FINE-SEDIMENT DEPOSITION FROM GRAVITY SURGES ON UNIFORM SLOPES

W. BRIAN DADE, JOHN R. LISTER, ano HERBERT E. HUPPERT
Institute of Theoretical Geophysics, Department of Earth Sciences and Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

Asstracr:  The propagation of and the deposition from a noneroding,
turbulent gravity surge are described by a simple model for a two-dimen-
sional, well-mixed buoyant cloud of suspended particles moving down an
inclined surface. The model includes the effects of entrainment of ambient
seawater, deposition of suspended sediment, seafloor friction, and slope.
Our results are applicable to large, decelerating turbidity currents and
their distal deposits on uniform slopes in lakes and the sea. The scaling
arguments that emerge from our analysis, moreover, have important ram-
ifications for the design and interpretation of laboratory analogs of these
phenomena.

General solutions are obtained to the coupled equations that describe
the evolution of momentum, total mass, and particulate mass of a surge.
The solutions vary on two horizontal length scales: x,, beyond which the
behavior of the surge is independent of the initial momentum and shape;
and x,, beyond which the driving negative buoyancy of the surge is lost
due to particle settling. For fine particles whose settling velocity is much
less than the forward propagation speed of the surge, the suspension is
well mixed and x, < x,. The deposit thickness diminishes as the inverse
square root of the downstream distance x when x, < x < x, and then
diminishes exponentially with downstream distance as x approaches and
exceeds x,.

The length of a surge depesit scales with x, = kb_sind/~yp.(w,cosd),
where & is the assumed constant aspect ratio of the surge, b, is the initial
buoyancy per unit width at the point of issue onto a slope of constant angle
8, p, is the ambient density, w, is the average settling velocity of the
suspended particles, and v = 6 + 8C,/a incorporates the ratio of the
constant coefficients of drag C,, and fluid entrainment a.

Extension of our model to the case of two particle sizes indicates that,
even for very poorly sorted suspensions, the estimate for the length of a
surge deposit x, is valid if w, is defined as the volume-averaged settling
velocity of the initial suspension at x_. The ratio of coarse to fine material
in model deposits generated from initially poorly sorted suspensions can
diminish dramatically in the downstream direction, however, due to dif-
ferential rates of gravitational settling.

INTRODUCTION

A gravity surge is a density-driven intrusion of a finite volume of one
fluid into another fluid. Turbidity currents in lakes and the sea that result
from the catastrophic and instantaneous failure of the seafloor are geo-
logically important gravity surges driven by sediment dispersed through-
out the intruding flow. The sediment and flow are intimately coupled
because the particles are suspended within the current by turbulence gen-
erated by the flow and the flow is maintained by the negative buoyancy
of the fine-particle suspension.

When a sediment-laden surge issues onto the shallow slopes of the
continental rise and abyssal plain it ultimately dissipates due to the loss
of excess density through entrainment of ambient seawater and deposition
of suspended particles, and due to the damping of turbulence by boundary
friction or internal density stratification. During passage across the shallow
slopes of continental margins, however, a very large surge can generate a
massive deposit that is 100-1000 km long and more than one meter thick
(Pilkey et al. 1980). Commonly, however, surge deposits occur as beds of
silt and fine sand each less than 20 cm thick (Nelson et al. 1978). The
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regional accumulation of fine sediment from successive turbidity currents
issuing from the continenta! slope can result in a sediment fan that pro-
grades into the deep-sea basin.

Turbidity currents and their deposits pose challenging problems for
interpretation of marine sedimentary processes. Deep-sea turbidite de-
posits make up a significant fraction of the geologic record and play im-
portant roles in the formation of some petroleum reservoirs. Turbidites
also document ongoing processes that can interfere with engineered off-
shore structures and that can lead to the downslope transport and ultimate
deep-sea burial of pollutants present in shallow-water sediments.

Such considerations have motivated many workers to study small-scale
suspension currents in the laboratory (Middleton 1966, 1967; Riddel 1972;
Luthi 1980, 1981; Siegenthaler and Buhler 1985; Middleton and Neal
1989; Laval et al. 1988; Altinakar et al. 1990; Bonnecaze et al. 1993;
Sparks et al. 1993). Turbidity currents in natural settings have also been
studied (Normark 1987, Zeng et al. 1991), but in general are difficult to
measure directly. Much of what geologists know of natural, deposit-form-
ing surges is instead based on interpretation of the resulting deposits them-
selves (Johnson 1967; Komar 1970, 1985; Sadler 1982). The conceptual
basis for these interpretations has been limited due to the unsteady and
nonuniform nature of the flows responsible for the deposits.

Many of the existing models for gravity-current behavior devised for
geological applications either (i) are based on the assumption of a steady
balance between buoyancy and friction acting at the head or on a semi-
infinite slab (e.g., Komar 1977) or (ii) have neglected the effects of sediment
flux at the bed (Kirwan et al. 1986). Other studies that have analyzed the
downstream evolution of a gravity surge (Chu et al. 1979; Fukushima et
al. 1985; Siegenthaler and Buhler 1985; Parker et al. 1986, Eidsvik and
Brors 1989) have shown that the sediment flux at the sea floor, the frictionat
resistance and slope of the sea floor, and the turbulent entrainment of
ambient seawater all control the changing state of the flow. These studies
have not been able to predict the downstream evolution of the deposit
characteristics, however, because to do so requires consideration of the
behavior of an entire surge rather than merely the behavior at a point in
an otherwise horizontally infinite flow.

The modified thermal model of Beghin et al. (1981) is the starting point
for our analysis of sediment deposition from a turbidity surge. We have
extended their analysis of a dense, well-mixed solute cloud propagating
down a slope to accommodate the effects of friction and loss of driving,
negative buoyancy through fine-particle settling. Our analysis is based on
the assumptions that the particles are in well-mixed suspension and settle
slowly relative to the speed of the flow. Friction and slope angle of the
bed are assumed to be uniform. As a result, our model is readily applicable
to the interpretation of large, channelized currents and their sand- and
silt-rich deposits which occur in marine environments with a nonnegligible
seafloor slope.

The inclusion of the effects of sediment deposition represents an advance
from some earlier studies (e.g., Kirwan et al. 1986). We focus here only
on the waning phase of a turbidity current from which sediments are indeed
being deposited (in contrast to the model of Fukushima and Parker (1990),
which was developed primarily to examine the effects of bed erosion on
an accelerating snow avalanche). We reduce the governing equations for
depositing surges to dimensionless forms and obtain predictions for the
propagation and depositional behavior of surges. Our results shed light
on trends in the surge-deposit thickness and grain size. In particular, we
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show that the deposit varies in a predictable way over a characteristic run-
out distance that is related to the downslope component of initial buoyancy
and the average settling velocity of the particles suspended in the gravity
surge. Applications to specific transport events will come with improved
quantification of the model parameters that describe the physical processes
governing the evolution of the surge.

In the following section we briefly review the conceptual basis for an-
alyzing the behavior of gravity surges. We then present a mathematical
statement of our model for deposit-forming gravity surges and explore the
behavior of model surges, which we characterize first by a single settling
velocity (as a dynamic measure of grain size) and then by two distinct
settling velocities. In the final section, we discuss the implications of our
model for the interpretation of natural surge deposits and of laboratory
experiments designed as analogs of natural phenomena. A list of symbols
is given at the end of the text.

A BASIS FOR ANALYZING THE BEHAVIOR OF GRAVITY SURGES

Beghin et al. (1981) modified an existing theory for an unbounded,
thermally driven plume (Morton et al. 1956), in order to describe the
overall behavior of a dense, two-dimensional cloud of solute propagating
down a sloping surface. The coupled equations describing changes in the
momentum and mass of a buoyancy-conserving surge were used (o show
that the propagation speed # of such a cloud decreases in proportion to
the inverse square root of the propagation distance x. Their result can be
expressed as

paix = b, f6), ()

where p, is the density of the ambient seawater, b, is the constant buoyancy
per unit width of the surge, and 6 is the angle of the slope with the
horizontal. The function f(6) is related to a surge Froude number, which
is of order unity and varies weakly with slope.

This relationship reflects a balance between the inertia, buoyancy, and
entrainment of ambient fluid. As a result of this balance, the surge speed
diminishes and the total momentum evolves with an associated increase
in volume with downstream distance. In the derivation of the governing
equations leading to Eq 1, Beghin et al. considered the surge shape and
the coefficient describing the rate of entrainment of ambient fluid to be
independent of downstream distance and functions of slope only. These
assumptions are well supported by the results of laboratory experiments
in which two-dimensional surges of saline water flow under fresh water
down smooth slopes of between 1° and 90° (Beghin et al. 1981; Laval et
al. 1988; Liu et al. 1991).

Kersey and Hsii (1976) provided theoretical arguments and supporting
experimental observations which indicate that sustained surge propagation
should occur in laboratory settings on slopes as low as 1/2°, and in natural
settings on even less steep slopes due to a decrease in the drag coefficient
with increasing flow Reynolds number. This notion is especially important
in that most natural, deposit-forming surges occur on deep-sea fans and
abyssal plains where ¢ is typically less than 1° (Nelson et al. 1978).

Even under shallow-slope conditions, sustained surge propagation is
thus considered to result primarily from the drive of the downslope com-
ponent of buoyancy and not from self-weight collapse. As in the study of
Beghin et al. (1981) and motivated by the experimental observations, we
consider that a turbidity surge can be modeled as a sediment-iaden cloud
of constant shape. This treatment reflects the fact that pressure gradients
are eliminated in an analysis of the volume-averaged behavior of a surge.
As a result, they do not influence the sustained propagation of the center
of gravity of the surge. One implication of this perspective is that no
sustained travel can occur on perfectly horizontal surfaces; some nominal
slope is required to provide the driving buoyancy.

The analysis by Beghin et al. and the experimental confirmation of their
predictions provide an extremely useful starting point for our considera-
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Fic. 1.—Schematic representation of a two-dimensional, deposit-forming grav-
ity surge evolving as it propagates down a uniform slope. Conservation of total
mass of the surge includes the effects of entrainment of ambient seawater; con-
servation of particulate mass includes the effects of sedimentation at the bed
(arrows at boundaries of surge). Conservation of surge momentum reflects a bal-
ance between downslope component of buoyancy & and friction at the surge
boundaries.

g —T———

tion of a slowly depositing gravity surge. Such a surge initially adjusts to
the state described by Eq 1 and then evolves due to the slow loss of
buoyancy through fine-particle settling. We now turn our attention to the
development of a model that describes this evolution.

A MODEL FOR DEPOSITING GRAVITY SURGES
Basic Equations for Suspensions of a Single Particle Size

Following the analysis of Beghin et al. (1981), we consider the behavior
of a well-mixed, two-dimensional, sediment-laden cloud on a surface of
uniform slope and roughness (Fig. 1). We propose that this particular
configuration is applicable, for example, to a large surge that is confined
10 a fjord, a channel in a deep-sea fan, or a narrow abyssal plain with a
regional slope. The propagation of the surge reflects a balance between the
downslope drive, friction, entrainment of ambient seawater, and the slow
depositional loss of buoyancy.

These elements of the surge dynamics can be described quantitatively
in terms of the two-dimensional cloud volume ¢ = A%, where A is the
volume-averaged height and £ is the total length of the surge, the volume-
averaged velocity #, and the buoyancy b = gApq of the suspension with
excess density Ap. Each of these properties of the surge is important in
its evolution. The equations describing this evolution are those governing
the variation of the total linear momentum of the surge

dp,(l + C)qu
di

[rate of change of momentum = downslope component of buovancy force
— frictional drag force along surge length],
the increase in the total mass of the surge

% = auf

[rate of change of volume = rate of net entrainment of ambient fluid
along surge length,
and the loss of particulate mass from a surge that is well-mixed, relatively
dilute, and non-eroding (e.g., Martin and Nokes 1988; Bonnecaze et al.
1993)

=bhsin § — Cpp u™ (2a)

(2b)

db_ _wphoeosd
dt h

[rate of change of buoyancy = loss of particulate mass due to settling at
the bed along surge length].

In Eq 2a, C, and C,, are coefficients describing the volume-averaged
effects of added mass and friction (in excess of that required to maintain
the surge shape). The added-mass coefficient represents the momentum
associated with the motion in the ambient fluid caused by passage of the
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underlying surge. It can be approximated by that of an eliiptical cylinder,
for which C, = 2h/R (Batchelor 1983). For the elongate shapes considered
here C, is negligible.

The coefficient « in Eq 2b relates the rate of entrainment of ambient
seawater to the downstream rate of propagation of the surge and is assumed
to be a function of the slope angle 6 only (Turner 1986). Entrainment
occurs both at the head and along the length of the surge at the interface
between the suspension and the ambient fluid, and for the elongate surges
considered here we scale entrainment with the surge length 2. To do
otherwise would simply require the introduction of a shape factor with a
value of order unity.

In Eq 2c, w, represents the characteristic settling velocity of individual
particles in the suspension. The downward flux of suspended particles is
expressed as in Eq 2¢ because particles arrive at the bed primarily by
gravitational settling through a near-bed viscous sublayer (Dade et al.
1991). In the case of very fine sand and silt, w, is proportional to the
square of the average particle diameter. Because we are concentrating here
on surges carrying fine sediment in well-mixed, turbulent suspension, we
assume for all cases that w,/u < 1. Because we are interested in deposit-
forming phenomena, however, a key assumption of our analysis is that
there is net deposition of fine sediment from the surge. Any reentrainment
of newly settled material reduces the net downward flux of a suspension
and causes the current to deposit over a greater distance. The increased
propagation distance could be modeled empirically by selection of a suit-
ably reduced average velocity of particle settling.

Eqgs 2a—c are solved subject to the initial conditions u,, q,, and b, that
reflect the state of the surge at the point x, where it first exhibits invariant
shape on a seafloor of constant slope and uniform bed roughness. The
true origin of the surge is upstream of this point.

Eqgs 2a and 2b constitute the basic mode! considered by Beghin et al.
(1981) and lead to the result given in Eq 1, although we have extended
Eq 2a to include the effects of friction. Eq 2c is introduced here to include
the effects of particle settling.

Dimensional Analysis

The height and length of a surge can be expressed in terms of the surge
volume ¢ and the constant aspect ratio

k = h/g (3a)
by

h = (kg)' (3b)
and

2 = (g/k)2. (3c)

Substituting Eq 3¢ into Eq 2b and transforming the time derivative to a
spatial derivative by using # = dx/dt, we find upon integration of the
result that the surge volume per unit width g is given by

aZ
= — 2 4
1= 5" (42)
where the origin of the downslope coordinate x has been defined such that
X, = 2 (kg ) (4b)
o

In buoyancy-conserving flows w, = 0 and b = b,. Under these conditions,
insertion of Eq 4a into Eq 2a, transformation of the time derivative to a
spatial derivative and integration of the result yields

41+ Cp/a)
X X
W= )+l - ud) s
X X

(3a)
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where . is a characteristic velocity scale defined by
8k'sinf b
2 — —_—— 0
u ‘ ’ya pﬂqtl/z (Sb)
and
8C
vy=6+—2 (5¢)
24
In the far field where x > x_, Eq 5a reduces to
16k sin 6
pax = b,,( o ) = b0, C) (6a)

where £,(8, 0) = f{8), in agreement with the expression found by Beghin
et al. (1981) and given in Eq 1 of the previous section. In terms of the
characteristic length and velocity scales x, and u,, Eq 6a can be written as

172
-5
U, X

which indicates that in the far field the propagation speed of a buoyancy-
conserving surge is inversely proportional to the square root of the prop-
agation distance x.

Egs 3-6 constitute the analytical results of Beghin et al. (1981) for
buoyancy-conserving surges, extended here to include the effects of friction
in the parameter +y. If drag is neglected this parameter takes the value of
6, and the importance of the initial condition decays like (x/x,)—*. With
the inclusion of friction, v > 6 and the rate of decay of the initial condition
is even greater. In natural settings where surges enter a region of interest
in “running order”, that is, where u, = u,, the far-field behavior is achieved
almost immediately. In general the initial momentum of a surge thus
quickly becomes irrelevant, and the behavior of the surge is well-described
by Eq 6 at downstream distances beyond the entry length x,.

These results provide the basis for analyzing the effects of a relatively
slowly depositing suspension. If w, is constant and small (just how small
will be made clear in Eq 10b), then the suspension can be assumed to be
well-mixed, and the far-field behavior of surge propagation speed repre-
sented in Eq 6 can be achieved before significant loss of buoyancy through
deposition has occurred. Under these conditions, we can use Eq 2¢ to
identify the length scale x, over which slow deposition of the suspended
particles takes place. As outlined in the appendix, this length scale is
given by

(6b)

v = kb, sin 8
" ypwcos B

This depositional run-out distance is thus proportional to the aspect ratio
of the surge, the initial buoyancy, and the slope angle, and is inversely
proportional to the combined effects of fluid entrainment and friction and
to the square of the particle settling velocity. It reflects a kinematic balance
between the rates of buoyancy loss, volume increase, and momentum
decay as a surge evolves downstream.

We now introduce several dimensionless variables. The two dependent
variables, which are motivated by the form of Eq 6a and by the magnitude
of the initial buoyancy, are

(e x
ez

B =bib, (8b)

both of which are unity for buoyancy-conserving flows. Recalling from
Eqs 3 and 4 that the thickness of a fluid-entraining surge is proportional
to the propagation distance, we see that 2 can be interpreted as a di-

0

(8a)

and
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mensionless measure of the mean kinetic energy per unit length of the
flow. We also note that

2 4172 24112
VB = (“ Z ) / <%) = FPIF

so that the ratio of the variables 2 and B is a measure of the Froude
number Fr = u/(ghAp/p,)* of a surge relative to the value Fr, when it
has achieved a buoyancy-driven state. In terms of the function f,(6, C,)
introduced in Eq 6a, the initial Froude number is given by

(%a)

23
Fr; = Efzw, Cp) (9b)
or, equivalently,
,__ sinf
= e 3wt o)

The relationship given in Eq 9c is analogous to the findings of earlier
studies that considered horizontally uniform, buoyancy-conserving gravity
currents (e.g., Komar 1977).

We also introduce the independent variable

(10a)

which measures the downstream distance relative to the distance required
for significant loss of buoyancy through slow deposition of the suspended
particles,

If a slowly depositing surge is to achieve conditions leading to the
behavior described by Eq 6, x, must be much less than x,, or equivalently

J— 2
535&=(M) -1

X, au,

£ = x/x,

(10b)

Eq 10b reflects the condition that the particle concentration in a surge
initially decreases through entrainment of ambient fluid rather than through
deposition. If this condition is not met, then there is strong interaction
between fluid entrainment and sediment deposition in the near field. Con-
sequently, the far-field behavior does not approach that of a buoyancy-
conserving surge, and the surge propagation and deposit geometry reflect
the initial conditions. If the condition of Eq 10D is satisficd, on the other
hand, then the suspension is well mixed and the far-field behavior of a
buoyancy-conserving surge is readily attained.

In terms of the new variables , B, and &, Eqs 2a and 2c can be trans-
formed from temporal to spatial coordinates and then, as is shown in the
appendix, reduced to

d¢z B — y?

—_—=y— 11

TR (11a)
and

dB B

—_—= = 11b

at J {11b)

with upstream boundary conditions

Y=B=latt=¢( <« 1. (11¢)
Eqs 2a—c seem to be the simplest possible model that retains the essential
physics of a deposit-forming gravity surge on a uniform slope. We have
reduced these equations to Eq 4a and the pair of coupled, nonlinear,
ordinary differential equations of Eq 1 in terms of the dimensionless
variables ¢, B, and £ defined in Eqs 8 and 10. Whereas the original
governing equations incorporate many parameters, the reduced equations
depend only on the single coefficient v defined in Eq 5¢. Thus a wide
variety of suspension-driven surges can be described by solutions that are
dependent on only one parameter.
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Normalized Propagation Speed and Deposit Thickness

Before discussing the solutions to Eq 11, we introduce descriptions of
additional properties of a deposit-forming surge in suitably normalized
terms. The relative speed of downslope propagation is

U= wu = E/tW

where U=1latE=§¢, < L.

The areal density of a deposit (mass per unit area) at a point along the
travel path can be evaluated from the loss of particulate mass during the
finite time of transit of the surge over that point. Because the overall time
scale of deposition is long compared with this transit time, the local de-
position rate is approximated by that occurring when the center of gravity
of the surge passes over the point of interest. Calculated in this way, the
deposit density is given by

(12)

B

glo, — pa) dx

where 4 is the mass per unit area of the bed, which is proportional to the
uncompacted thickness of the deposit, and p, is the density of individual

particles. Substitution of the initial values into Eq 13a yields an estimate
for the initial deposit density §,,

(13a)

0, weosd b,
glo, — o) . (kg,)'*

The deposit density (or thickness) relative to that observed near the
effective origin of the surge is then

6 =

0

(13b)

n = 8/6, = —(£,/£) dB/dE (13c)
sothatnp = 1 at § = £, < 1. Referring to Eq 11b, we see that
EO B
=2, 13d
I (13d)

With the substitution of Egs 9a and 12 into Eq 13d and rearrangement
of the result, we obtain the potentially useful relationship

2

n_Fy
U F?
The left side of Eq 14 corresponds to a similarity variable introduced by

Siegenthaler and Buhler (1985, 1986) as the “thickness number” 7". We
will consider this result in more detail in the discussion,

(14)

Model Results for Suspensions of a Single Particle Size

The results of our model predict the far-field conditions associated with
the generation of fine-grained, distal deposits by turbidity surges of cat-
astrophic origin in lakes or the deep sea. The nondimensionalization used
in Eqs 8-12 allows us to consider the general behavior of these phenomena
in terms of the single parameter v defined in Eq 5c.

Using a fourth-order Runge-Kutta scheme, we obtained numerical so-
lutions for - = 46 (corresponding to C,/a = 5)and v = 6 (C,, = 0). The
results of our integrations are presented in Figure 2, which shows the
dimensionless kinetic energy ¥, buoyancy B, propagation speed U, Froude
number Fr, and density 5 of the resulting deposit, each as a function of
£ = x/x,, for a suspension-driven gravity surge characterized by a single
particle-settling velocity. There is little difference between the curves for
the two representative end-member values of +, as will be discussed in
more detail below.

A useful representation of a surge once the initial conditions have been
forgotten can be determined analytically from power-series solutions to
Eq 11. We find that

¢=|—2(7—11—)g+0(£2) and B=1-¢£+0@E) (I5)
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Fic. 2.—Calculations of the downslope evolution of a suspension-driven surge and its resulting deposit as functions of the dimensionless downstream distance £2
= x/x,. The calculations are for the simplest case of a suspension characterized by a single settling velocity and £,2 = 10—*. The solid lines in each panel correspond
to the case C,,/a = 5; the dashed lines correspond to the friction-free case C,, = 0. A) Dimensionless kinetic energy per unit length of the flow. B) Relative buoyancy.
C) Relative speed of downslope propagation. D) Relative Froude number. E) Relative thickness of deposit.

where O(£) represents a small correction of order £2. Inserting these
relationships into Egs 12 and 13c indicates that

U= %[1 +0%)] and n= %[1 + 0@ (I5h)

Eq 15 (as well as Eq 16 introduced below) provides a check on our nu-
merical calculations and yields relationships that may be compared di-
rectly with field observations. For example, it follows from Eq 15b that
if £ < 1, corresponding to x, < x < x,, then both the propagation
speed and the deposit thickness are proportional to the inverse square root
of the downstream distance x. In fact U = 7. As we showed earlier, the
quantity ¥ B~'"2 corresponds to the surge Froude number which, from Eq
15a, remains relatively constant. Mathematically, this is a consequence
of the fact that v is sufficiently greater than 1 to ensure that the product
VB~ departs little from unity when x, < x << x,. Thus the exact value
of v is relatively unimportant in that reach. The physical interpretation
is that the Froude number of a surge driven by a fine-particle suspension
is relatively well conserved as a consequence of the very slow evolution
of the surge due to depositional loss of buoyancy.

The numerical solutions also indicate that a deposit-forming gravity

surge decays to a relatively buoyancy-free state over a propagation distance
corresponding to £2 = 1 (Fig. 2A-C). Up to this run-out distance, as
discussed above, the relative kinetic energy and buoyancy of the flow are
virtually identical functions of the propagation distance. The normalized
mean propagation speed and density of deposit are also virtually identical
functions of the propagation distance. At values of £2 approaching and
exceeding unity, however, the buoyancy of the surge diminishes more
rapidly than its speed, and the Froude number increases dramatically due
to the inertia of the surge. The distance at which £2 = 1 also corresponds
10 a “pinch-out” length beyond which the relative deposit density (or
thickness) essentially vanishes (Fig. 2E).

The behavior of the surge in this regime can be described analytically
by using the numerically determined result that B << > when £ > 1.
With this approximation it is straightforward to show from Eq 11 that

_2
G2+

where C, and C, depend only on ~ and are obtained from the solutions
for £ < 1. From Eq 16a we see that * decays algebraically (slowly) and
B decays exponentially (rapidly), in agreement with the numerical pre-

¢y~Ct? and B~C, exp[— E”“'] (16a)
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diction that B < y? for £ > 1. Using these approximations for the
relative speed U and deposit density », we find that

U~Cggm! and

{16b)

—2__ 7/2+l:|
cerat

Eq 16b indicates that, as a suspension-driven surge approaches and
surpasses .x,, the propagation speed decays algebraically and the thickness
of the resulting deposit decreases exponentially with further distance in
the downstream direction. Beyond x, the driving buoyancy is lost through
deposition, and the surge is essentially a bounded, suspension-free jet with
residual momentum that is lost rapidly through friction and entrainment
of ambient fluid. Accordingly, the precise rate of decay of a surge in this
region is strongly dependent on the magnitude of the bed friction relative
to fluid entrainment as embodied in the parameter . The overall Froude
number, as calculated in relative terms by the quantity ¢B- V2, increases
dramatically in this regime due to the inertia of the dilute surge.

N~ (EnCz/C,)E*/“exp[—

Suspensions of Two Grain Sizes

Geologists are often interested in the sorting pattern of at least two
nominal size classes (sand and silt, say), so it is useful to consider the end-
member case of a suspension with two distinct modal settling velocities.
Under these conditions, an equation describing the conservation of mass
in each grain-size class is needed, so that Eq 2c is expanded to

db, _ wbcosd db, _w/bcos
dt h dt h
for the coarse and fine fractions, denoted respectively by the subscripts ¢
and f We now introduce additional dimensionless variables to describe

the case of a bimodal suspension. We make the contribution of each size
class to the total buoyancy relative to the initial total value b, by defining

B.=bJb, B,=b,/b, (18a)

and (1

and
so that
Bru + B[o = l‘ (18b)

We now define a characteristic settling velocity w, to be the average of the
settling velocities of the two size classes weighted by their initial propor-
tions B, and B, so that

(19a)

Accordingly, the settling velocity of each size class is normalized with
respect to the weighted average

W, = w8, + wB,

(19b)

If Egs 17 are made dimensionless using Eqs. 8a, 10a, 18a and 19b, we
obtain the following two new expressions which describe the conservation
of buoyancy in each size class
dB B dB, B,
——=-W= ad S =-W,—
dt v dt Ty
This scheme preserves the essential scaling behavior of Eqs 8-11 where
the length scale x, is defined in terms of the average settling velocity w,
of the initial suspension. The requirement that x, < x, still applies. The
relative deposit density », of grain-size class / is calculated from dB/df
using equations analogous to Eq 13c.

W.=w./w, and W, = w;/w..

(20)

Model Results for Suspensions of Two Grain Sizes

We obtained numerical solutions to Eqs | 1a and 20 for the case of equal
concentrations of coarse and fine material for which the settling velocity
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of the coarse sediments is ten times that of the fine material. The calculated
values of the dimensionless kinetic energy ¥, propagation speed U, buoy-
ancy B, Froude number Fr, and density # of the resulting deposit are
shown in Figure 3. Qur calculations for the bimodal case indicate that the
presence of relatively fine sediments in the surge results in a somewhat
greater run-out distance than that of a surge driven by a well-sorted sus-
pension with an equivalent average settling velocity (Fig. 3A-D). This
effect is due to the protracted life of a suspension with a fine-grained
component.

Importantly, however, the downstream trends in the normalized thick-
ness of model deposits outlined above are relatively insensitive to the
distribution of particle sizes in the initial suspension, even for this rather
contrived bimodal case (Fig. 3E). At a downstream distance corresponding
to £ =~ | the deposit thickness still shows the onset of an exponential
decrease with further distance in the downstream direction. We conclude
that the concept of a deposit pinch-out at x, remains useful. Moreover,
our calculations show that the ratio of coarse to fine sediment in a model
deposit from a poorly sorted suspension can evolve significantly in the
downstream direction due to differential rates of settling of the respective
size classes in suspension,

DISCUSSION

We have reported here a straightforward model that describes the down-
stream evolution of a turbidity surge and its distal deposit. The model
incorporates the essential governing processes of entrainment of ambient
seawater and fine-particle settling as well as the dynamic balance between
the downstope drive due to buoyancy and the opposing drag due to fluid
entrainment and bottom friction.

Defining the fluid entrainment rate as a fraction of the average surge
speed implies invariance in turbulent structure at the fluid interface of a
surge during the evolution of the surge. Alternative approaches include
relating the entrainment velocity either to the Reynolds stress at the in-
terface or to the overall Richardson number of the flow. For example,
relating o to an overall Richardson number would incorporate some effects
of stratification. However, the Richardson number is inversely propor-
tional to the Froude number, which we have shown remains relatively
constant during much of the evolution of the surge. Turner (1986) reviewed
many successful applications of the entrainment assumption to natural
phenomena representing a wide range of scales, and concluded that the
present approach, wherein « is taken to be a constant, is indeed a useful
one. It is important to note that the value of the coefficient o reflects the
net effects of entrainment of ambient fluid and detrainment of the sus-
pension in vortices shed from the current (see fig. 2 of Laval et al. 1988).
In the different situation of a flow on a horizontal surface « may even be
negative (Hallworth et al. 1993).

Modifications that could make our model more realistic, but that would
detract from its straightforward investigation, include the addition of terms
describing sediment reentrainment at the bed and three-dimensional
spreading of a debouching surge beyond the point of issue from a source
canyon. Neither of these processes is well understood at present, but it is
evident that sediment reentrainment leads to a greater deposition length,
whereas three-dimensional spreading reduces the deposition length. If the
interstitial fluid of a surge is less dense than the ambient, as may occur if
lighter surface waters were carried to depth by the surge, then loss of the
excess bulk density of the surge through deposition ultimately leads to
positive buoyancy of the flow. As a result, the surge lifts off from the
seafloor (Sparks et al. 1993) and the deposit may be truncated. Additional
calculations (not shown here) that include Coriolis acceleration of the surge
predict progressive deflection of the travel path and may contribute to an
understanding of the transformation of waning gravity currents into con-
tour currents. A further possibility is the addition to Eqs 2a— of a fourth
equation that describes the evolution of turbulent kinetic energy. This
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Fic. 3.—Calculations of the downslope evolution of a suspension-driven surge and its resulting deposit as functions of the dimensionless downstream distance £2,
The calculations are for ¢,2 = 10—+, The solid lines in each panel correspond to the behavior of a frictionless surge with a bimodat distribution of grain sizes in
suspension. The ratio of settling velocities of the fine and coarse size classes is 1:10, and the initial mass of the fine particles is equal to that of the coarse particles.
The dashed lines correspond to the frictionless single-grain-size case plotted in Figure 2 and shown again here for comparison. A) Dimensionless kinetic energy per
unit length of the flow. B) Relative buoyancy. C) Relative speed of downsiope propagation. D) Relative Froude number. E) Relative thickness of deposit. The dotted
line in E represents the ratio of coarse to fine material in the deposit relative to the value of this ratio near the origin.

modification may be necessary to accommodate the effects of density
stratification and turbulence suppression in the suspension (Fukushima
and Parker 1990). Stratification may be especially important in the rapid
emplacement of thick, homogeneous muds from very densely concentrated
flows (McCave and Jones 1988). We plan to explore some of these phe-
nomena.

We propose, however, that relationships for geological interpretation of
distal, fine-grained turbidites laid down in fjords or channels in deep-sca
fans can be obtained from the present, straightforward analysis. We en-
visage three stages of downstream evolution in the thickness of these
deposits (Fig. 4). The earliest stage of behavior of a deposit-forming surge
is dominated by its initial state and the characteristics of the deposit will
reflect these conditions (region A in Fig. 4). Thus we suggest that, while
a surge that has newly issued from a canyon adjusts to shallow-slope
conditions the rapidly decelerating flow generates a deposit of relatively
uniform thickness. The deposit thickness may even increase in the down-
stream direction if the initial speed is sufficient to cause sediment reen-
trainment at the bed. On the other hand, while a surge accelerates from
an initial state of rest, as in most laboratory experiments, the deposit

thickness near the point of release reflects the history of this flow accel-
eration.

At distances approaching and beyond the entry length x,, the deposit
thickness ultimately diminishes with downstream distance as the initial
conditions of the surge are overcome and suspended material is progres-
sively lost through slow settling. In this second stage the decrease in deposit
thickness proceeds as the inverse square root of distance in the downstream
direction (region B). This trend refiects flow conditions in which the surge
propagation speed is also proportional to the inverse square root of down-
stream distance but in which the overall Froude number of the surge is
relatively constant. In this reach the propagation speed and deposit thick-
ness of a surge are closely related, as are the mean kinetic energy and
buoyancy of the surge.

At downstream distances approaching and beyond the relaxation dis-
tance x, the buoyancy and deposit thickness of a surge decrease exponen-
tially with further travel downstream (region C). These “pinch-out” de-
posits thus correspond to flow conditions in which the driving buoyancy
has been spent and the surge has degenerated into a relatively particle-
free, bounded jet that dissipates rapidly due to friction and due to the
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Fic. 4.—Schematic interpretation of trends in thickness and grain-size sorting
in distal turbidites generated by noneroding gravity surges on uniform slopes. The
horizontal axis represents the logarithm of distance x from the origin of a surge.
The solid line shows model trends in the deposit thickness (h) relative to the

thickness near the origin. The dashed line shows model trends in the ratio of -

coarse to fine material (¢/f) in deposits relative to the value assumed by this ratio
near the origin. The shaded area in region A indicates a possible range of deposit
thickness that reflects dependence on the initial properties of the surge. See dis-
cussion in text for further details.

entrainment of ambient fluid. The grain size of the deposits generated
from poorly sorted suspensions decreases downstream. In such deposits
there is thus a strong relationship between deposit thickness and grain
size. The actual form of this relationship refiects the distribution of grain
size in the initial suspension.

The prospect that the surge propagation speed and the thickness of a
resulting deposit are mutually related in the main body of a surge deposit
offers an important scaling relationship of potential use to geologists. Re-
call from Eq 14 that »/U = Fr,2/Fr?. Using the definitions of the param-
eters developed eartier in our analysis, this result can be reexpressed in
terms of quantities that are measurable in the field as

g,'5,/w, = u cos 8/(k Fr?) (V29

where &, is the actual bed thickness observed locally and g,” = g¢.(p, —
p.)p, is the “bed buoyancy” in terms of the volumetric fraction of solids
¢, in the bed. The terms on the left side of Eq 21 represent quantities that
can be estimated from a surge deposit, and we note in particular that the
product g,’8, is independent of the effects of bed consolidation. The ratio
of these quantities may be used to infer the combination of hydraulic
conditions of the gravity surge that gave nise to the deposit—surge prop-
agation speed u, slope 6, aspect ratio &, and overall Froude number Fr =
ul(ghAp/p,) .

For a Froude number close to unity and a given settling velocity of
particles in a suspension on a known slope, either a more voluminous or
a more densely concentrated cloud results in a thicker deposit. These
properties of the deposit-forming cloud also contribute, however, to the
speed with which the cloud propagates across the seafloor. Thus &, and u
are related as reflected by Eq 21. A longer and thinner surge, moreover,
results in greater and more prolonged local rates of sediment deposition.
Thus the deposit thickness is inversely proportional to the surge aspect
ratio k.

The scaling given in Eq 21 is a modified form of the “thickness number”
defined by Siegenthaler and Buhler (1985) as

T = g,'8,/u2 @2

in their analysis of the equations governing the evolution of a suspension-
driven surge. Basing their arguments on dimensional reasoning for self-
similar flows, Siegenthaler and Buhler proposed that 7" is constant and

Tase |.—Scaling quantities of representative, suspension-driven surges*

Quartz-Density p,=1000kgm ° p,=2600kg m~>
Particles in Water: A natural surge A laboratory analog
(] 0.2 1.0°
a 0.0092 0.033
k 0.1 0.2
Cp 0.004 0.005
q. 0.1 km? 400 cm?

b, 1.6 x 10* kg s—? 12.5kgs2
W, 043cms-t 0.028cms!
Stokes diameter 70 um I8 um

U, Tims-! 3cms-!

X, 22 km 54m

X, 318 km TTm

8, 156 kg m—2 5.1 mgem—?
W, cos 6/au, 0.065 0.065

[(8, C,) 265 2.65

Fr, 0.57 0.76

Re, 7.1 x 108 L1 x 10*

¢ Fr, = (p,u20,/b,)" is an overall Froude number and Re, = uh /v is the
initial flow Reynolds number for a dilute surge in terms of the initial surge length
£,=(g./k)'”*, initial thickness k, = (kg,)""> and kinematic viscosity » of the ambient
fluid.

independent of the size of the sediments in suspension, Their measure-
ments of deposits from laboratory surges driven by suspensions charac-
terized by a range of particle settling velocities tentatively supported this
conclusion. We hasten to point out, however, that in these experiments
neither the ratio w./u nor the ratio x./x, was sufficiently small for proper
development of the self-similar behavior in surges described by our model.
When Siegenthaler and Buhler (1986) applied their scaling to the geologic
record, moreover, they curiously redefined T" with a denominator cor-
responding to the square of the settling velocity of the largest particle in
a local deposit rather than to 2 and found that the resulting ratio increased
by several orders of magnitude along the length of a deposit. From our
analysis we find that a more informative scaling of the quantity defined
in Eq 22 is weighted by the ratio u/w,. Our analysis also yields the explicit
dependence of 7" on the aspect ratio and overall Froude number of a
surge, both of which reflect hydraulic conditions that are dependent on
the slope angle 6. These improvements are included in the scaling given

in Eq 21.

APPLICATIONS

We illustrate the application of our predictions to both natural surges
and laboratory experiments with calculations based on representative val-
ues (Table 1) for aqueous flows. In these examples, ambient depth and
stratification are assumed not to influence the behavior of the flow.

The data of Laval et al. (1988) indicate that the dimensionless grouping
k/(vo?) 1s a function of the slope angle @ given by

k/(ya?) = 256~ 23)

for 0 < @ < 10° This relationship implies that the function f,(8, C,) is
relatively independent of @ for small slopes. It also implies that because
the surge aspect ratio & is finite, the fluid entrainment coefficient « vanishes
as 8 tends to zero. We use Eq 23 to evaluate « for specified values of the
aspect ratio of a surge and characteristics of the bed.

Consider, for example, a surge with an initial height of 100 m, an initial
length of 1 km, a volumetric sediment concentration of order 10~ and
an effective suspension settling velocity corresponding to 70 um-diameter
particles with the density of quartz. Such a cloud would travel with an
initial speed u, = 7 m/s within x, = 20 km or so of its point of entry
onto a uniform, deep-sea slope of 0.2°. Any potential for reentrainment
of newly deposited sediment due to the initially large propagation speed
reinforces our view that buoyancy is relatively well conserved in this upper
reach and that the suspension-driven surge achieves far-field behavior, In
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the far field, the surge would propagate approximately three hundred ki-
lometers while depositing the bulk of its driving suspension and would
rapidly dissipate thereafter. Calculations using Eq 4 indicate that the surge
would have grown in thickness from 100 m to over 1 km and in length
from | km to over 10 km due to the entrainment of seawater during the
time required to traverse this “run-out” distance.

The thickness of the resulting deposit would be about 10 ¢m (based on
8, ~ 150 kg/m? and a volumetric density of the bed of 0.5) near the point
of issue of the surge (or point of earliest deposition in the case of significant
reentrainment), and would diminish with the inverse square root of dis-
tance in the reach x, < x < x,, or 20 km < x << 320 km. The deposit
would rapidly “pinch out”, however, at distances approaching and ex-
ceeding 320 km. A significant mixture of coarse and fine fractions, such
that the average settling velocity of the initial suspension still corresponds
to that of 70 um particles, would extend the life of the surge considerably
but would not substantially alter the estimate for the length of the deposit.
In this case, however, a dramatic decrease in the ratio of coarse to fine
material would be observed in the deposit at downstream distances ap-
proaching 320 km. The conditions described here may well correspond
to those that deposited many turbidites of silt and fine sand in sloping
channels in deep-sea fans (e.g., Nelson et al. 1978).

Consider, on the other hand, a laboratory surge with an initial volume
per unit width of 400 cm? and a solids concentration of .02 that is released
from rest onto a smooth floor with a slope of 1° Such a flow would
approximate the propagation and deposition behavior of the natural phe-
nomenon described above if it comprised a suspension of quartz-density
particles with an average diameter of {8 um. This equivalence is based
on equal values of the ratio w,cost/au, of the settling velocity to the fluid-
entrainment velocity, which implies (from Eq 10b) equal values of the
ratio x,/x, of the acceleration length scale to the deposition length scale.
That such similitude is required of laboratory experiments was recognized
in early studies (Middleton 1966), but here we point out three important
aspects of this scaling that emerge from our analysis. Firstly, if w.cos6/
au, is sufficiently small then analogous behavior is achieved during the
far-field history of the laboratory surge regardless of the exact value. Thus
experiments to model the far-field behavior should use particles of di-
ameter no greater than 8 gm. Secondly, owing to the difficulty of repli-
cating the initial conditions, analogous behavior may not be achieved for
several meters {corresponding approximately to the near-field entry length
x,) downstream from the point of release of the surge even if the values
of w,cos/au, are identical. Thirdly, if the value of w,cos8/au, for a lab-
oratory surge is insufficiently small, then much of the suspended material
settles out during the earliest stages of flow while the surge is accelerating
from rest, and the far-field behavior is not realized. During the period in
which the flow is dominated by the initial conditions, such a surge and
its deposits may be better described by models for suspension-driven,
lock-release gravity currents that undergo self-weight collapse from an
initial position of rest (Bonnecaze et al. 1993; Dade and Huppert 1994).

CONCLUSIONS

An analysis of the equations that govern the behavior of nonereding,
suspension-driven gravity surges on stopes yields scaling relationships for
the propagation of surges and the geometry of the resulting deposits. These
relationships provide a new basis for the quantitative interpretation of
fine-grained turbidites comprising many deep-sea sediments. Important
tasks that we are now addressing include tests of the scaling relationships
through laboratory experimentation and examination of the geologic rec-
ord. Although our approach is developed with special reference to fine-
grained turbidity currents on gentle slopes, our results may also apply
under certain conditions to distal deposits generated during the waning
stages of other suspension-driven gravity surges, including subaerial fine-
grained ash flows and powder-snow avalanches.
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APPENDIX

Nondimensionalization of the Governing Equations for a
Suspension-Driven Surge

In this appendix we describe one approach to the analysis that leads to
the scaling of the equations and the explicit non-dimensional forms of
Egs l1aand 11D,

Egs 2 are rewritten in terms of the variables g(x), u(x), and b(x) by using
Eq 3 and d/dt = u d/dx to obtain

% = alg/k)"? (Ala)
JHaw) _bsin6 Cpu{g/k)” (Alb)
dx Po
and
db w.b cos 8
i T T kg7 A

Before proceeding with a detailed manipulation of these equations we can
obtain powerful results by simple estimates of the magnitude of the terms
in Eq Al. If 4 is slowly varying then from Eqs Ala and Alb

a/x ~ alg/k)"”? (A2a)

and
ug/x + Cplg/k)*] ~ b,sin 8/p, (A2b)

where ~ denotes an order-of-magnitude balance. The scales of x, and u,
in Eqs 4b and 5b can then be obtained from Eq A2 upon using ¢ ~ 4.
We can also see from Eq A2 that g is proportional to x? and that 1 is
proportional to x~ "2, in agreement with Eqs 4a and 6.

The slowly varying buoyancy b varies over the length scale x, given
from Eq Alc by

(A3)

By substituting g ~ g,(x./x,), # ~ u(x,/x,)"* and the estimates of x,
and u, into Eq A3, we obtain

ulx, ~ w,cos 8/(kg)">

2 .
ay, kb sin 6
X, ~ X\ = ~
w_cos p.(W.cos 87

in agreement with Eqs 7 and 10b. The nondimensionalization of Eq 11
is motivated by these scalings.

We proceed with the derivation as follows. Eq [Ala] can be integrated
analytically to obtain Eq 4. After the elimination of ¢, Eq A1b can be put
in the form

(Ad)

8kb sin 0

dur 1
2 - 2 =
X , + 2(7 + xu —B. (A5)

a'

Writing the differentials of the dimensionless variables defined in Eqs 8
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and 10 in the forms

dy? = (x du® + wdx)/x u? (Aba)
and
d 1_d
X'{E = 5 d_f (Aﬁb)
we can reduce Eq A2 to
1 ay* 1| [Bkbsing |
2 TS ( .o xouf)B' (A7)

With further rearrangement and use of the definitions for x_ and u, given
in Eqs 4b and 5b, Eq 11a is readily obtained.

Similarly, ¢ is eliminated from Eq Alc and the transformation Eq A6b
used to obtain

Ed_B= _ 2wcos §

2 it - B. (A8)

Recalling from Eq 12 that ¢ = (£u/£ u,), we see that Eq A8 can be written as
dB 4w, B

- at v w9

With the definition of x, given in Eq 7 (and hence £, by Eq 10b), Eq A9
reduces to Eq !1b.

Symbols*
b = gdpq, buoyancy [MT-?]
b, = buoyancy at x, [MT-?}
b. = buoyancy of coarse fraction [M7-7]
b, = buoyancy of fine fraction (MT-?}
B = b/b,

C, = coefficient of added mass

C,, = coefficient of friction

Fr = u/(ghAp/p.)'"%; Froude number
Fr, = Froude number at x,

h = surge height [L]

£ = acceleration due to gravity [LT-?]
&' = gbslo, — p.)p,; bed buoyancy [LT-’]
k = h/%, surge aspect ratio

€ = surge length (L]

g = surge volume per unit width [L?]

q, = surge volume at x,, [L?]

t = time [T]

T = g,'5,/u thickness number

u = surge speed [LT']

u, = surge speed at x, [LT-']

u, = characteristic speed of surge [LT-']

U= ulu,

w, = settling velocity of coarse fraction [LT-']
w, = settling velocity of fine fraction [LT-']
w, = average settling velocity (LT~}

W.=wiw,and W, = w/w,
x = downstream distance [L]
X, = entry length [L]

X, = run-out length (L]

a = coefficient of fluid entrainment

& = deposit mass per unit area of seafloor [ML 2]
8, = deposit density at x, [ML-?]

6, = deposit thickness [L]

y=6+ Cla

n =83,

Y2 = wxiu’x,

¢ = volume fraction of solids in suspension

¢, = volume fraction of solids in the bed

p, = density of the ambient fluid [ML -]

Ap = ¢lp, — p.); excess density of the surge (ML}
p, = density of sediment particles [ML-3]

6 = angle of the seafloor with the horizontal

8= x/x,

£ = x/x,

* Mass [M], length [L] and time [7].




