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Many flows, including those containing suspended particles, are kept turbulent by the 
action of the bottom stress, and this turbulence is also responsible for maintaining 
sedimenting particles in suspension and in some cases entraining more particles from 
the bed. A convenient one-dimensional analogue of these processes is provided by 
laboratory experiments conducted in a mixing box, where a characterizable turbulence 
is generated by the vertical oscillation of a horizontal grid. In the present paper we 
report the results of a series of experiments with a grid located close to the bottom 
boundary to simulate the action of stresses acting at a rough boundary, and compare 
the results with those obtained using the more extensively studied geometry in which 
a similar grid is located in the interior of a stirred fluid layer. Experiments have been 
conducted both with dense, particle-free fluid layers and with layers containing 
sufficiently high concentrations of dense particles to have a significant effect on the bulk 
density. In the fluid case, the interface at the top of the stirred dense layer continues 
to rise as lighter fluid is entrained across the interface. Sediment layers are distinctly 
different, because the particles responsible for the density difference between the layers 
can fall out of the suspension as it changes in thickness. The work done in keeping 
particles in suspension and the effect of this on the turbulence above the grid must be 
taken into account. The mechanism of resuspension of particles depends on the level 
of turbulence near the bottom boundary, below the grid. As the stirring rate, and thus 
the intensity of turbulence, are increased three possible equilibrium states can be 
attained sequentially : the particles eventually all precipitate; or some particles 
precipitate while the remainder are held indefinitely in suspension; or all the particles 
are suspended. In the last two cases a stable, self-limited suspension layer is produced, 
separated from the overlying fluid by a sharp density interface at a fixed height. 
Theoretical arguments are presented which provide a satisfactory scaling of the 
experimental data. These are compared with previous theories and numerical 
experiments aimed at modelling both the one-dimensional problem and the 
corresponding processes in turbulent gravity currents. Comparisons are also made with 
sediment-laden channel flows and convecting layers containing sedimenting particles. 
Similar results will hold for light, positively buoyant particles or non-coalescing 
bubbles. 
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1. Introduction 
Turbulent layers of dense fluid, separated by a sharp interface from a less dense 

overlying fluid, occur in many natural contexts. In gravity currents, the lower layer 
flows under gravity down a slope or as a horizontal intrusion, and when the Reynolds 
number is sufficiently high, turbulence is produced and sustained by shear stresses 
acting at either the bottom or the interface. In one class of gravity currents the driving 
density difference may be due to either thermal or compositional effects. Examples 
include katabatic winds in the atmosphere or thermal fronts in the oceans and in lakes, 
and the laboratory analogues of these flows using a solute such as salt or sugar. 

Another important class of gravity currents comprises flows in which the bulk 
density differences are due to the suspension of dense particles. These include fine silt 
in river outflows into the sea, sand in turbidity currents, ash in pyroclastic flows down 
the slopes of volcanoes, snow crystals in avalanches and phenocrysts in convecting 
magmas. A fundamental difference from gravity currents driven by purely compo- 
sitional variations is that particles may settle out of sediment-laden flows, or be picked 
up from the bottom, so that the downslope buoyancy flux is not necessarily constant 
but may change with time and position downstream. The new set of questions posed 
by such flows includes the following. What determines the relative rates of settling and 
resuspension? Is it possible to achieve a steady state in which the two processes are in 
balance? Is the sharp top of a turbidity current dynamically the same as the entraining 
outer edge of a dense-fluid gravity current? These questions have been addressed 
previously in the sedimentology literature in various ways, but in the present work we 
have adopted a more fundamental approach. 

A technique which has been extensively used to study turbulent mixing in stratified 
flows is to concentrate on the one-dimensional problem of mixing across an interface, 
which is simpler to set up and measure than a flow along a slope. In natural situations 
turbulence may be produced either mechanically or convectively, but here we consider 
only mechanical generation. A two-layer or continuous stratification is set up and 
stirred mechanically using a horizontal grid of solid bars, oscillated vertically. In most 
previous experiments the grid has been located in the interior of the fluid, well away 
from solid boundaries. A well-mixed turbulent layer forms, bounded by one or more 
density interfaces which propagate away from the oscillating grid as fluid is entrained 
into the stirred layer. The rate of propagation depends on the interfacial density 
difference and on the intensity of the turbulence near the interface, which is decaying 
with distance from the grid. The results obtained in this geometry are now reasonably 
well understood, as described in recent reviews by Turner (1986) and Fernando (1991). 

In order to model the effects of the bottom stress in producing turbulence under a 
gravity current, we modified this convenient one-dimensional geometry by lowering the 
grid in a standard mixing box to a position much closer to the bottom. The dimensions 
of the box and the grid were kept the same (as detailed in the following section) so that 
direct comparisons could be made with previous results. A brief outline of the new 
experiments and the results in this geometry have been given by Huppert, Turner & 
Hallworth (1993). In the present paper we characterize this new configuration by 
making a more detailed comparison between the experimental results for the two 
geometries, using solute to provide the density difference. We then use this 
characterization to contrast the results of basal grid-stirring experiments using sugar 
solutions with those where a suspension of particles provides the density difference. 
The last case is of particular interest here, and the questions posed above for turbidity 
currents are translated into the following for stirred layers. Can the turbulent motions 
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keep the particles indefinitely in suspension, and under what conditions? Are there 
conditions under which only some of the particles can be maintained in suspension? 
What is the resulting depth of the suspension layer, and what are the dynamical 
conditions at its top? 

In $2 below we first summarize the earlier grid-stirring results. We then present the 
new experiments with the grid close to the lower boundary and make a careful 
comparison between the two geometries. In 93  we discuss experiments in which the 
density increase in the lower layer is due to a suspension of small dense particles. The 
various possible time histories of experiments started with the same layer depth but 
different stirring frequencies are described briefly. We then concentrate on the steady- 
state conditions, first with layers of fully suspended particles and then layers in which 
only a fraction of the particles remain in suspension. The criterion for resuspension is 
also discussed at this point. In 94 a theory giving the layer depth in terms of the other 
observed parameters is presented, and effects at the top of the sediment layers are 
contrasted with those at the entraining fluid interfaces described in $2. The bottom 
boundary conditions, and the criteria for re-entrainment of particles from the bottom, 
are considered in $5 .  Comparisons are also made in 96 with theories and numerical 
experiments describing particle-laden flows in which either convection or a boundary 
stress produces the turbulence. The results are summarized in the final section, where 
the applications to the practical problems which motivated the research are also 
discussed. 

2. Mixing across fluid density interfaces 
2.1. Summary of previous results with the grid in the interior of the stirred layer 

To set the scene for the new experimental results we first describe the mixing 
experiments previously conducted with the oscillating grid iocated well away from 
boundaries. In this discussion we draw heavily on the reviews by Turner (1986) and 
Fernando (1991). The paper by E & Hopfinger (1986) is also very helpful. 

It became clear from the evaluation of the earliest experiments of this kind as 
described in particular by Turner (1968) and Thompson & Turner (1975) that the 
properties of the turbulence generated by a vertically oscillated grid depend strongly 
on both the geometry of the grid and on the amplitude of the oscillation. In later 
experiments therefore it has become customary to standardize the grid to a planar form 
and to use bars with a square cross-section and a spacing in the two perpendicular 
directions of M / m  = 5 ,  where M is the centre-to-centre spacing and m is the bar size. 
Most experiments have in fact been carried out in a standard square tank 
254 mm x 254 mm x 450 mm deep using a grid having m = 10 mm and M = 50 mm, 
with five bars in each direction and half a grid space plus a small clearance at each end, 
rather than a solid bar along the walls. Some experiments, for instance those by 
Hopfinger & Toly (1976), have been conducted using a tank and grid with double these 
dimensions. 

The mixing rate across the density interface bounding a dense stirred layer below a 
less dense layer at rest depends on a balance between inertia forces exerted by the 
turbulence and the restoring buoyancy forces in the close neighbourhood of the 
interface. Dimensional arguments show that the rate of entrainment v E  can be put in 
the form 

V E  = dz/dt = v,f(Ri), 
where f is a function of the Richardson number Ri=g' l /v i ,  which is the ratio of 
buoyancy to inertia forces. Here g' = gAp/p, is the reduced acceleration due to gravity, 
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where Ap is the density difference across the interface and po is the density of the upper 
layer, I is the integral lengthscale of the turbulence and v, is the r.m.s. value of the 
vertical component of the turbulent velocity, both measured in a homogeneous fluid at 
the same depth as the interface. It is important that these length and velocity scales are 
those appropriate for the turbulence which is actually doing the mixing. They can, 
however, often be related to overall parameters such as the layer depth and the velocity 
of the stirrer in particular geometries, as described below. 

Hopfinger & Toly (1976) suggested that the available experimental results with 
square grids having M / m  = 5 could be fitted by the expression 

where w is the frequency of oscillation and S is the stroke (twice the amplitude), and 
C is a constant which is about 0.30. The two most important features of this result are 
the linear dependence of velocity on stirring frequency and the decay of the r.m.s. 
velocity inversely with distance from the grid midplane. The integral lengthscale I 
increases linearly with distance from the grid, with a constant of proportionality of 
about 0.10 when S / M  is less than 0.2, so that the product v ,  I and the Reynolds number 
of the turbulence stay constant as it decays away from the grid. Using these relations 
to evaluate the scales near the interface, we may express the entrainment relation (1) 
as 

vE/v, = C2 Ri-P, 

where /3 = 3/2. (C, is used here, and C, later in (4), to conform to the notation 
introduced by Huppert et al. 1993.) This power-law dependence in the limit where 
entrainment is controlled by non-diffusive processes (as it is in the experiments of 
interest here which use solutes such as sugar and salt to produce the density differences) 
has been confirmed by the later measurements of E & Hopfinger (1986), which also 
support the previously suggested frequency dependence. 

As more measurements have been reported in the literature, however, the picture has 
become more complicated rather than being clarified. Fernando's (1991) review has 
shown how subtle changes in the experimental configuration can affect the results and 
their interpretation, and the value of the power /3 in (3) is still the subject of 
controversy. There are several sets of careful experiments which support a value of /3 
closer to 1.2 for the salt-stratified case, and arguments have been put forward that 
suggest that the higher values may be due to the use of inappropriate velocity or length 
scales. Nokes (1988) deduced that for his experiments covering a range of strokes up 
to 3.2cm, the decay law is more nearly z - ~ . ~ .  This range includes that used in the 
present experiments. In deducing the value /3 = 1.2 from his data, however, Nokes 
avoided the necessity of using any explicit decay law by calculating the entrainment 
rates for different stirring rates at fixed distances from the grid. There is also a 
theoretical argument by Long (1978) leading to the prediction (Fernando 1988) that 
/3 = 7/4, but there is little experimental support for a value as high as this. 

Certainly the particular form (2) chosen for the decay of velocity with distance away 
from the grid affects the power which is deduced in (3), and in our interpretation of the 
new experiments we will use the more general, dimensionally correct expression 

That is, we allow for a general power-law decay rate and introduce a representative 
lengthscale d which incorporates all the other lengths specified by the geometry of the 
grid and its stroke. This descriptive lengthscale was kept constant over the series of 
experiments. Both a and /3 will be deduced from the measurements, making no prior 
assumptions about either. 

VJOS = CS/2M1/2z-1, (2) 

(3) 

v1 = C, wdaf1z-". (4) 
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FIGURE 1 .  
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Sketch of the stirring box geometry used in the experiments. 

2.2. Stirring with the grid near the bottom boundary 
The geometry used in all the quantitative experiments reported below is sketched in 
figure 1. We lowered the grid of 10 mm square bars in the ‘standard’ mixing box to a 
mean height above the bottom, Z, of 19mm, and oscillated it with an amplitude of 
12.5 mm. At the extreme position in the downward oscillation there was therefore a 
clearance above the bottom of 1.5 mm. 

The density differences in the experiments without particles were produced by 
dissolving sugar in the lower layer. All experiments began with a 60 mm deep layer of 
sugar solution below a 220 mm layer of fresh water. Seventeen experiments were 
conducted covering different combinations of grid-oscillation frequencies w and initial 
density differences Ap,. In each run the depth of the lower layer was recorded as a 
function of time t as it deepened due to the entrainment of upper layer fluid. Once the 
depth exceeded 80 mm both the near-grid effects and the difference between the layer 
depth h and the distance z ( = h-F) between the mean position of the grid and the 
interface became unimportant, and as shown in figure 2 the observations were well 
fitted by a power-law relationship of the form 

z = Btb, (5 )  

where B is a function of w and Ap,, and the mean value of b, 6 = 0.151 f0.008, is 
independent of these two parameters. 

In the Richardson number which is defined following equation (l), the reduced 
gravity g’ is decreasing as the layer deepens but g’h is constant, by the conservation of 
solute. Since g’h is to a good approximation equal to g’z, and 1 is proportional to z ,  g’l 
can also be taken as constant. Thus in each individual run, Ri  changes with time only 
because u,, the turbulent velocity near the interface, is varying with distance from the 
grid. 

Substituting the general power-law expressions (3) and (4) into (l), and integrating 
to express z as a function of t ,  we obtain 

, (6) = C ( ’h -p/[a(2p+l)+lI w(2p+l)/[a(2~+l)+lltl/[a(2~+l)+ll 
3 g  1 

where C3 is a constant which incorporates the previous constants. Note that we have 
retained the directly measurable h in this relation, rather than using the deduced 1 
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FIGURE 2. The results of three typical experiments with a stirred layer of sugar solution entraining 
fresh water from above for different values of w and Ap,. The layer depth is plotted as a function of 
time on logarithmic scales in the form suggested by equation (5) together with a line of slope 0.15 1. 
This average slope for all the experiments is included for comparison. 
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FIGURE 3. Comparison between the experimentally determined values of B from figure 2 and the 
corresponding factor in equation (6).  Plotting Bo-~  against (w2/g’h)b allows both a and /l to be 
evaluated using the line of best fit, as described in the text. 

which is proportional to h. Comparing (6) with (5) we see that 01(2/3+ 1) + 1 = b-l = 
6.62 f0.35. 

Another relationship linking 01 and /3 can be obtained by comparing the 
experimentally determined values of B with the corresponding time-independent factor 
in (6). This is conveniently done by plotting B w - ~  against (wz/g’h)b for all the 
experiments on a log-log plot as shown in figure 3 .  The slope of the best-fit straight line 
gives directly /3 = 1.696 0.072 and hence, using the previous relation, 01 = 1.28 f 0.1 1. 

2.3.  Comparison between the two sets of experiments 
Very few experiments have previously been conducted in which the distance of the grid 
from the bottom boundary has been systematically varied. Nokes (1988) reported a few 
runs of this kind, but in no case was the grid as close to the boundary as in the present 
experiments. Nokes showed that moving the grid closer to the boundary increased the 
intensity of the turbulent motions above the grid, presumably because of the reflection 
of some of the energy propagating downwards, but the rate of decay remained 
unchanged under the stirring conditions he used. 

For the present experiments with the grid close to the boundary, there is a 
substantial difference in behaviour in comparison with the interior stirring experiments. 
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The decay rate for velocity, with the grid close to the bottom, described by a = 1.28, 
lies between the commonly adopted value 1.0 and that deduced by Nokes for his series 
of measurements at fixed distances from the grid, namely a = 1.5. But the dependence 
on Richardson number, with p = 1.7 rather than the value 1.2 deduced by Nokes (or 
1.5 if the earlier internal mixing results are given more weight), is definitely stronger 
with the grid close to the bottom. It is in fact close to the value proposed by Long 
(1978). 

The important point for the present purposes is that we have quantified the influence 
of the oscillating grid on entrainment across a receding interface directly in the new 
geometry. This same geometry has been used in the experiments with sediment layers, 
so that it will be appropriate to make some direct comparisons between the two sets 
of experiments. It would not have been valid to assume that the previously published 
results in stirring boxes would be applicable to the situation of interest here. 

3. The maintenance of suspensions by grid stirring 
We now present the results of experiments in which the density increase in the lower 

layer was due to a suspension of silicon carbide grit, which has a density pp of 
3.217 g ~ m - ~ .  Different size grades of the irregularly shaped silicon carbide particles 
were used (see figure 1 of Huppert et al. 1991 for micrographs of two of the grades), 
with effective median diameters h of 5.5, 5.8, 10.8, and 17.6 pm, where the effective 
diameter is the diameter of a spherical particle with the same settling velocity at low 
Reynolds number (the Stokes free fall velocity us). A measured mass M,, of particles 
suspended in water was added rapidly under a layer of fresh water, using a pipe 
extending to within a few millimetres of the bottom of the experimental tank. The grid 
was then oscillated with frequency w ,  and the system allowed to come to equilibrium. 
The frequency was then reduced in steps, and the properties of the new final states 
measured each time. All the quantitative experiments were conducted using the 
standard stirring box and grid described above. 

3.1. The time history of suspension layers 
The time histories of the layer depth and the particle concentrations were not 
monitored in detail during the main series of experiments. We first conducted some 
preliminary experiments using a smaller box and a (non-standard) grid made of flat 
metal strips. It is instructive first to present some data obtained in these qualitative 
experiments before we present our detailed quantitative results from the main series of 
experiments. We note first that the time history of the layer depth and the particle 
concentrations are distinctly different from that of the experiments with sugar solution 
in the lower layer, since the particles can migrate through and fall out of the stirred 
layer as it changes in thickness, rather than just contributing to the bulk density 
difference. 

In particular, instead of continuously deepening (as described by (5) for entraining 
fluid layers), the layer behaviour changes greatly as w and hence the intensity of 
turbulence is increased, even when the particle size and initial concentration are held 
fixed. This is illustrated in figure 4 using data for three different stirring frequencies, 
with the same depth and concentration of particles in the lower layer. At the lowest 
stirring rate the particles eventually all precipitate while the layer depth first decreases 
(producing a transient increase in particle concentration), and then increases without 
limit. For an intermediate level of turbulence (with w = 1.67 Hz) some particles remain 
in suspension after a long time, and the layer depth goes through a minimum before 
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FIGURE 4. The evolution of (a) the layer depth and (b) the concentration C of suspended particles 
for three different stirring frequencies w in a single experiment. 

(Pm) 5.5 5.8 10.8 17.6 

w2 (Hz) 2.6 2.7 3.4 4.0 
w, (Hz) 0.75 0.9 1 .o 1.2 

TABLE 1. Effective particle diameters, and the two critical stirring frequencies introduced 
in the text. 

reaching an asymptotic steady depth close to the initial value. With still higher stirring 
frequencies, all the particles are held in suspension in a layer which is slightly shallower 
and more concentrated than the initial distribution. An explanation of these different 
behaviours in the steady state will be given in the following sections. These results are 
clearly preliminary, and it will be interesting to pursue these transient experiments 
more thoroughly in the future. 

3.2. Steady-state suspension layers 
We concentrate now on the measurements of the final layer properties in the 
experiments using the standard stirring box and grid geometry where a steady state was 
attained. As seen from figure 4 the approach to this steady state often took several 
hours. For a given particle size, two critical frequencies could be identified, as 
summarized in table 1. Below a critical frequency w1 (dependent only on the size of 
particles, and not on the initial mass of particles M,) the intensity of turbulent stirring 
was insufficient to maintain any of the particles indefinitely in suspension, and 
eventually they all fell to the floor. (The factors determining the equilibrium conditions 
at the bottom boundary will be discussed in more detail in 95.) 
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FIGURE 5. The final depth z ,  of a sediment layer as a function of stirring frequency w for an individual 
run in which all the particles of diameter 5.5 pm were held in suspension ( M ,  = M,, = 177 g and 
w > wz). 

Above a second critical frequency w2 all the particles could be held in suspension. 
For small M,, the depth of the sediment layer continued to increase up to the free 
surface, but for sufficiently large M,, the suspension layer thickness reached a final 
steady value h,( = z ,  +q, which is a function of frequency w (and also the size of the 
particles) but independent of the initial thickness of the layer containing the particles. 
In this regime the total mass of particles in suspension was constant, and z ,  is 
approximately linearly proportional to w ,  as shown for an individual run in figure 5.  
The constant of proportionality is dependent on the total mass M,, = M,, and the final 
concentration C, of particles in the suspension, assumed to be constant with depth, is 
equal to the final mass M ,  divided by the final volume of the suspension layer. 

At frequencies between w1 and w2 some of the particles fell to the floor while a 
fraction remained suspended in a layer, the final thickness of which was again 
independent of the initial thickness. It was found that the final depth z ,  was again a 
function of w ,  the particle size and M ,  only, so that once the mass remaining in 
suspension is known it is not necessary to specify whether all or only a fraction of the 
particles remained in suspension. Figures 6 and 7 present all the quantitative 
measurements of the final depth of the suspension layer above the grid z,( = h, -3, 
for the whole of the frequency range covered?. (The theory developed in 94 below 
indicates that instead of z ,  we should use z,(z,/h,)l13 in the ordinates of these figures, 
but the difference between z ,  and h, is so small for most of the data that the plots are 
changed very little.) 

Figure 6 is a plot of z,/w versus M,, for different sized particles on logarithmic 
scales. In each case M ,  was determined by withdrawing a sample from the centre of 
the suspension layer, allowing it to settle, and weighing before and after decanting and 
drying to deduce the liquid and solid fractions, and hence C,  and M,. The stirring 
frequency was lowered in steps, and the system allowed to come to equilibrium each 
time before measuring the new values of z ,  and M,. In many experiments the size 
distributions of the particles sedimented on the bottom of the tank and those remaining 
in suspension were measured and compared. The distributions were not detectably 
different, showing that differential settling, with the larger particles falling out first as 
w is decreased, is not responsible for the variation of M ,  with w.  It seems likely that 
with a broader distribution of particle sizes differential settling could be a significant 

t A detailed listing of all the runs and the quantitative results is available from the JFM Editorial 
office. 
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FIGURE 6. Plot of z,/w versus M ,  on logarithmic scales for different sized particles and a wide range 
of stirring frequencies. The best-fit lines to the form z ,  ML cc w have a slope ,U of -0.275, and the 
constant of proportionality is a function of the particle diameter. 
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FIGURE 7. Plot of z ,  versus w for all the experimental runs with various particle sizes and masses in 
suspension. Compare this with figure 8, in which the data are scaled in accordance with the theory 
presented in $4. Symbols as figure 6. 

factor, but this lies outside the scope of the present experiments and paper. The 
important dynamic effect of variations in particle size is expressed in the Stokes free fall 
speed us, for a particle of diameter A, which is given by 

where pa is the density of the ambient fluid and v its kinematic viscosity. The values of 
us corresponding to the median particle sizes will be used in the comparisons with the 
following theory. Any effects which might be due to hindered settling are not 
incorporated. 

The lines fitted to the data for each particle size in figure 6 show that there is good 
consistency over the range w1 < w < 02, with z ,  M z  cc w ,  where the constant of 

0, = g(Pp-Pp,)h2/18Pov7 (7) 
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proportionality is a function of the particle diameter h and perhaps some other 
geometrical factors. The best-fit lines for all the particle sizes used have a slope ,U of 
- 0.275 on this plot. However, in the experiments with the largest values of M,, when 
nearly all the particles were in suspension, the measured values of z,/w fall below these 
lines. Under these conditions there is virtually no change in M ,  (since it cannot 
increase above M,) and the final depths of the layers decreased slightly for a given w .  
These, and the anomalous results on the right of figure 6 (plotted as the open squares), 
will be considered further in $ 5 in the context of our discussion of the bottom boundary 
conditions. 

The linear plot of z, versus w ,  with the experimental data collected together in figure 
7 for all particle sizes and masses in suspension, does not show the dependence on M ,  
and particle size (or us) and there is a great deal of scatter. It is given here for later 
comparison with the same data scaled in accordance with the theory developed in $4. 

4. Theoretical interpretation of the experimental results 
4.1. Comparison between dense fluid layers and suspensions 

In seeking to explain the data presented above, and to scale the measurements to bring 
data from different runs into a common form, we have considered several alternative 
ideas. The first has been foreshadowed in $2 : can the entrainment relation (1) obtained 
for dense fluid layers, with the powers a and p in equations (3) and (4) evaluated in 
experiments with the grid close to the bottom boundary, be carried across to 
suspensions? The extra hypothesis required in the latter case is that the sediment layer 
stops growing when the particle fall velocity vs just equals the entrainment velocity uE. 

, (8) 

where k incorporates the constants C,, C, and d, and g'h = C,, which is a constant 
(independent of time) for each fluid layer experiment (by conservation of mass). For 
the steady state of the corresponding experiment with particles we can assume that 
C, K M ,  when z = z,. Replacing uE by u, in (8) and rearranging, we obtain 

(9 a> 

(9 b) 

This power-law dependence of z ,  on w is not borne out by the experiments. When 
Z,/WO.'~ is plotted against M,, no ordering of the data is achieved, whereas figures 5 
and 6 give strong support to the conclusions that z ,  is proportional to w. Further, if 
uF is calculated using (8) for all the final layer depths measured in experiments with a 
given particle size, there is a wide variation. Thus the entrainment velocity cannot be 
balanced by particles falling away from the interface with a fixed settling velocity. 

This can be tested as follows. Substituting (3) and (4) into (l), we obtain 
uE = kC -PwZP+lz-a(2P+1) 

4 

wllaM-Pla(zP+l) u;lla(2P+1) 
00 

and inserting the numerical values a = 1.28 and /3 = 1.70 yields 
w0.78M-0 .302  

00 a, ub0.178. 

4.2. Fluid layers with an imposed buoyancy f lux 
A more productive approach is to draw an analogy between sediment layers and fluid 
layers which have a stabilizing buoyancy flux superimposed on mechanical stirring. 
The classic example of this situation is wind blowing over the heated surface of the 
ocean, producing turbulence which mixes the heat downwards to a depth 

D = au3,/B, (10) 
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FIGURE 8. All the experimental data scaled using the theory leading to equation (19). There is a very 
satisfactory collapse of the data for all particle sizes onto a straight line with slope 3.85. (Compare 
with the unscaled plot, figure 7.) 

where u* is the friction velocity, B is the buoyancy flux and a is a constant. This form 
was first suggested by Kitaigorodskii (1960) on dimensional grounds. The depth D is 
in fact proportional to the Monin-Oboukhov length, and (10) implies that a constant 
fraction of the kinetic energy input is being used to change the density of the mixed 
layer. The density of the surface layer decreases (as the temperature increases) linearly 
with time, while D stays fixed. There is thus no entrainment across the edge of the 
well-mixed layer; all the turbulent kinetic energy is being used to change the potential 
energy of the layer, and the turbulent velocity falls to zero at the interface. This same 
model will also be relevant for the (inverted) case of a turbidity current picking up 
sediment, where the turbulence generated by the bottom stress is providing energy to 
lift the entrained dense particles. 

When grid stirring replaces the surface stress as the source of the turbulence, 
Hopfinger & Linden (1982) have shown that (10) no longer gives a satisfactory 
description of the equilibrium layer depth. Instead, a local energy balance must be 
used, in which the viscous decay of the turbulence away from the stirring grid is taken 
into account, i.e. the decay of velocity according to (4) must be incorporated into the 
theory, as well as the effect of the buoyancy flux. In order to lay a foundation for our 
subsequent discussion, the results of Hopfinger & Linden’s (1982) analysis for grid- 
stirred fluid layers will now be summarized, with a critical assessment of the 
assumptions they have incorporated. We then discuss the extension of their model to 
layers of suspended particles and (in a later section) its relation to numerical models 
of the suspension mechanism. 

In a homogeneous fluid, the turbulent kinetic energy equation for a spatially 
decaying turbulent velocity u can be written as 

r du3/dz = - u3/qz, (1 1 4  
where r is a constant (found experimentally in fluids of constant density to be given by 
r = 2.2) and the integral lengthscale 1 = qz. This linear increase of 1 with distance from 
an origin near the grid centreline has been assumed in virtually all theories, including 
those presented in $2. The solution of (1 1 a) is 

(1 1 b) u = Uo(z/zo)-1’3rQ, 
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where u, is the velocity at zo some distance from the origin. Hopfinger & Linden (1982) 
adopted a = 1 in the notation of equation (4), the value proposed by Hopfinger & Toly 
(1976) for grid stirring in the centre of a layer. In the following analysis we will use 
a = 1.28 as determined by our new measurements with the grid near the boundary 
and modify Hopfinger & Linden’s argument accordingly. This implies that rq = 0.26 
(instead of the previously adopted value of 1/3). To simplify the resulting equations the 
notation (rq)-’ = 8 will also be introduced in (14) below, with the value 8 = 3.84 
corresponding to the new geometry. 

When a buoyancy flux is imposed near the level of the stirring grid, another term 
must be added to the right-hand side of (1 1 a)  and it becomes 

where w’ and p’ are the fluctuating velocity and density. If we suppose that the density 
is independent of height and that the layer remains well mixed as its density changes, 
then the buoyancy flux is a linear function of height and must fall to zero at the edge 

- 
rd(u3)/dz = - u3/qz+ (g/po> w’P’, (12) 

of the layer. Hence 

where B, is the buoyancy flux at the origin. We substitute (13) into (12) and solve for 
u, with the boundary condition u = u, at z = z,. The solution in dimensionless form is, 
for distances from the grid such that ( z / z , ) ~  9 1, 

Making the further assumptions that the density gradient is sufficiently weak for 0 to 
have the same value (0 = 3.8) as for the case without a buoyancy flux but with the grid 
near the bottom boundary, (14) becomes in dimensionless form 

Mixing stops at the top of the mixed layer, and (15) shows that u = 0 when z = D, if 

Thus it is predicted that the mixed-layer depth scales with (U;/B,)O.~~ for fixed zo rather 
than having the form (10) suggested by the Monin-Oboukhov scaling. The power is a 
consequence of the measured decay law for turbulent velocity adopted here; the 
original calculation by Hopfinger & Linden (1982) used a 1/4 power corresponding to 
01 = 1. They also compared this with the power 2/11 = 0.182 resulting from the use of 
a = 1.5, and their experimental data gave some support to both these forms for 
different ranges of the layer depth. 

It is instructive to plot out some of the above results so that the effect of the 
buoyancy flux on the turbulence under these assumptions can be appreciated more 
fully, but this will be deferred to $ 5 ;  they will also be compared with numerical 
treatments of this problem in $6. We first proceed with the application of these ideas 
to the explanation of our measurements of the equilibrium depth of layers of 
sedimenting particles. 

4.3. Extension of buoyancy flux model to suspensions of particles 
E & Hopfinger (1987) have shown how a further simple and physically plausible 
assumption allows (1 5 )  and (16) to be applied to layers of sedimenting particles stirred 
with an oscillating grid. They assumed that in equilibrium, when the mass of particles 
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in the layer is steady, the upward solid particle flux due to the turbulent transport must 
be equal and opposite to the downward flux due to particle settling. Work must be 
done on the particles to keep them in suspension, and this is equivalent to a stabilizing 
buoyancy flux which can be related to the settling rate. Because the two transports are 
equal and opposite, the density of the suspension remains constant and nearly uniform 
with depth. This will not be quite correct at the top of the layer, where some settling 
must occur, and the fall-velocity distribution might enter the problem. (In addition, in 
very concentrated sediments the gradient of concentration may become important, as 
discussed further in $ 5 . )  - 

Explicitly, the stabilizing buoyancy flux equivalent to (g/po)(w’p’) in (13) is now 
~ 

(glpo) w’p’ = (g*u, C )  (z  - D ) / D ,  (17) 

where g* = g(p,-p,)/p,, p p  being the density of the solid particles and pa the fluid 
density, v, the settling velocity and C the (dimensionless) volume concentration of 
particles. The further development of the theory then follows the arguments leading to 
(14) and (16), with B, replaced by the particle buoyancy flux (g*u, C). E & Hopfinger 
(1987) used the decay law with a = 1 and hence the power 1/4 in (16) and expressed 
the equilibrium suspension layer depth as 

D = (20r)1/4 (u, z0)3/4 (g*u, c)--1/4. (18) 

The essence of E & Hopfinger’s mechanistic theory is contained in the following 
dimensional argument. The fluid motions near the oscillating grid are described by a 
single parameter wd2, the ‘grid action’, where d is the representative length introduced 
in (4) and w is the stirring frequency. In the notation used in (18) this is equivalent to 
u, zo. The buoyancy flux associated with particles falling out (and being lifted and held 
in suspension) is g*u,C, as described above. If wd2 and g*u,C are the only two 
physically relevant parameters on which the final depth above the grid depends, it 
follows on dimensional grounds that 

Z ,  = (wd2)3/4 (g*o, Cm)-1/4 (194 

or (g*v, C, z:)lI3 = od2.  (19b) 

It may be convenient to express this in terms of the total mass in suspension, M,, 
defined on the assumption that the concentration remains uniform right to the bottom 
of the tank. (Allowance could be made if necessary for the layer of sediment deposited 
on the bottom of the tank, but this refinement is not justified in the current context; 
it is discussed further in $ 5.) Using the relationship M ,  = Ap,  h, C,  between the load 
M ,  of particles in suspension and the final volume concentration, where A is the cross- 
sectional area of the tank, and taking due account of the difference between z ,  and 
h,( = z ,  +3, (19) can be rewritten as 

z ,  = (wd2) (g*u, M,/Ap,)-1/3( 1 + .T/z,)li3. (20) 

4.4. Resealing and discussion of the experimental results 
A plot of all the data collected in figure 7, scaled using (7) and (19b), is given in figure 
8, where different symbols have been used for the four sizes of particles. There is a very 
satisfactory collapse of the data onto a straight line (with best fit d = 19.6 mm), which 
gives good support to the above theory. The major source of the scatter is, we believe, 
the distribution of particle sizes and the uncertainty in median particle size due to the 
possible disaggregation of particle clumps before the sedigraph measurements. The 
straight-line fit for individual particle sizes is much better than that obtained with a 



Sedimentation in dense layers stirred by a grid 277 

40 

t 

0 1 2 3 4 5 6 

w (H4 

FIGURE 9. The data of E & Hopfinger (1987), scaled according to equation (19). Their experimental 
results using a different grid size and bottom boundary conditions are well fitted by the same form 
as our data shown in figure 8, but with a different constant of proportionality. 

simple use of the (inappropriate) fluid layer entrainment relationship. The data of E & 
Hopfinger (1987), obtained using a larger grid of the same form but with a different 
bottom separation distance and stroke, are plotted in figure 9. They are well fitted by 
the same functional form, with a constant d = 27 mm. 

5. The bottom boundary conditions 
The experimental data presented above have shown that once the equilibrium load 

M ,  of sediment held in suspension is specified, there is good support for our choice of 
the physically most significant parameters. That is, the sediment layer depth can be 
determined as a function of M,, the stirring frequency w which specifies the intensity 
of turbulence in the region above the grid, and the particle fall velocity v, which is 
related to the buoyancy flux due to the particles. Two questions require further 
discussion: how is M ,  related to M, when only a fraction of the particles is held in 
suspension, and what determines the rate of ‘re-entrainment ’ of particles settling on the 
bottom? Both of these are related to the bottom boundary conditions, but it is 
desirable to distinguish between results that can be explained in terms of the properties 
of the turbulence decaying above the grid, as we have already done in the previous 
discussion, and those that require the consideration of the interaction between the 
turbulence below the grid and the layer of deposited particles. 

5.1. Energy argument for particle suspensions 
Consider first an experiment which was started with an initial load M,,, and has reached 
the stage where some particles have settled on the bottom of the tank. Suppose that the 
particles have been deposited because a given mechanical energy input into the 
turbulence close to but above the grid can support only a certain (maximum) particle 
concentration C,, associated with a maximum buoyancy flux. If w and hence the 
energy input are increased, it follows from (20) that this general relationship is satisfied 
if there is an associated increase in M,, the mass of particles in suspension, with z ,  
changing little. For example, for a particular series of experiments we found that z ,  
remained approximately constant (within the experimental error) while M ,  was 
proportional to w3. 
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FIGURE 10. The turbulent velocity as a function of distance from a stirring grid, when there is a 
stabilizing buoyancy flux. The velocity has been calculated using equations (1 5) and (16) obtained 
from a modified form of the theory due to Hopfinger & Linden (1982). The decay rates for three 
values of the parameter B = (u i /B ,  2,) are compared with the behaviour when there is no buoyancy 
flux. 

The results discussed above are similar to those obtained by E & Hopfinger (1987), 
which they explained in terms of an unnecessarily restrictive energy argument. The 
relations (19) and (20) imply that the sediment load is determined mainly by the 
properties of the turbulence near the grid, and the buoyancy flux through the layer 
immediately above it. It is instructive at this point to refer back to the argument leading 
to the relationship (16), the mixed-layer depth for fluid layers with a stabilizing 
buoyancy flux, which was extended to suspensions of particles. Whatever decay law is 
later used for the turbulent velocity, the dimensionless group (u~/B,z , )  = 9 say, 
expresses the balance between the properties of the turbulence and the buoyancy flux 
near the grid. The above argument is equivalent to the statement that, when 9 is held 
constant (by varying B, and u,, or M ,  and w ,  simultaneously) then D = z ,  also has a 
constant value. 

The relation (15) can be used in conjunction with (16) to illustrate the effect of 
changes in 9 on the layer behaviour. Figure 10 shows the variation of turbulent 
velocity with distance from the grid calculated for three values of 9 and compared 
with the decay when there is no buoyancy flux. The buoyancy flux is decreasing 
linearly to zero at the top of the layer according to the model, and it begins to have a 
significant effect on the turbulent velocity (reducing it by 4%) at z/zo x 3 when 9 = 
lo2 and the corresponding D / z ,  = 6.08. For 9 = lo3, D/z ,  = 9.78 the same fractional 
reduction occurs at z / zo  x 5,  and for 9 = lo4, D/z ,  = 15.74 it occurs at z / zo  x 8, 
approximately half the total depth in each case. This behaviour will be compared with 
the results of the numerical computations of Noh & Fernando (1991 a, b), discussed in 
§ 6. 

5.2. Direct eflects of the sediment layer on the bottom boundary 
When M, is increased beyond about 600 g (the upper limit of the range discussed in the 
previous section), the equilibrium value of z ,  decreases for a given w while M ,  
increases (as shown, for example, by the lowest points at the tight of figure 6). This 
implies that more particles have been held in suspension because more are available. 
This behaviour is probably associated with the fact that the effective turbulent velocity 
acting on the particles near the bottom is increased when the settled layer of particles 
is deeper so that the effective layer depth beneath the grid is less. We need therefore to 
consider the detailed geometry of the sediment layer in relation to the grid, including 
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the shape of the cusps formed at the top of this layer, and the variation of the turbulent 
fluid velocities very close to it in the space between the mean position of the grid and 
the floor. 

It is likely that a ‘near field’ velocity pattern occurs rather than the kind of power- 
law decay of velocity we have used to describe the turbulence above the grid. In some 
experiments with the larger values of M,, the grid, if brought to rest at the bottom of 
its travel, would be buried in sediment if all the particles settled out. For example if 
710 g of particles all settled out on the bottom in the absence of the grid, the depth of 
the sediment layer would be 7 mm. A small extra deposit of sediment would decrease 
the grid-sediment layer distance, and thus subject the sediment to a large increase in 
fluid velocity which would tend to resuspend it. 

The above interpretation is supported by the results of experiments in which 
successive extra weights of sediment were added to the tank while stirring was 
continued at a fixed frequency (2.28 Hz). For example, starting with 355 g of particles 
in suspension, a steady state was attained with 230 g of particles left in suspension, and 
hence 125 g on the floor. Two further additions of 135 g of particles each were made and 
the suspension layer allowed to come to equilibrium at each stage. Each addition was 
accompanied by a corresponding decrease in z ,  but no more particles sedimented 
during either period, so that the values of M ,  and B,, increased and the ratio B = 
(u~/B,z , )  decreased. In each case, the values for the final mass in suspension as a 
function of w and the other parameters were consistent with (20), so that the previously 
determined conditions above the grid are still relevant; the points corresponding to this 
experiment are marked as black diamonds on figure 8. However, the constancy of the 
weight (and thickness) of sedimented particles implies that the variation of the 
turbulent intensity near the bottom is extremely large over distances of a few mm, and 
suggests the following interpretation of the lower critical frequency w1 shown in table 
1. For each stirring frequency the level of turbulence in the region below the grid allows 
a critical amount of sediment M ,  to settle, until the deposited layer reaches a certain 
depth, which depends on o. At sufficiently low w ,  depending on the particle size, all the 
particles can settle and not be re-entrained, because nowhere on the bottom boundary 
are the velocities produced by the grid large enough to resuspend the particles. 

With the largest values of M ,  and the smallest particles used in our experiments the 
relationship between z,/w and M ,  changed dramatically, as shown by the open 
squares on the right-hand side of figure 6. The final depths of the suspension layers 
were small and the concentrations very high. It seems probable that the turbulent 
velocities were in the ‘near field’ regime both below and above the grid and were being 
directly affected by the thickness of the sediment layer near the bottom, and it is not 
surprising that the functional relationship is completely different. Though the top three 
points corresponding to the lowest values of w also seems to plot reasonably well in the 
scaled figure 8, the deviations from the fitted line are in fact large, and it would 
probably be better to exclude them as being outside the range of conditions which can 
be fully explained. 

6. Comparison with previous theories of particle suspension 
6.1. Numerical model of grid-stirred layers 

Noh & Fernando (1991 a, b) have developed numerical models to describe dense 
turbulent layers stirred by a grid, for both a fluid layer with a stabilizing buoyancy flux 
and a layer of sedimenting particles. Though they introduce many detailed assumptions 
about the turbulent structure and the effects of density gradients on the turbulence, in 
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FIGURE 11. Comparison of the turbulent energy transfer (TT), the buoyancy flux (BF) and the viscous 
dissipation (VD) calculated by Noh & Fernando (1991 a) as functions of distance from the ‘stirring 
grid’ in their numerical computation. Note that the BF dominates the energy balance near the final 
height, even though it is small there, since it falls off more slowly than VD. 

essence the underlying physical processes are the same as those introduced by 
Hopfinger & Linden (1982) and E & Hopfinger (1987), as discussed in $4. In the present 
section we explore the similarities and differences between these treatments to shed 
further light on our experimental results and their interpretation. 

First, we describe the fluid layer results and conclusions of Noh & Fernando (1991 a) 
in a qualitative way before considering the particle case in more detail. They impose 
a constant buoyancy flux B = B, and a fixed input of turbulent kinetic energy E = 
E, cc u: at the bottom of the computational region, and calculate the approach to a 
steady state. The equilibrium layers have a weak interior density gradient with a sharp 
density step above it, so that B decreases nearly linearly from B, at the base to zero at 
z = D, the top of the layer. However, E and the associated eddy diffusivity decrease 
to zero much faster than B, so that though the latter is small near D it nevertheless 
dominates the energy balance there compared to the viscous dissipation. This is shown 
in figure 11, reproduced from Noh & Fernando (1991 a). The same features are seen in 
figure 10, calculated using the simpler model of Hopfinger & Linden (1982). The 
specific empirical dependence of eddy diffusivity on density gradient introduced by 
Noh & Fernando (1991 a) emphasizes this effect and leads to the formation of a sharper 
front across which the propagation of both turbulent kinetic energy and the buoyancy 
flux are inhibited. But the formation of a layer of finite depth is an inevitable 
consequence of the rate of reduction of E by the buoyancy flux, as expressed by the 
ratio 9 = (u~/B,z,)  used in the theory leading to figure 10. 

We now turn to Noh & Fernando (1991b) which deals with suspensions. In this 
summary of their work some of the notation will be modified to take into account 
definitions already used in this paper. They introduce conservation equations of mass 
and momentum for both fluid and suspended particles, with the latter diffusing 
upwards and settling under gravity, and an equation for turbulent kinetic energy as a 
function of time and distance from the source. An eddy viscosity K* and energy 
dissipation rate c are defined in terms of the turbulent kinetic energy E = u2 and 
integral lengthscale 1, by 

K* = cp E1/21, and c = cD Eji21;1. (21) 

The equations are made non-dimensional using a characteristic velocity scale u, and 
lengthscale zo (in our previous notation) and the particle concentration is scaled using 
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FIGURE 12. (a) The Concentration of particles C and (b) the turbulent energy E calculated by 
Noh & Fernando (1991b) as functions of time (as marked on the graphs) and distance from the 
'stirring grid', for G = R = 

the total concentration in the layer of final depth z,, which is equivalent to the product 
C, z ,  in the definition following (19a). (The downward buoyancy flux associated with 
this concentration is g*vsC,, as defined in (17).) Noh & Fernando (1991b) then 
introduce the low-concentration limit in which 1, is assumed to increase linearly with 
z and the r.m.s. turbulent velocity u is taken to be inversely proportional to z (cf. our 
equation (2)) .  They then modify these using empirical expressions to take account of 
the effect of stratification on these scales. For our present purposes it is important to 
note that these further complications change the detail but not the essence of the 
resulting solutions. 

Two significant dimensionless parameters are then identified, namely 

R = vs/uo, (22) 

The ratio of the particle fall velocity to the turbulent velocity scale, and (using the 
notation introduced in the present paper) 

G = g*C, z,/ui = g*M,/Ap,  u;, 

which has the form of an overall Richardson number. The time-dependent equations 
are then solved for various combinations of R and G to trace the evolution of the 
turbulent kinetic energy and concentration fields in different circumstances. 

but different R, a sharp front is formed 
for R = lop3 and R = lop2 but not for R = lo-'; in this last case the particles are 
evidently falling out too rapidly, and a gradient of concentration is set up in which 
diffusion and settling are in balance. When a front is formed the density gradient due 
to particles can be neglected below the front, but the energy decay due to the buoyancy 
flux is dominant in the turbulent energy equation at the level of the front, just as it is 
in the case of the fluid layer with a stabilizing buoyancy flux. The concentration and 
turbulent energy distributions for one of these cases are reproduced in figure 12. When 
R is held at R = low2 and G is varied, no front forms with G = but it does form 
with G = lo-' when the buoyancy effect of the particles is larger. 

We now turn to the dependence of the final layer depth z ,  on R and G as determined 
by Noh & Fernando (1991 b), and relate these to the earlier results. These authors use 

In a series of calculations with fixed G = 
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a mechanistic argument following closely that of E & Hopfinger (1987) (which we have 
summarized in 94) to show that 

z,/zo = const. G--1/3R-1/3, ( 2 4 4  

and this dependence on both G and R is borne out by the detailed numerical results 
(with deviations from this for larger R when the extra effects of density gradients and 
so on are taken into account). Inserting the definitions (22) and (23), writing u,, = od  
and identifying d with the lengthscale zo near the grid, we can express (24a) as 

Z, = od2(g*vs M,/App)-1'3. (24 b) 
This is the same form as our (19b) when the difference between the layer depth and the 
distance of its top from the grid is ignored. We note also that the product G R  which 
occurs naturally in (24a) is a flux Richardson number, proportional to the inverse of 
the parameter 9 introduced in ( 1 5 )  and (16). Thus we find, not surprisingly, that with 
the same underlying physical assumptions the numerical results of Noh & Fernando 
(1991 b) give the same functional forms as the theory already summarized. 

6.2. Criterion for the formation of a front 
We now consider the criterion deduced by Noh & Fernando (1991 b) both numerically 
and analytically for the formation of a front (the existence of which we have assumed 
in the previous subsection). Provided R is small enough for the effect of stratification 
on the internal lengthscales to be neglected, they show that a front can form if 

G > 2.2R2 (25 a) 

approximately, or g*M,/App v," > 2.2. (25 b) 

This has the form of a Richardson number, but it is based on the properties and total 
mass in suspension of the particles alone, and not on the stirring grid or the turbulence 
it produces. Thus for a given particle density and size (hence fall velocity us) a certain 
minimum weight per unit area of particles must be held in suspension before a steady 
layer of limited depth can form. This further interpretation of their results was not 
pointed out by Noh & Fernando. 

In order to understand this strikingly simple but somewhat puzzling result we rewrite 
G/R2  in the more general form 

(25 c) 

which can be evaluated for any concentration distribution. In the regime where this 
parameter is sufficiently small that there is no sharp layer, C is almost exponential and 
takes the form C = C,exp( -v,z/K),  where C, is the concentration at the base 
( z  = 0) and K is the eddy diffusivity, assumed constant with depth. The integral in 
(25 c) is then C, K/v,  so that (25 c) can be written 

G / R z  = g* lCdr /v: ,  

G / R z  = g*C, K/v: = B, K/vi ,  (25 d )  
where B, = g*v, C, is the particle buoyancy flux at the bottom of the tank. Thus we see 
that both the buoyancy flux and the stirring rate (through K )  are implicitly included 
in (25c), and they are not irrelevant as the form (25b) at first suggests. We note also 
that because v, is proportional to h2 there is a very sensitive dependence of G / R 2  on 
particle diameter h (and hence the present development might need changing 
considerably to describe a situation with a broad distribution of particle sizes). Once 
a layer has formed, the concentration of particles within it is approximately uniform 
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and the integral in (25c) can be evaluated as Cbz,. Inserting this result and (19) into 
(25c), we find that once the layer has formed 

(25 el 
where R is a constant similar in structure to K. Thus the quantity B,R/vt  is again 
an appropriate combination to describe this second regime, to which the system jumps 
when a critical value of the parameter G / R 2  is exceeded. This snap-through, sub- 
critical mode of instability is very familiar in other contexts though the detailed 
physical processes driving the instability are all different. For example, an elastic 
column under axial loading suddenly buckles and takes on a new shape when a critical 
value of the Euler parameter is exceeded, and laminar flow in a pipe becomes turbulent, 
with a different mean velocity profile, at a critical Reynolds number. 

We should also now ask the question: is there a clear physical reason why this 
parameter is the unique combination which should determine the existence of a sharp 
layer? In deriving (19) we assumed that B, and K (equivalent to the grid action, or to 
the product u d 2  we used earlier) are the only external parameters on which z ,  can 
depend. To say whether a layer will form or not we need a third quantity describing 
the properties of an individual particle, as distinct from the bulk effect. If this is chosen 
to be v,, then it follows that (25 d )  is the only dimensionless combination which can be 
formed from these three physically relevant quantities. 

It is also instructive at this point to compare this phenomenon of layer formation 
with other situations where non-uniformities develop on a smooth density profile. This 
problem was first addressed theoretically in an oceanographic context by Phillips 
(1972), and it has more recently been reviewed and followed up in the laboratory by 
Ruddick, McDougall & Turner (1989). The common feature in all these studies is that 
there is a turbulent transport mechanism producing a vertical buoyancy flux which 
depends on the local density gradient, and is initially constant or smoothly varying 
with depth. If a local perturbation increases the static stability over a certain depth 
range, and this change in gradient reduces the 'diffusivity' of buoyancy more rapidly 
than the local gradient increases, then the local decrease in flux causes the gradient to 
increase further, and so the perturbation will amplify. Conversely, the flux is increased 
where the gradient is weakened, and the convergence of buoyancy near the interface 
causes a step-like structure to form. For smaller initial density gradients the flux can 
increase smoothly as the gradient is increased, with no tendency for layer formation. 
There will be a particular gradient separating these regimes, at which the buoyancy flux 
is a maximum. 

An analogous behaviour is implicit in the various forms of equation (25), the 
criterion for layer formation in suspended sediments. With a given composition and 
size of solid particles, the only variable determining the behaviour is the total mass in 
suspension M,. As M ,  (and hence the density gradient in the suspension) is increased 
from zero, the concentration gradient first decreases smoothly from a maximum at the 
base to zero at large z.  At a particular value of M,, given by (25b), the concentration 
gradient becomes large enough to cause the flux of particles to decrease over some 
depth range. This perturbation is amplified, and a relatively well-mixed layer forms, 
bounded by a sharp interface across which the flux is zero. 

G/Rz  = (B, K ' / V ; ) ~ ~ ~ " ,  

6.3. Settling and entrainment of particles in convective layers 
There has been a great deal of interest in the recent geological literature regarding the 
settling of crystals in convecting magmas, lava lakes or magma oceans, and the 
criterion for re-entrainment from the bottom boundary. It had previously been 
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assumed that in turbulent or unsteady convection, when the r.m.s. turbulent velocity 
is much greater than the settling velocity, then particles could be held in suspension 
indefinitely. Martin & Nokes (1988, 1989) showed, however, using laboratory 
experiments and a related theory, that particles can continue to settle through the 
viscous lower boundary layer in these circumstances, at a rate which is determined by 
the Stokes settling velocity and the particle concentration but is independent of the 
level of turbulence. At low concentrations the number of particles N held in suspension 
in a layer of depth h is given by 

dN/dt = -us  N / h  

and thus N decays exponentially with time, provided no particles are re-entrained from 
the bottom boundary. Similar conclusions have been reached by hydraulic engineers 
and sedimentologists, for example Einstein (1968) and McCave (1970). 

The experiments reported by Martin & Nokes were conducted using mainly cooling 
at the upper boundary, but heating at the bottom was added in a few runs. In one of 
these, that with the most viscous fluid and the smallest particles, re-entrainment into 
the plumes breaking away from the bottom boundary layer occurred, so that the 
particle concentration approached a steady finite value, rather than zero, at long times. 
We will consider in this section whether the re-entrainment mechanism into such 
convective flows can shed any light on the grid-stirred case of interest here. 

Koyaguchi et al. (1990) conducted a series of experiments using a suspension of 
dense particles heated from below. The particles were initially distributed uniformly in 
water through the whole depth (20 cm) of the tank and allowed to settle. For very low 
initial concentrations the particles settled exponentially in time, as described by (26). 
With larger concentrations, however, a stable bulk density stratification was set up, 
with a dense convecting layer, laden nearly uniformly with particles, below a clear 
layer, which was also convecting due to the thermal transfer across the interface. These 
layers were separated by a stable interfacial region containing a gradient of particle 
concentration, partly compensated by an unstable temperature gradient. The 
temperature of the bottom layer increased and its density decreased with time. 
Eventually the bottom layer became unstable, and it overturned into the upper layer. 
This homogenized the temperature and concentration (but at a lower level because of 
the particle fallout) and the whole process began again, with the cycle being repeated 
several times. 

Koyaguchi et al. (1990) produced a theoretical description of these processes which 
satisfactorily explained their data. We note here two extra points which are relevant in 
the present context. First, in none of their experiments was the bottom heating rate 
large enough to cause particles to be re-entrained, so that all particles eventually fell 
out and there was no possibility of a steady state being attained. Second, even if the 
heating rate were increased sufficiently for re-entrainment from the bottom to occur, 
it would not be possible to maintain a stable layer of hot dense suspension below cold 
fresh water. Heat could not be lost sufficiently rapidly through the bounding interface 
to prevent the net density of the lower layer decreasing and leading to overturn. We 
note too that in a thermally convecting layer the turbulent velocities increase as the 
layer depth increases, rather than decrease with distance from a stirring grid, and this 
is another factor militating against the formation of steady convecting layers stabilized 
with particles. 

Another series of experiments, in which Koyaguchi, Hallworth & Huppert (1993) 
considered the case of cooling a suspension of particles from above, also sheds some 
light on these questions. For very dilute suspensions, convection maintained a 
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homogeneous distribution of particles, from which fallout occurred with a cor- 
responding exponential decrease of N with time, as described above for bottom 
heating. Above a critical concentration, a descending sharp interface formed between 
a convecting upper clear very dilute region and a non-convecting lower region in which 
there was unimpeded sedimentation, with N decreasing at a linear rate. 

Solomatov, Olson & Stevenson (1993) have briefly reviewed the above and other 
previous studies of convective suspensions, and have carried out a series of experiments 
to investigate the mechanisms and quantitative criteria for particle entrainment from 
the lower boundary. Before each run a suspension of small polystyrene spheres was 
allowed to settle in a tank containing salt solution, the density of which could be varied, 
to form a dense bed of about 2-3 mm in thickness. The temperature at the top of the 
10 cm x 10 cm x 10 cm tank was held fixed, and a constant heat flux was supplied at the 
bottom. In each experiment the heat flux was changed in steps and the system allowed 
to come to a quasi steady state after each change in power. The conditions at which 
the bed motion and the entrainment began were noted, and the results plotted in two 
different ways, as suggested by two different possible mechanisms of entrainment. 

Their first plot identified the parameters used for the analysis of turbulent shear 
flows, as will be discussed further below. The ratio of the Reynolds stress T* = pui to 
the weight per unit area of a particle Apgh was plotted against the particle Reynolds 
number Re, = u* h/v, where u* is the friction velocity, h is the particle diameter (using 
our notation, rather than theirs), g is the acceleration due to gravity, v is the kinematic 
viscosity and p is the fluid density, and compared with data for the incipient motion 
of a bed under a turbulent shear flow. In turbulent shear flows the Reynolds stresses 
are the only stresses that can entrain particles, but Solomatov et al. concluded that 
these are not sufficiently large in convective flows to account for the bed motion and 
entrainment that both they and Martin & Nokes observed. In the case of convection, 
buoyancy stresses must be responsible for the entrainment, and these are much larger 
than the Reynolds stresses except at very large Rayleigh numbers. 

The buoyancy stress 7T is the viscous stress associated with the buoyancy flux from 
the lower boundary. In the laminar regime this is just yu/d, where y is the dynamic 
viscosity and u and d are the velocity and length scales of a simple one-scale flow. 
Solomatov et al. (1993) infer that the one experiment of Martin & Nokes (1989) which 
led to entrainment was in fact in the laminar regime. In the turbulent case, 7T is the 
stress associated with the Komogorov scale, which can be expressed in terms of v = 
~ / p  and the buoyancy flux F, which is proportional to the rate of kinetic energy 
production and hence to the energy dissipation, as 

7 T / p  = (vf;)? (27) 

The plot of both sets of data in the form 7T/Apgh against another particle Reynolds 
number (the latter now being conveniently defined in terms of the velocity and 
length scales at the edge of the thermal boundary layer) is reproduced from Solomatov 
et al. (1993) in figure 13. These buoyancy stresses are about an order of magnitude 
higher than the Reynolds stresses. It can be seen that entrainment in the Martin & 
Nokes (1989) laminar experiment was observed at approximately the same value of 
T,/Apgh as in the turbulent experiments. Thus it can be concluded that the buoyancy 
stresses are responsible for the entrainment from the bottom boundary in both laminar 
and turbulent convection. 

Detailed observations by Solomatov et al. (1993) of the bed of particles in the 
experiments where entrainment occurred showed that the particles were swept into 
ridges or dunes by the thermal plumes and that particles were lifted and put into 
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FIGURE 13. A reproduction of the plot presented by Solomatov et al. (1993) using coordinates 
appropriate for scaling with the thermal buoyancy stress. The ordinate is the ratio of the buoyancy 
stress to the weight per unit area of the particles, and the abscissa is a particle Reynolds number based 
on the velocity at the boundary layer height. The boxes outline error estimates based on the range 
of particle sizes and the uncertainty in the density measurements. Dotted outlines indicate no bed 
motion, solid lines strong motion of the entire bed surface, and heavy lines cases where entrainment 
did take place. The triangles represent Martin & Nokes’ (1989) measurements, the solid symbol 
indicating the single experiment where entrainment was observed. 

suspension off the crests of these dunes. This provides a much more effective 
mechanism than the entrainment of single particles vertically through a viscous 
sublayer. The horizontal stresses are much larger than direct vertical stresses near the 
solid boundary. The horizontal motion of particles and the associated convergence can 
create steep and high dunes at the base of plumes which are breaking away from the 
surface, so producing vertical velocities and stresses comparable with the horizontal 
values. 

This mechanism and bed form can be compared directly with the observed sediment 
distributions under the stirring grids in our experiments described in 93. Since the grid 
bars are so close to the bottom, settled particles are swept sideways away from each 
bar, and when stirring is stopped, mounds of particles are observed to have 
accumulated in a square pattern between the bars. During stirring, a dynamic 
equilibrium must be established, with particles settling uniformly, being swept 
sideways by the horizontally deflected downward jets produced by the vertically 
oscillated bars, and then re-entrained from the tops of the mounds or dunes formed 
between the bars. The origin of the stress is then more akin to the Reynolds shear stress 
mechanism, since it is produced by a mechanical rather than a convective process. 

Solomatov et al. (1993) also measured the equilibrium concentration of suspended 
particles for two values of the .heat flux for which entrainment was observed. The 
concentration was in each case very small (less than about 0.1 YO), and they assumed 
that the particles could have had no effect on the turbulence in the convecting layer. 
The increase in suspended fraction was approximately proportional to the increase in 
heat flux. The interpretation of these measurements is not so firmly supported as their 
earlier conclusions, and it is also less relevant to our grid-stirred experiments so it will 
not be discussed further here. 
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6.4. Suspension layers in channels, rivers and estuaries 
In very turbid waters, such as shallow estuaries or coastal water with unconsolidated 
mud on the bottom, field data show that the water column can be divided into a heavily 
sediment-laden bottom layer and a clearer top layer. These are separated by a sharp 
interface, called the lutocline. Wolanski et al. (1988) have summarized various 
observations of this phenomenon, and have shown that this distribution cannot be 
explained in terms of a simple balance between the upward eddy flux of particles, 
commonly assumed to be independent of the particle concentration, and the downward 
flux due to sedimentation, which leads to smoothly varying vertical profiles of 
suspended sediment concentration (SSC). 

Wolanski et al. (1988) conducted a detailed observational program to study this 
process in the South Alligator River in northern Australia. We note immediately that 
the flow in this macrotidal river, in the dry season, was determined entirely by the tides, 
and that the sediment concentration had no effect on driving the quasi-horizontal 
water motions. At the measurement position the flood tide was significantly stronger 
than the ebb, and the SSC was clearly modulated by the tides. At flood tide there was 
no measurable vertical stratification of SSC when the currents exceeded 1 m s-l. As the 
ebb tidal currents increased, a strong lutocline formed, starting from the bottom, with 
a two-layer flow persisting because of a difference in SSC; for most of the ebb the two 
layers were of comparable thickness. 

These measurements are consistent with the idea that with very strong currents (at 
flood tides) the turbulence generated by the bottom stress can reach the surface and 
maintain a smooth profile of SSC, whereas for weaker currents the buoyancy gradients 
due to suspended sediment can damp the turbulence at a certain elevation. The 
numerical model set up by Wolanski et al. to describe this flow or, more generally, a 
quasi-steady flow in a channel containing sediment on the bottom, is again based on 
the mass conservation equation, with the fallout of particles balanced by upward 
diffusion, but with the important addition that the eddy diffusion coefficient K is now 
considered to be a strong function of the vertical density gradient, through a 
dependence on a Richardson number. They also assume that there is a saturation 
condition, or upper limit to the sediment concentration, implying that there is a 
maximum amount of sediment which can be entrained off the bottom. 

In spite of the need to introduce a number of empirical assumptions, the basic 
physical ingredients of this model are very plausible, and they lead to robust 
predictions that a step structure will evolve, regardless of the particular assumptions 
made about K(Ri). In considering the scaling laws for the interface height, however, the 
authors refer also to the paper of E & Hopfinger (1987) described in $4, and specifically 
to relation (10) (the Monin-Oboukhov length) for the depth of the suspension layer. 
This implies two things : first, that it is the balance between the kinetic energy input and 
the buoyancy $ux determined by the fallout of particles which is determining the 
position of the lutocline, rather than a local gradient Richardson number criterion; 
secondly, that the appropriate turbulent velocity and length scales remain u* and the 
layer depth, rather than those obtained by allowing for the decay of turbulence away 
from the boundary. The latter modification was required to describe grid turbulence, 
and led to (16). 

In a further discussion of this model, Wolanski et al. (1989) suggested that a fast rate 
of erosion of bottom sediment would give a large effective negative buoyancy flux. This 
could limit the depth of the sediment layer more than the ‘equilibrium’ rate of lifting, 
which just balances settling. We can ask if such a transient initial state can go smoothly 
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to equilibrium when excess sediment remains on the bottom, or is the case where all 
the available sediment is suspended the only steady state? Is it possible that an 
oscillatory behaviour can develop, with excess sediment being picked up, damping the 
turbulence, and then being redeposited? Related questions will be raised in the 
following subsection, in the context of turbidity currents. 

6.5. Turbidity currents 
Turbidity currents differ from all the sediment-laden flows discussed above in one 
major respect: the flow responsible for producing the turbulence which keeps dense 
particles in suspension is generated by the buoyancy due to the particles themselves, as 
gravity drives the current down a slope. In the other cases considered the generation of 
the turbulence is independent of the sediment load, though in all of them, including 
turbidity currents, the level of turbulence is limited by the energy required to keep the 
particles in suspension. 

Bagnold (1962) set out the principles of the argument using an energy argument in 
a way that has not since been matched for its clarity and simplicity. He supposed that 
a mass m per unit area of solids, of density p p ,  is held in suspension in a fluid of density 
p, and forms a turbidity current moving down an inclined boundary with slope p. We 
denote the transport velocity down the slope of the fluid by u and of the solids by 0. 
Consider further that the particles are falling steadily at velocity v and are being lifted 
by the turbulence at the same rate in order to maintain a steady state. The power 
expended in lifting the particles and keeping the mass m at the same distance above the 
bed is then given by (pp-p)gmv/pp = g*mv. 

The power input due to the tangential pull on the particles in the direction of 
transport is g*mUsinP. The net power contributed by the fluid motions in order to 
maintain the suspension is the difference. 

This is zero when v = Usinp. (29) 
At this marginal condition the particles are just kept in suspension by the energy 
supplied by the flow. The sediment then suspends itself, in the sense that it requires no 
net energy expenditure by the fluid. This relation also implies that a particle settling 
and moving downslope at both the mean speeds will stay the same distance above the 
bed. Bagnold (1962) suggested that (28) has the important consequence that ‘the mass 
m transportable by a given stream may therefore rise to an indefinite value, limited only 
by the availability of the solid material’. 

Various more complex criteria for autosuspension have been suggested. Pantin 
(1979) and Parker (1982) have considered the time-dependent problem, and came to 
the conclusion that (28) should be regarded as a necessary but not sufficient condition. 
Pantin (1979) introduced an efficiency factor, which results in a substantial reduction 
in the estimate of the size of material a given flow can support. Stacey & Bowen 
(1988a, b) proposed that the vertical structure of a turbidity current, the interfacial 
stress and the entrainment of water from above, all need to be examined more closely, 
and related to gradient and bulk Richardson numbers describing the flow. They also 
deduced an auto-suspension criterion, which takes into account the vertical structure 
of the currents and depends on the bottom drag coefficient. This has the same form as 
(28) and Pantin’s modification of it, and lies between the two in its quantitative 
predictions about the ease with which a turbidity current can maintain sediment in 
suspension. However, after surveying all the criteria which have been proposed, 
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Seymour (1990) came to the conclusion that Bagnold’s criterion is not only the simplest 
but still the most satisfactory for explaining the available observations for self- 
sustained turbidity currents. 

The most thorough treatment of variable turbidity currents is that presented by 
Parker, Fukushima & Pantin (1986). The aim of that paper was to evaluate the range 
of conditions under which a turbid underflow can pick up sufficient particles from the 
bed to maintain its motion down the slope. One conclusion which can be drawn from 
their calculations should be noted immediately: a ‘steady state’ having both constant 
downslope velocity U and constant rate of sediment transport per unit width q9 = UCh, 
where C is the concentration and h is the depth of the current, requires a very special 
balance between the competing processes of turbulence generation and particle 
suspension or fallout. It is in fact a state of unstable equilibrium, on one side of which 
the flow is subsiding and on the other it is ‘igniting’. Relatively little attention has been 
paid to the former depositional regime, though Sparks et al. (1993) have treated the 
case of sediment-laden gravity currents with lighter interstitial fluid, for which 
sedimentation leads eventually to lift-off of the lighter components. Dade, Lister & 
Huppert (1994) have also recently presented a theory describing deposition from 
gravity-driven surges propagating down a slope and have begun to consider further the 
case of sustained gravity currents. 

The analysis of igniting currents involves deriving and solving four coupled nonlinear 
equations for conservation of fluid, sediment, momentum and turbulent energy. These 
are related by an entrainment model linking the net amount of sediment lifted into the 
current to the vigour of the turbulent motions produced by the downslope flow. (It 
should be noted that, though Parker et al. 1986 numerical model incorporates many 
empirical assumptions and specific numerical values which may be questionable, we 
feel that the overall physical principles are robust and soundly based.) A distinctive 
feature of their model is the addition of a fourth equation for turbulent energy, to 
which the entrainment of sediment is linked. This provides a constraint on physically 
realistic solutions based on the other three conservation equations ; when used without 
the energy constraint these imply such strong self-acceleration that the turbulent 
energy consumed in entraining extra sediment from the bed exceeds the supply of 
energy to the turbulence. Thus the turbulence, and hence the turbidity current, will 
grow and then die. The four-equation model again predicts self-acceleration, and the 
range of conditions under which this can occur, but it gives a much more modest rate 
of increase of velocity, with an acceleration which is sustainable in terms of the balance 
of turbulent kinetic energy. The numerical solutions reveal the possibility of a damped 
periodic behaviour in the early stages (starting with particular initial conditions), 
but this dies away and the acceleration remains smooth thereafter. In this quasi- 
equilibrium state, the overall Richardson number 

g V . /  cJ3 (30) 

stays nearly constant, implying that @ is increasing like v3. A similar behaviour was 
observed in the Ellison & Turner (1959) model for the approach to the ‘normal’ state 
of unsteady conservative fluid density currents, on which Parker et d . ’ s  (1986) model 
is based. 

The similarities between these calculations and our grid-stirring experiments will 
now be explored. In both studies the energy required to lift or keep particles in 
suspension is an important physical constraint, and the criterion for entrainment of 
sediment from the bottom is the crucial factor in each case. Our result that below a 
critical frequency o1 no particles can be maintained indefinitely in suspension has its 
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Suspension mechanisms 

Quantity Stirring grid Convection Channel flow Turbidity currents 

Eddy Increasing with Depth of layer Depth of water Depth of current 
lengthscale distance from or suspension 

grid cc z layer 

distance above depth of layer to mean (modification due 
grid (powerlaw) cc B1/3z1’3 velocity (set to stratification. 

by pressure Velocity related 

Mechanism Directly by grid Action of Shear stress Shear at bottom 

Velocity scale Decreasing with Increasing with Proportional Mean velocity 

gradient) to AP) 

of turbulence gravity at boundaries boundary (also at 
generation throughout interface on steep 

layer slopes) 
Re-entrainment Yes, depends Only with strong Possible if Yes, when shear 
of particles on conditions bottom heating, shear stress stress is large 
from bottom? below the grid by ‘buoyancy is large enough 

stress ’ enough 
Possibility of Yes, documented Not possible; Yes, documented May be unstable: 
steady-state in our intermittent in estuaries either settling 
layer of experiments overturn and or ignition on 
finite depth? eventual erodible bed 

settling out 

TABLE 2.  Comparison of the properties of the turbulence, and the resulting layers of suspended 
particles, generated by the four mechanisms discussed in the text. 

parallel in the behaviour of Parker et aZ.’s dimensionless ‘sediment entrainment 
function’ E,. This is defined by us E, = 4 = m, the volumetric Reynolds flux of 
suspended sediment at the bed, and it can be evaluated from empirical data on 
suspensions in open channel flows and in turbidity currents. The entrainment function 
E, is zero for flows with a sufficiently small turbulence level. Beyond a critical level, 
which they define in terms of the friction velocity u* and the particle Reynolds number, 
E, increases extremely rapidly with u*, until E, saturates at a value of about 0.3 and 
there is no further increase in sediment entrainment with u*. At this end of the range 
too there is a similarity with the grid-stirring experiments with the largest values of M,,, 
where our data suggest an approach to a self-limited condition in which the 
concentration is high and the layer depth small. 

7. Conclusions and discussion 
Our laboratory experiments and the associated theory have given an improved 

understanding of the conditions necessary for the formation of a suspension layer and 
its maintenance. We have studied in some detail the case of dense particles held in 
suspension by turbulent motions generated by an oscillating grid near the bottom of 
an experimental tank. For a given particle size and initial mass of particles in 
suspension, there is a limited range of stirring frequencies, and hence turbulent 
intensities, over which a given mass of particles can be held indefinitely in suspension 
in a layer of fixed depth. This equilibrium depth is described well as a function of the 
Stokes settling velocity of a single particle and the mass in suspension by the relation 
(20). 
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There is good agreement between the laboratory observations and a theoretical 
model based on a simple dimensional argument. The two essential external parameters 
entering this theory are the ‘grid action’ describing the turbulence, and the buoyancy 
flux associated with particles falling out and being lifted and held in suspension. The 
results cannot be explained simply in terms of the equivalent entraining fluid layers, for 
which experimental results have also been presented in this paper. The work done in 
keeping particles in suspension and the effect of this on the turbulence must be taken 
explicitly into account. Previous theories of this process have been extended, in order 
to reach a better understanding of the effect of the buoyancy flux on the turbulence. 

The results of the stirring grid experiments cannot be directly taken over to other 
cases of practical interest, such as flowing layers of ash or snow particles, and the 
suspension of crystals or silt. The broad conceptual links are easy to make, but a 
quantitative comparison is not yet possible. We have discussed in this paper the current 
state of research on the various types of sediment-laden flows which can be identified, 
and have summarized the essential physical content of each of them. It will be helpful 
in conclusion to compare these results, and to suggest what cross-connections can be 
made, and which are inappropriate. In particular, we need to assess how the grid 
stirring results can be applied to sediment-laden channel flows and to turbidity 
currents. 

Table 2 sets out the characteristics of the four kinds of particulate flows we have 
considered, and compares the properties of the turbulence, the mechanisms of its 
generation, and the effects of these on particle entrainment and layer formation. 
Turbulence generated directly by an oscillating grid differs from all the other cases in 
having an r.m.s. velocity which decays with distance from the bottom boundary. For 
channel flows and turbidity currents the scale remains proportional to the mean flow 
velocity when the flow is nearly homogeneous, though it can decay due to stratification 
or the energy loss associated with the suspension of particles. In convecting layers, the 
velocity actually increases with depth, and we believe this is the major factor in 
preventing the formation of stable, sediment-laden dense layers in a convective system 
heated from below. The eddy lengthscale increases with distance from the grid, whereas 
it is everywhere proportional to the total layer depth in the other cases. 

The lifting of particles from the bottom in our experiments with a stirring grid 
depends in a sensitive manner on the geometry of the region below the grid, and in 
particular on the distance to the top of the sediment layer. But the mechanism of re- 
entrainment is a mechanical one, driven by the Reynolds stress acting on the bed of 
particles, and in this respect it is similar to the shear stress criterion that has been used 
to describe the entrainment of particles from the bed in channel flows or turbidity 
currents. Turbidity currents are unique among the flows considered in that there is an 
intimate coupling between the generation of turbulence and the amount of sediment in 
suspension; without a dense suspension layer driving the flow down a slope, there 
would be no energy to lift further particles. 

Thus the flows to which our grid-stirred steady-state layer results should be most 
directly applicable are the sediment-stratified flows in estuaries. The detailed structure 
of the turbulence may be different, but the energetics of fallout and suspension are 
closely related. We note that such channel flows are most likely to become strongly 
layered during periods when sediment is being entrained rapidly from the bottom, with 
an associated large negative buoyancy flux. Turbidity currents have some features in 
common with these flows, but because of the strong coupling between the sediment 
concentration and the generation of turbulence, they are less likely to achieve a steady 
state. Unless the supply of erodible material is very limited, turbidity flows are either 
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depositing material or in a state of ignition where the particle load is continually 
increasing. 

The stirring grid technique has great experimental advantages over the flow in a long 
channel, as a means of producing turbulence near the bottom boundary. Many further 
questions have been raised by the results of the experiments to date, and these should 
also be amenable to study using this technique in the future. There are, for example, 
the effects of hindered settling and polydisperse particle distributions, which could be 
important in nature, but which we have chosen not to address in this paper. In 
particular we intend to explore further the criteria determining the re-entrainment of 
particles by the flow near the grid. Once these have been established, it should be 
possible to carry out a more quantitative series of transient experiments and also to 
develop a theory of this regime. 

We are grateful to R. C. Kerr, H. M. Pantin and a number of anonymous referees 
for helpful and penetrating reviews of an earlier draft of this paper. The reported 
research was supported by a number of grants from the NERC. 
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