of particles). Also shown are the numerical predictions of the 
density of deposits. The general trends of the data are followed and the quantitative 
agreement is fair. The model predicts more sediment right at the inlet and less sediment 
slightly downstream than observed. The flow leaving the inlet was rather vigorous 
due to the nozzle and we suspect that sediment was swept slightly downstream. Note 
that when computing the density of the deposit from the numerical simulation, any 
sediment still in suspension above a particular point when the input ceased was 
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FIGURE 12. The radius as a function of time for axisymmetric gravity currents created by the release 
of a constant flux of a suspension of (a) 53 and (b) 37 pm-diameter silicon carbide particles into a 
tank of fresh water. The symbols are from experimental measurements and the curves are from the 
numerical solution of the model. The properties of the current are listed in the legend. The radial 
positions were measured with respect to the virtual origin in figure 4(a). 

added to the deposit at that point. This only slightly increased the density of deposit 
near the origin and had no effect far downstream where very little sediment was in 
suspension. 

The extent of deposit produced from the axisymmetric release of a constant flux of 
suspension at long times can be determined analytically. From the profiles in figure 
10, the concentration of sediment decreases away from the source and is very small 
near the front. In fact we see that the volume fraction at a given position r becomes 
constant after the interior shock of the current passes this position. Thus we may 
assume the flow is at steady state in this region and solve for the volume fraction 
distribution explicitly. Under these conditions we find that 

(20) ,#,(r) = e-udTs-r$/2Q 

where the current is released at the radial position ro. This result was derived earlier 
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FIGURE 13. The final areal density of the deposit after the flow of axisymmetric particle-driven 
gravity currents produced by a constant flux of suspension of (a)  53 and (b)  37 pn-diameter 
particles. The radial positions were measured with respect to the virtual origin in figure 4(a). 
The duration of the input flux was about 70 s. Also plotted in (a)  is the long-time density of 
deposit predicted using equation (20) for 53 pm-diameter particles with an initial reduced gravity 
of 20 an s-2. 

by Sparks & Walker (1977) for the radial distribution of ash raining from a volcanic 
eruption cloud spreading horizontally along its height of neutral buoyancy. 

For locations where the steady-state concentration profile has been established for 
long times, the density of deposit is predicted by taking the product of ppu,T with 
equation (20), where T is the duration of the flow. The density of deposit for the 
constant-flux release for 70 s of a suspension of 53 pm-diameter particles with an 
initial reduced gravity of 20 cm s2 is plotted in figure 13(a). We observe that it 
agrees very well with the result from the unsteady numerical simulation for most of 
the extent of deposit. There is a very slight discrepancy in the mid-range, which is 
due to the fact that deposition has occurred for less than 70 s since the current passed 
over these point after inception of the flow. Very much further downstream, the 
numerical simulation predicts the density of deposit to be greater than that computed 
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from equation (20). The deposition in this region is mostly due to the relatively 
particle-rich head of the current, which is only captured by the unsteady numerical 
model. 

This discrepancy, however, only occurs where the density of deposit is almost 100 
times less than its maximum value. So we may use the steady-state concentration 
profile to obtain an accurate estimate of the extent of deposition for the axisymmetric 
release of a constant flux of suspension. Again, defining the extent of the deposit to 
be where 99.9% of the sediment has been deposited and using equation (20), we find 
that R is given by 

R=3.72(-$) 1 /2 , 

for ro 4 R. 

5. Conclusions 
We have presented a theoretical model to describe the dynamics and deposition of 

axisymmetric particle-driven gravity currents created by the release of a fixed volume 
or constant flux. The dynamics of the current are controlled by a balance between 
inertial forces in the fluid and buoyancy forces derived from the suspended dense 
particles. The flow is described by the shallow-water equations, which include the 
buoyancy effects of the particles. Particles are assumed to be vertically well-mixed due 
to turbulence, transported along the current by advection and settle out through a 
viscous sub-layer. A Froude condition at the front of the current is used to model the 
complex behaviour of the head. No adjustable parameters are needed in the model. 

The model matches experimental observations fairly well. For currents of fixed 
volume, the agreement between the model and experiments for the radial extent is 
excellent. The agreement was only fair for the deposition pattern, and not as good 
as we observed for two-dimensional particle-driven gravity currents of fixed volume. 
This is because a bore is predicted to form during the initial collapse or slumping 
phase of the flow of the current and it is simply not observed for reasons that are not 
clear to us. 

For currents created by a constant flux of suspension, the radial extent of the 
current was accurately predicted until viscous forces probably became important. The 
deposition patterns were also fairly well described. We note, however, that the input 
conditions were selected so that the Froude number at the inlet was near unity to 
decrease the effects of entrainment of ambient fluid. For supercritical inlet conditions 
there was a significant amount of entrainment, which is not included in our model. 
In these cases, the model and experiments would not agree very well unless the model 
were augmented by entrainment of ambient fluid at the upper surface. 

Although the model has some shortcomings, it is computationally very fast, gives 
reasonable results and has no adjustable parameters. In addition the model provides 
a framework and rapid means of conducting numerical experiments, which can 
be used, for example, to produce simple estimates for the extent of the deposit 
from a particle-driven gravity current as we did here. The fact that the model 
has no adjustable parameters is especially important when modelling a completely 
new system, since it is not necessary to guess the values of the parameters. These 
characteristics make our approach ideal for modelling other aspects of particle-driven 
gravity currents. In particular, there is a great deal of interest in determining the 
deposition pattern from currents created by sediment-laden outflows from rivers over 
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topography. These deposits, such as those in the Gulf of Mexico and off the coast 
of Southern California, have become valuable oil reservoirs, and knowledge of their 
origin is useful for exploration and exploitation of this resource. We plan to use our 
model to develop an understanding of their origin. 

We are grateful to R. E. Britter, W. B. Dade, R. C. Kerr, L. W. Lake, and 
H. M. Pantin for helpful comments on a previous version of this manuscript. We 
also thank G. F. Lane-SerfT for encouraging us to make the comparison with the box 
model in the Appendix. This work was partially supported by NERC. 

Appendix. A box model for axisymmetric particle-driven gravity currents 
We present here a simple box model for comparison with our more detailed 

calculation of the dynamics and deposition of an axisymmetric particle-driven gravity 
current. Such models have been derived previously by Huppert & Simpson (1980) for 
homogeneous gravity currents and by Dade & Huppert (1994) for two-dimensional 
particle-driven gravity currents. The derivation below follows closely that of Dade & 
Huppert (1995). 

We approximate the gravity current as a cylinder whose radius r(t) and uniform 
height h(t) evolve as the current propagates. The particles in the current are assumed 
to be completely well-mixed so that the volume fraction 4J is uniform both horizontally 
and vertically throughout the current. The velocity of the front of the current obeys 
the Froude condition of equation ( 5 )  

dr/dt = Fr(gb4Jh)'/2, (A 1) 

where gh = (pp - pa)4J0/p, and 4J is the volume fraction of particles scaled with 
the initial volume fraction $0. This equation represents the balance of inertial and 
buoyancy forces in the current. The equation describing the conservation of particles 
is 

4J d4J/dt = -vS-. 
h 

Finally, conservation of mass requires that ar2h = V, where I/ is the volume of the 
current, which remains constant. We assume here that the ambient fluid is much 
deeper than the current and so Fr = 1.19. Equations (Al) and (A2) can be combined 
and solved to show that for an instantaneous point release 

(A 3) 

where 

(A 4) 
is the maximum distance travelled by the current and hence also the extent of the 
deposit. Note from (A4) that we would compute the proportionality constant in 
equation (16) to be ( 8 1 7 r / a ~ / ~ ) ' / ~  = 1.1, which is about 60% of the value 1.9 predicted 
from the full shallow-water calculation. 

Using (A3), we can integrate (Al) and (A2) directly and, after a bit of algebra, we 
find that the radius of the current and the volume fraction of suspended particles as 
functions of time are given by 

( r /R)4  + 4J1l2 = 1, 

R = (64Fr2/a3)'/8 (g;V3/v3)'/' 

r = R tanh'l2(t/z) (A 5) 
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and 

4 = sech4(t/z), (A 6 )  
where 

The density of deposit D(r)  is the flux of sediment integrated from the time t'(r) when 
the current reaches position r to t = a, or 

where t'(r) = z arctanh[(r/R)']. Using (A6), we can compute this integral exactly and 
show that the density of deposit is given by 

D(r)  = $pp4Oz(l - $(r/R)' + ;(r/R)'j). (A 9) 

The radius of the current as given by (A5) is plotted in figure 14(u) for comparison 
with the shallow-water model and with the experimental measurements for currents 
composed of 23 pm-diameter particles. The box model predicts the radius as a 
function of time reasonably accurately for the larger initial volume fractions of 
particles. In the experiment the ambient fluid is in fact comparable in depth to that 
of the initial current and the assumption of a constant Froude number is not correct 
during the initial slumping stage. The smaller the initial concentration of particles, 
the longer the current remains in the slumping regime, and hence the larger the error. 
This could be corrected by adopting a variable Froude number, though it would make 
the model more complicated than warranted. The density of deposit predicted from 
the straightforward box model is illustrated in figure 14(b). The box model does not 
predict the experimentally observed maximum in the deposit near the origin. From 
the figure we conclude that the box model is no better than the shallow-water model 
in predicting the density of deposit. 

When first trying to model their experiments on two-dimensional gravity currents, 
BHL investigated a two-dimensional box model. However, they found that the length 
as a function of time and the density of deposit could not be described accurately by 
such an approach. As mentioned earlier in the main text, the spatial and temporal 
evolution of the depth of the current are critical in determining the density of deposit 
accurately and, for two-dimensional currents, the two-layer shallow-water equations, 
which correctly predict the detailed structure of the current, were necessary to model 
the deposition. 

The box model presented here has the advantage of producing simple analytical 
formulae for the radius as a function of time and for the density of deposit. While the 
box model also produces order-of-magnitude estimates for the extent of the deposit 
that are dimensionally equivalent to those from the shallow-water equations, it neither 
explains the absence of the internal shock during the slumping phase nor predicts 
the density of the deposit more accurately than the shallow-water model presented 
here. Indeed, the box model does not attempt to describe any of the internal structure 
predicted by the shallow-water model, but concentrates only on the global mass, 
momentum and particle balances. The box model also has the disadvantage of not 
being extendable to account for the effect of topographical variations or variations 
in resuspension that might occur along the length of the current. 
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FIGURE 14. The radius as a function of time (a) and the density of deposit (b) for axisymmetric 
gravity currents composed of suspensions of 23 pn-diameter silicon carbide particles released into 
a tank of fresh water. The radial positions were measured with respect to the virtual origin in figure 
4(a). The symbols are from experimental measurements, the thinner curves are from the numerical 
solution of the theoretical model presented in the main text and the thicker curves are from solution 
to the box model presented in the Appendix. The properties of the current are listed in the legend. 
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