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Abstract

The crystallization of a binary alloy from a cooled boundary is analysed and the structure of the resulting solid
product examined. The analysis includes effects due to differences in densities between solid and liquid phases and
due to a non-zero segregation coefficient of the alloy. We determine the general conditions under which the
solidification takes place either at a planar interface or throughout a mushy layer of solid dendrites bathed in

interstitial fluid. We are able to make significant analytical progress by finding appropriate similarity solutions of the
governing differential equations, and then simplifying these solutions in the asymptotic limit of practical interest
wherein the compositional diffusivity is very much less than the thermal diffusivity. Thereby we determine a simple
criterion that distinguishes between the solidification at a planar front being controlled mainly by the transport of
the rejected component away from the phase boundary rather than by the associated thermal transports. We also
calculate the solid fraction and the degree of micro-segregation in the mushy layer. In addition, the density
difference between the liquid and solid phases is shown to induce a flow of the liquid phase during solidification,
which causes macro-segregation of the resulting solid product.

1. Introduction mine local values of the temperature, solute con-
centration and (volume) solid fraction ~.

As a multi-component fluid cools and solidi- Our understanding of the dynamics of solidifi-
fies, the interface between fluid and solid is ei- cation has been greatly enhanced by the exact
ther planar or distorted within a comparatively analytical solution of simple models. The similar-
broad zone in which solid crystals are bathed in ity solution for growth of a planar crystal front in
liquid. Such a zone is known as a mushy layer. a pure melt, for example, is now part of the
Investigation of the evolution of mushy layers established literature of problems in heat transfer
cannot readily be carried out by the detailed [11and was extended by Ruhinstein [2] to simple
study of the growth of individual crystals. Instead, binary alloys. Theoretical models describing the
it is more productive to use the approach of evolution of mushy layers have advanced signifi-
continuum mechanics whereby at each point in cantly over the last decade (see ref. [3] for a
the mushy layer suitable averages are taken over review) guided to a large extent by concurrent
a volume that contains many crystals to deter- laboratory experiments [41.
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Encouraged by the excellent agreement be- solutal diffusivity in the liquid phase, and K
5 and

tween the predictions of the equations for a stag- K1 are the thermal diffusivities of the solid and
nant mushy layer presented by Worster [5] and the liquid phases, respectively.
the results of laboratory experiments, this paper The plan of the paper is as follows. Solidifica-
develops the previous approach to new situations. tion at a flat interface is analysed in section 2.
We examine effects due to either the flow in- Similarity solutions are obtained and a corn-
duced when the solid and liquid have different pletely general expression is found for the rate of
densities or to a non-zero segregation coefficient solidification. Asymptotic approximations are
of the alloy, whereby a proportion of both corn- used to determine simple expressions for the
ponents in the liquid phase are taken into the external conditions under which evolution of the
solid. Some of the effects have been included interface is controlled mainly by the diffusion of
previously in numerical simulations of solidifying solute, rather than by the diffusion of heat. The
systems without the important consequences be- consequences for heat and mass transfer of the
ing specifically identified [6]. By our analytical flow caused by either expansion or shrinkage
approach, we are able to elucidate the roles of during solidification are identified and the segre-
the segregation coefficient and the density ratio gation caused by such flow is calculated. The
individually. One of the aims of the paper is to conditions under which the interface can remain
examine spatial variations on both a small and planar are presented in section 3, and thus the
large scale, or the micro- and macro-segregation conditions are obtained under which mushy lay-
that can occur during solidification of a binary ers can be expected to form. Equations governing
melt. the evolution of mushy layers are presented in

We are able to make significant progress in section 4. These are used to determine ordinary
determining simple analytical expressions by ex- differential equations describing similarity solu-
ploiting the practical asymptotic limit of small tions for the solidification of an alloy from a
compositional diffusion relative to thermal diffu- cooled, plane boundary of fixed temperature. The
sion. Mathematically, this is achieved by letting model is used to predict the consequences of the
e1, E5 —* 0, where c1 s = (D/K15)~~

2, D is the flow within the interstices of the mushy layer on
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Fig. 1. (a) Part of the phase diagram for a binary alloy, which shows the solidus and liquidus curves for temperatures above the
eutectic temperature. The thick solid line shows the trajectory of the temperature and composition during solidification from a
planar boundary. (b) Schematic diagram of solidification from a plane wall when the solid—liquid interface remains flat, The
velocity field u is driven by differences in density between the solid and liquid phases. In the case p5 >p~,the velocity field is
towards the solid—liquid interface, as illustrated. The hatched region in each figure shows a region of constitutional supercooling in
which the temperature just ahead of the interface is lower than the local liquidus temperature.
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the overall growth rate of the layer and on the The solutal diffusion coefficient in the solid is
distribution of solid within it. The latter is partic- negligible in comparison with that in the liquid,
ularly important in determining the permeability so the solid concentration established at the crys-
of the layer. Further, the redistribution of solute tal—liquid interface is frozen in. The differential
is calculated, which gives an indication of the equations governing the temperature field T(z, t)

level of macro-segregation to be expected in a and the concentration of the liquid phase C(z, t)

fully solidified system. The value of the segrega- are the advection—diffusion equations
tion coefficient has a primary effect on the micro-

= K
0T.. (: <Ii(t)), (2.1)

scopic segregation of the alloy, and we determine
how this affects the overall dynamics of the mushy T, + uT. = K1L, (z > h(t)), (2.2)
layer. + uC = DC. (z > h(t)). (2.3)

The physical parameters are the thermal diffusiv-
ities K,, and K1, and the solute diffusivity D,

2. Planar solidification front which are assumed constant in each phase.

In the absence of any driving forces, the veloc-
2.1. The got erning equations ity of the melt u is determined solely by conserva-

tion of mass at the solid—liquid interface, which
In this section, we present analytical results for requires that

solidification at a planar front of a two-compo- u = (I — r) dh/dt, (2.4)
nent fluid having the typical phase diagram shown where the ratio of densities r = p0/p ~ is such that
in Fig. la. A sketch of the problem under consid- r> 1 corresponds to contraction and r < 1 to
eration is given in Fig. lb. The region z> 0 is expansion.
initially filled with fluid of uniform density p~ The above equations are subject to the follow-
and composition C = C0 at temperature T~which ing boundary and initial conditions
exceeds the initial liquidus temperature TL(Co).
The binary alloy is solidified from a flat cooled T T1~ (z = 0), (2.5a)
boundary at z = 0, which is held at a fixed tern- T= i~, c’= c~,, ( ~ = h(t)), (2.5h,c)
perature T~< TL(C~).Solid forms at the bound-

andary and is separated from the melt by a planar
interface at z = h(t). The value of the tempera- T—~T~, C —s C0 (z — ~ or t —s 0). (2.6a,h)
ture and concentration of the liquid at the inter- There are also two flux conditions to be applied
face are denoted by T1, and C1, respectively. The at the unknown position of the interface Ii(t).
solid has uniform density p5 which in general is Conservation of heat requires that the latent heat
different from the liquid density p~.We specifi- of solidification be diffused away from the inter-
cally include and investigate the flow of melt face so that
caused by such a density difference, where the
flow is towards the solid—melt interface in the ~‘< dh/dt = K5T ~ K1T , (2.7)
case of contraction of the solid (p0 > p,) or away where ~‘ is the latent heat per unit volume of
from the interface in the ease of expansion (p. < solid, K = CK is the thermal conductivity, and c is

the heat capacity per unit volume. Throughout
We investigate situations in which gravity has this paper, material properties will be written in

no influence on the motion of the fluid. Such terms of values per unit volume, so that variations
would be the case, for example, when the melt is in r = p5/pr affect only the velocity field and not
cooled from below and heavy solute is rejected the material properties. Conservation of solute
during solidification, so that both the tempera- requires that
ture and the compositional fields are stable to
buoyancy driven convection. r(1 —k)C1,dh/dt = —DC~~h’ (2.8)
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The solidus relation C5 = kCh and the definition Relationships between the three unknowns A,
of u given by Eq. (2.4) were used to obtain the Ch, and T6 are determined by the three interfa-
expression above, where k is the segregation co- cial conditions (2.7)—(2.9). In particular, we deter-
efficient and C5 is the concentration in the solid mine the interfacial position A as the root of
at the interface. Finally, we make the assumption

+that the interface is at thermodynamic equilib- mCo( (1—k) F(rA) \ ( 1 r13 \rium. so that the temperature and concentration 1 — (1 — k) F(rA) ) ~G(E5A) F(�1rA))
at the interface are related by the liquidus T1 rf3T0 2’

T(h, t) = —mC(h~,t), (2.9) = G(�5A)— F(e1rA) — —, (2.14)

where the liquidus slope m is taken to be con-
stant. where f3 = c1/c5 is the ratio of specific heats,

The system of partial differential equations which we keep fixed during the analysis, and
(2.1)—(2.4) admits a similarity solution with van- where
able F(x) = ~ exp(x

2) erfc(x) i/~x (x —s 0),

~ =z/2fbi, (2.10) (2.15a)

in which the interface has position G(x)=~/~xexp(x2)erf(x)_~2x2(x—sO).
h(t) = 2Af~, (2.11) (2.15b)

where the constant A is to be determined. These
The driving temperature differences

similarity solutions are such that, with the given
boundary conditions, solutions of the full partial- T~

1= — TL( C0), T~= TL( C0) — TB,
differential system will tend to the similarity solu- (2.l6a,b)
tion for arbitrary, smooth initial conditions [7,8].
We scale h(t) in terms of the compositional diffu- are illustrated in Fig. la.
sivity, rather than the thermal diffusivity, since Eq. (2.14) represents the most general eigen-
the rate of solidification of an alloy at a planar value relationship for A. Several special cases of
interface is generally controlled by the relatively this result have appeared previously. For exam-
slower diffusion of solute [9]. The governing ple, the ease r = 1, C0 = 0, which applies to the
equations reduce to ordinary differential equa- solidification of a pure melt without contraction,
tions in the similarity variable, and can be inte- is the classical Stefan problem solved by Neu-
grated to give mann in the 1860’s [1]. Solidification of a pure

melt with contraction (C0 = 0, r ±1) is describederf(c5i~)
in a recent text by Alexiades and Solomon [101,

T= TB + (Th — TB) erf(E5A) ~ > A (solid), while solutions for a binary melt without contrac-

(2.12a) tion (C0 ~ 0, r = 1) have been given by Rubin-
stein [2] and by Huppert and Worster [9]. In the

erfc(e1y)
T = 1~.+ (Th — 7~) si <A (liquid), general relationship (2.14) we have included ef-

erfc(�,Ar) fects due both to convection and to having a
(2.12b) non-zero segregation coefficient k in a binary

melt.
erfc( y)

C = C0 + (C,, — C0) erfc(Ar) ~ <A (liquid), 2.2. Compositionaltersusthermalcontrol

(2.12c)
The relationship (2.14) is a complicated, tran-

where scendental equation for A, which may not have ay = (r — 1)A + s~, (2.13) solution for certain parameters. For example, no

and E,5 = (D/Kf5)t~/
2. solution exists for growth into a pure, hyper-
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cooled melt; C0 = 0, T~=0, T0 < —2’/rc© In limit C,, e1—~0 with ,u = e1A = 0(1). then the
eases when a solution does exist, the equation can general expression (2.14) becomes
he solved numerically given specific values of the
external parameters. However, the equation has a —mC/k — TB T,0 + mC11/k 2’
simpler form in the asymptotic limit e~,e,~—~ 0, — f3r = —. (2.21)
which allows considerable analytical progress to G( E5/.L/E1) F( r/.r) c0
be made and fresh physical insight to be gained.
This is a useful, practical limit to consider since Eq. (2.21) is similar to that obtained in the classi-
the diffusivity of heat is typically much greater cal Stefan problem [11 and shows that, in this
than the diffusivity of solute. thermally controlled regime, the binary alloy So-

Under the assumption that A remains finite in lidifies at the same rate as a pure melt of freezing
the limit e~,E1—~0, with all other parameters temperature Tm= —mC11/k,which is the solidus
fixed, G(e,A)~ F(e1rA) and Eq. (2.14) reduces temperature of the original melt. In Fig. 2a, the
to dimensionless growth rate A calculated from the

mC (1 — k) F( rA) full expression (2.14) is plotted as a function of
T1 = 0 , (2.17) T13. Superimposed on the same graph are the

I — (1 — k) F( rA) solutions of the asymptotic expressions (2.18) and

which can be rearranged to give (2.21), which are seen to give very good approxi-
mations in the regimes corresponding to composi-

F(rA) = 1 1 + —u- (2 18) tional control and thermal control respectively.
I — k T1 The preceding discussion indicates that the

value of the segregation coefficient k affects the
Since F(x) increases monotonically from 0 to 1 as rate of solidtfication significantly because its value
x increases from 0 to ~, (2.18) always has a .determines how much solute is rejected at the
unique solution if .

interface upon solidification. It is straightforward
0 < T~<(1 — k )mC11/k. (2.19) to deduce that the system is compositionally con-

This condition can be expressed in terms of exter- trolled in the extreme case k = 0 (total rejection
nal parameters as of solute) and thermally controlled in the oppo-

site extreme k = 1 (total incorporation of solute).
—mC0/k<TB < —rnC,. (2.20) It is of interest to know at what value of k the

Condition (2.20) is one of the central results of system changes from being compositionally con-
this study and indicates that there is always a trolled to being thermally controlled.
solution of (2.18) if the temperature of the base is From (2.20) we obtain the asymptotic result
between the solidus and liquidus temperatures that for values of k < —mCO/TB the system is
evaluated at the far-field composition. The exis- compositionally controlled, whereas if this condi-
tence of such a solution confirms that, in this tion is violated, the system is thermally con-
situation, the scaling suggested by (2.11) is appro- trolled. For the parameter values in Table 1, we
priate and that the solidification at a planar inter- bring this result to a plot of numerical solutions
face is indeed controlled by the diffusion of so- in Fig. 2b. We see that the asymptotic result for k
lute ahead of the interface, we have just found, which is marked by the dashed

Conversely, if the temperature of the cold base line, corresponds to an inflection point in the full
T~is less than the solidus temperature —mC~/k, solution. Results are shown for three different
then either a thermal diffusivity should be used in values of the density ratio r. The growth rate
(2.11) or it should be appreciated that A is of depends significantly on this parameter. In partic-
order � . In this regime, the transport of solute ular, it appears that when r is very small, corre-
is no longer the rate-controlling process and the sponding to large expansion, the rate of solidifi-
interface advances much more rapidly, at a rate cation is no longer controlled by diffusion of
determined by thermal diffusion. If we take the solute.
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2.3. ConLectiteeffectsdue to expansionor contrac- Table 1
tion Parameter values used in our calculations except where other-

wise stated; these are typical of a laboratory experiment in
which a solution of sodium nitrate, NaNO

5, is cooled from
Contraction or expansion during sohdtfication below

induces the melt to flow, which affects the solidi- L 73.6 cal cm
3

fication process in a number of ways. The trans- j~ 1>1 lO-~em2 s~

port of heat and solute are both altered by the K
5 5.3x10

3ea1g’ s~oç~I

velocity field u which thus affects the rate of K, l.3X103 calg~© I o~~l

solidification as well as the composition in the ~ 0.92 gem

final solid. In the case of contraction (r> 1), for
0.44 cal em3 o~1

C, 1.25 cal cm3 °C
T 20°C

(a)

r C
11

8~ / _________________________________________
/

6L
/ example, the flow in the melt is towards the

// interface and compresses both the thermal and
2 // / compositional boundary layers, enhancing the
o ______ _______ transport of heat towards the interface and the

0 2 1/k 4 6 8 10 transport of solute away from the interface. The
‘e’ mC0 former inhibits an increase in the rate of solidifi-

cation while the latter promotes it.
7 (b) Solving (2.14) for A as a function of r, we

—0 1 obtain the numerical plots presented in Fig. 3

= 1 which iIu~rateshow ~ ~

~1/2 20 ~r? ::

0.0 0.2 0.4 0.6 0.8 k 1.0 1 5 \

Fig. 2. (a) The growth-rate parameter A as a function of the —~ 3.0
temperature of the cold base TB, normalized with the liquidus r 1.0 X
temperature — mC11.The rate of solidification is controlled by ,—~ N 2.0
diffusion of solute ahead of the interface when the base 0 N N

temperature is greater than the solidus temperature . . 1.0
— mC11/k.The graph is plotted for a value of the segregation
coefficient k = t).3. When the base is colder than the solidus 0.0 0.0
temperature, the solid grows as if from a pure melt of freezing o.i 1 10
temperature equal to the solidus temperature. Shown with
dashed lines are asymptotic results in the limit of small solutal Fig. 3. Superposed in the same plot are the rate of accretion
diffusivity relative to the thermal diffusivity. (b) A plotted as a of mass to the solid, proportional to rA, and the growth rate
function of k for different values of the density ratio r. The of the interface as functions of r. As r increases, the rate of
dashed line shows the value of k determined by asymptotic mass accretion increases due to the enhanced mass transport
analysis in the limit �,~ —s 0 for which the system changes towards the solid, but the interface grows more slowly because
from being compositionally controlled to being thermally con- the solidified melt occupies less space than it did in the liquid
trolled. The parameters used for both plots are listed in state. The parameters used to calculate these curves are listed
Table 1. in Table 1, with k = 0.3.
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rate of mass accretion to the solid, which is 1 0 r= 10

proportional to Ar, increases as shown in Fig. ~ 08

However, this mass occupies less space than it did
in the liquid state, so the interface actually ad- ~
vances less rapidly with increasing density ratio r, 04

as illustrated in the superposed plot also in Fig. 3. 02

2.4. Segregation 00 L..
0.0 0.2 0.4 0.6 0,8 k 1 0

An important technological question is how to Fig. 4. Normalized concentration in the solid (~ / (‘i, is

predict and thence control the final solid compo- function of the segregation coefficient k for different values

sition C< From Eq. (2.8), the concentration in the of the density ratio r. The curves were calculated using the

liquid at the interface C11 can be determined and parameters in Table I. When the system is compositional(v

this, together with the solidus relation, gives the controlled (k < 1)4). the solid composition Increases almost
linearly with k. When the system is thermally controlled

following expression for the composition in the (A’ > (L4), the composition of the solid is almost independent

solid: of the segregation coefficient kand is approximately equal iii

/ (1 — k ) F( ,‘A ) the initial composition of the melt. This general behaviour
+ 1 (2.22) does not apply for very small values of the density ratioC5 = kC0 ~ 1 — (I — k) F( rA) ) when growth is less inhibited by transport of solute and the

composition of the solid varies linearly svith A as shown (‘or
Useful approximate solutions of (2.22) can be the whole range 0< k < I.

obtained in the asymptotic regimes corresponding
to compositional or thermal control of the inter-
face. When the growth is compositionally ~Ofl full solution follows the asymptotic solutions
trolled, F(rA) is given by Eq. (2.18), which can be (2.23) and (2.24) more closely.
used in (2.22) to show that Segregation is more sensitive to the value of

C5 —kTB/tn. (2.23) the density ratio r in the case of expansion.
Indeed, as r — 0,

Since the thickness of solid grown is much less
than the width of the thermal boundary layer in (~ ~kC11 (2.25)
this regime, the temperature of the interface is in both compositionally and thermally controlled
almost equal to the temperature of the cold regimes, a result which has quite a different char-
boundary TB. Therefore, the concentration in the acter from when r = 0(1), as seen in Fig. 4. The
liquid at the interface is — TB/tn, according to flow caused by expansion transports solute away
the liquidus relationship, and (2.23) follows from from the interface, whose growth is therefore less
the solidus relationship. On the other hand, when dependent on the rate of solutal diffusion.
A >~ I, Eq. (2.22) is approximated by

(2.24)
3. Instability of a planar interface

In this limit, the concentration of the solid is
almost equal to the initial concentration of the Solidification at a growing interface is said to
liquid; there is little segregation, which explains undergo constitutional supercooling if the tern-
why compositional control is replaced by thermal perature and composition fields in the fluid lie
control. below the local liquidus (see Fig. 1). This would

These asymptotic results are shown in Fig. 4 to imply, inconsistently, that the melt is partially
give good predictions for moderate values of the solid. Mathematically, the condition for this to
density ratio r. When r is large, contraction occur is that
causes the solid—liquid interface to advance even
less rapidly than the isotherms and therefore the T: i~<—n~C~i~, (3.1)
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(as first derived by Rutter and Chalmers [11], and
reviewed by Sekerka [12]).A quantitative dynami-
cal calculation indicates that, in the absence of -2

the Gibbs—Thompson effect, the interface is ex-
ponentially unstable in time to infinitesimal dis- T ~~~idus

turbances, and is said to be morphologically un-
stable (as first derived in Mullins and Sekerka
[13]), if -1

K5T~4+ K1T.. ,,~,<—m(K5+K1)C~ ,,+. - 0 5 10 15 20 25

(3.2) C
Fig. 5. Phase diagram showing the liquidus curve and the

An alternative expression is obtained by substitut- solidus curve for k = 0.7. Curves indicating the values of TB
ing (2.7) into (3.2) to indicate that morphological for which supercooling first occurs are also shown. These are

for a given fixed far-field temperature, T, = 20. The dashed
instability sets in if line is for k = 0, which shows that only a rather pure melt can

be cooled fast without supercooling ocurring. The solid curve
T~~ < [— m(K5 + K1)C~h +2’h] /2K1. is for k = 0.7, and there is a window of low concentrations for

(3.3) which the System will keep a stable flat solid—liquid interface
even if cooled rapidly. Parameter values for calculating the
curves are given in Table 1.where h = dh/dt. Eq. (3.2) approximates to (3.1)

if K0 -~ K,. We proceed on the assumption that
effects due to shrinkage do not alter this internal
criterion for instability (a discussion of this prob- A = O(E1), or if mC0(1 — k) = O(c() with A =

lem is given in ref. [14]). In terms of the similarity 0(1). In the former case, (2.25) indicates that
solution we obtained in section 2, we can deter-
mine the conditions for which either (3.1) or (3.2) T1 ~ mC0(1— k) F(rA), (3.5)
occurs first by differentiating (2.12b) and (2.12c),

and, as explained following (2.23),
evaluating the result at z = h, and expressing the
result as the ratio Th —mC0— T1 = TB. (3.6)

—mC0(1 — k) F(e,rA) The substitution of(3.5) and (3.6) into (3.4) shows
—mCi h+/T~ I e~(T— T6) that the right-hand side of (3.4) is then approxi-

mately T~/c1T0.In addition (Sfii)/(K,T~ h~)=

(3.4) O(E~)and hence can be neglected in (3.3). Thus

constitutional supercooling, as expressed by (3.1),
We can determine the value of TB for the onset occurs ifof constitutional supercooling by obtaining the
root A of (3.4), inserting it into (2.14) and solving T1 > �1T0, (3.7)
that equation for TB. This critical value of TB is and morphological instability, as expressed by
displayed in Fig. 5 as a function of the initial

(3.3), occurs if
concentration C0 for a fixed value of T0,,. As
illustrated in this figure, a non-zero segregation 2K1
coefficient considerably widens the window of T~>K, + K1EI

1’0 (3.8)
low concentrations for which the system can be
cooled rapidly and still maintain a stable flat We hence conclude that, except for small values
solid—liquid interface, of C

0, if K, < K5 morphological instability occurs
Expression (3.4) takes a simpler form in the first, while if K1> K~constitutional supercooling

limit c, —~ 0. In this limit, F(e,rA) ~T
1”2E

1 rA, so occurs before the interface becomes morphologi-
the right-hand side of (3.4) remains finite only if eally unstable.
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4. Evolution of a mushy layer ogy of the two-phase medium [17]. However, its
use has been found to lead to theoretical predie-

In most metallurgical and geophysical pro- tions which are in good agreement with experi-
cesses, as well as in laboratory experiments, the mental results [5,7.18,19],mainly due to align-
threshold of morphological instability is so far ment of the crystals with the temperature gradi-
exceeded that the solid—liquid interface develops ent.
the form of a mushy layer. Instead of tracing the The velocity field Ii must satisfy the continuity
evolution of this convoluted interface, it is appro- equation
priate to treat the mushy layer as a continuum for ~ u = (1 — r )/ (4
which averaged equations and physical properties 1’ ‘

can be used to describe its evolution, so that mass is conserved. In the case of a one-di-
Equations for mushy layers have been pre- mensional model, this equation is sufficient to

sented previously by a number of authors (e.g. determine U. Notice that the divergence of the
Hills, Loper and Roberts [15], Fowler [161. velocity field is not zero; rather it depends on the
Worster [51).A derivation of the equations we rate of change of the solid fraction in a way
use here is presented in a recent review by determined by the density ratio r. For example,
Worster [3]. in the case of contraction of the solid phase

The governing equations for the mushy layer (r > I). ~‘. U < 0. The rate of change of tile solid
are given by the local conservation equations for traction couples Eqs. (4.1). (4.2) and (4.6), and is
heat and solute, which can he expressed as obtained implicitly through the internal equilib-

rium condition
c,1T +c, U’ VT= ~. (K11V7’) +2~J~. (4.1)

T= T1(C’) = —itiC. (47)
(I — ~)C1 + U’ ~C

which says that the temperature is equal to the
= ~‘‘ ( DmVC) + rC( I — k )d~. (4.2) local liquidus temperature throughout the mushy

The temperature T and the composition of the layer.
interstitial liquid C are assumed to he uniform The equations above constitute a full set of
over length scales typical of the inter-dendritic governing equations for the mushy layer. Three
spacing. The volume fraction of solid dendrites is interfacial conditions expressing conservation of
denoted by ~, while U represents the volume flux heat, solute and mass at the mush-liquid interface
of inter-dendritic fluid. The physical parameters can he derived from Eqs. (4.1). (4.2) and (4.6).
are as defined in section 2. where the subscript These can be expressed as
“m” denotes properties of the mushy phase. The 2’l/1[d] = [K11n . ~“T]. (4.Sa)
terms 2’~, and rC~1on the right-hand sides of
the above conservation equations express the re- r( 1 — k)C, ~1[~] = [D,,n . CC], (4.Sh)
lease of latent heat into the mush and of solute ( r — l)V1[q’I = [n ‘ U]. (4.8c)
into the interstitial fluid respectively. .

The thermal properties of the mush are taken where [ I denotes the jump in the enclosed quan-
to he averages of the properties of the individual tity across an interface with normal n movingwith normal velocity V
phases, so that . . .s .In addition, we impose the condition of

= ~c5 + (1 — ~)c,, (4.3) marginal equilibrium [3.5]

K11=~K5+(I —~)K,, (4.4a) T ~ niC~Ii,~ (4.9)

D,1 = (I — ~) D. (4.4b) There are two boundary conditions to he ap-
plied at the bottom of the mushy layer at the

Expression (4.3) is exact while expressions (4.4a) cooled boundary. These areand (4.4b) are only approximate because trans-
port properties depend on the internal morphol- T T11. ~ U () (z = 0). (4.lOa.b)
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The system of partial differential equations and .2’ = 5f/(c,~T), Le = K1/D, and h’ =

described above admits a similarity solution, simi- C0/~C.Chiareli and Worster [19]presented these
lar to those found in previous studies [5,19,201, similarity equations with the segregation coeffi-
for solidification from a cooled, planar boundary cient k set to zero and showed that they yielded
with similarity variable predictions of the solid fraction within the mushy

layer that were in good agreement with experi-
Si =z/2~/~jT, (4.11) mental data.

in which the mush—liquid interface has position To obtain the boundary conditions for this
system of equations, it is necessary to solve the

h(t) = 2ii~/~i, (4.12) problem in the liquid region. The appropriate
equations there are given by (4.16)—(4.18) withwhere p. is a constant to be determined as part of

= 0, which are readily solved to give
the solution. Notice that now the similarity vari-
able is scaled with the thermal diffusivity rather g = u, (4.21)
than with the solutal diffusivity. This is because erfc( ~ — v)
the rate of growth of the mushy layer is con- o = o~+ ~ — O~)
trolled principally by the rate of heat transfer, not erfc(p. — v) (4.22)
solute transfer, since the rejected solute is aecom- erfc[Vi~(Si — v)]
modated within the interstices of the mushy layer. ~ =

The governing equations reduce to a system of erfe[VL~(p.—1))] (4.23)
ordinary differential equations in the similarity where L’ is a constant, and
variable, and can be made dimensionless by scal-
ing temperatures with ztT= TL(CO)— TB, con- 6,. = [T, —

centrations with iC = [TL(Co) — TB]/m, and the
velocity field with /~7i.Upon writing = [Th — TL(C~)]/~T,

= (C,~— C0)m/LtT.T— TL(C~)=iT
6(Si)~ (4.13)

These solutions are similar to those presented in
C—C

0=—LICe(Si), (4.14) section 2 for the liquid region, but now 1) is
U=~/~7ig(~), (4.15) unknown.

The marginal equilibrium condition is ex-
and using the internal equilibrium condition ~ = pressed in similarity variables by
0, the coupled, nonlinear, governing differential
equations for temperature, concentration and 0’ I liquid = I liquid, (4.24)
mass reduce to and we use this condition together with (4.21)—

—c~?7O’+gO’ = ~(KmO’)’ —
2’Si~’~ (4.16) (4.23) to determine that

1 2
(l—4)s~O’--gO’ exp[—(,L—L!)

= (Oh — 0,.)
1 erfc(p.—i’)

= ——[(1 — çb)O’]’ + r(k — 1)(~’—O)~qY, erfc[%I~(p.—

(4.17) X exp[ — v’L~(p.— L1)2] . (4.25)

g’ = (r — l)Sicb’, (4.18)
We can deduce from (4.25) that in the limit

where the dimensionless specific heat and dimen- Le — ~‘ ~h = 0h = 0(Le~).This implies that, to
sionless thermal conductivity are defined as leading order, i9 0 in the liquid and therefore

cm= (1 — i~5)+ (c~/c
1)4, (4.19) that Ch C0 on the liquid side of the interface.

Given (4.25), the dimensionless form of (4.8b) in
Km = (1 — 4.~)+ (K5/K,)~, (4.20) the limit Le —* implies that [4.]= 0 and hence
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that 4) = 0 at the mush—liquid interface. With the 33

results above, we obtain the following dimension- 20

less boundary conditions for the mushy layer 10

4) = 0, 0 = 0, g = t’, (4.26a,h,c) ~ ~)° o~i i .

d02 0,. [~ - 21 -20

— ,— exp~ (p. i)~
dSi V3T erfe(p. — t’) -30

(~=p.), (4.26d)
83 (b)

and

0=—I, g=0 (Si =0), (4.27a,h) 40

where i’ and p. are to he determined, ~ (%) 0 31 1 ~‘‘‘~‘‘

The limit Le —~ ~ can be taken in Eq. (4.17)
even though the term with the highest derivative
is thereby neglected. This does not cause a singu- -80

lar pertubation because the internal equilibrium
condition T= —mC couples the thermal and 8 )c)

compositional fields in the mushy layer and a
derivative of the same order as that neglected in 4

(4.17) is retained in (4.16). This limit simplifies ~ I

Eq. (4.17), renders the coupled equations (4.16)— ° A r 10

(4.18) less stiff and causes the mushy layer to -4

extend to the cold boundary. Otherwise, there is
a thin layer of solid between the boundary and
the mushy layer [5]. Fig. 6. Changes in (a) the growth rate, (h) the solid fraction.

and (c) the bulk concentration at the bottom of the mushy
layer as functions of the density ratio r. shown as percentages
relative to the case r = I corresponding to no expansion.

5. Results and discussion Parameter values used were :/ = = 0~= I, A = (1.

Numerical solutions of the system of ordinary strated by Chiareli and Worster [19] that excel-
differential equations were obtained by shooting lent predictions of the solid fraction can he oh-
on the fixed computational domain 0 � � 1, tamed once the effects of expansion are included
where ~ = n/p.. We use these solutions to exam- in the analysis. The accurate prediction of the
inc the effects of varying the density ratio r and solid fraction within mushy layers is of profound
the segregation coefficient k. importance in situations where natural, convec-

As r increases, both the linear growth rate of tive flow of the interstitial melt can occur; for
the mushy layer p. and the volume fraction of example, when a less dense solute is rejected
solid 4) diminish (Figs. 6a and 6b). These are during solidification from below. In recent years.
consequences of the same geometrical effect de- considerable attention has focused on the solutal
scribed in section 2. Although very good predic- convection within mushy layers formed from
tions of the growth rates of mushy layers have aqueous solutions of ammonium chloride. In a
been obtained previously using models that ig- typical such experiment, with .V~= 5, ~ = 20 and
nored the change of density upon solidification 0,. = 1, the solid fraction before convection begins
[5,91,recent experiments by Shirtcliffe et al. [21], is predicted to be 4)II = 0.05 at the base of the
measuring the solid fraction in mushy layers, mushy layer if contraction is ignored. Our calcu-
found less satisfactory agreement with the results lations give 4)0 = 0.03 when r = 1,5, which is the
of such models. However, it has been demon- appropriate value for this system. The difference
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between these estimates of the solid fraction cor- 1 0 k = 0.99

respond to almost a factor of 2 in the estimate of
the permeability of the layer, according to the 0.8 k = 0.8

Carman—Kozeny formula, which would lead to -

the same fractional difference in an estimate of ~ h(~)0.6 k _06

the Rayleigh number driving convection. 0.4 k =,~.4

The flow induced by contraction causes k = 0.2k

macro-segregation of the alloy, as shown in Fig. 0.2

6c. While small, such levels of segregation may 0 ~ k = 00\

yet be undesirable in the processing of materials, 0.0 02 0.4 0.6 0.8 No
especially for the semi-conductor industry where . . .

Fig. 7. The solid fraction 4 in the mushy layer as a function of
high tolerances are required. Unlike segregatton depth in the layer for different values of the segregation

caused by buoyant convection, this cannot be coefficient k. The mushy layer becomes almost all solid as k

avoided by forming materials in space and must approaches 1. The dimensionless parameter values used to

be taken into account when analysing the feasibil- calculate these curves were .9’ = = = r = 1.
ity of such enterprises.

Since the rate of diffusion of solute is slow front in a binary alloy that incorporates the change
compared with the rate of growth of a mushy in density that occurs as liquid converts to solid
layer, significant macro-segregation is only and accounts for non-zero values of the segrega-
achieved by flow of the interstitial fluid. By con- tion coefficient. By analysing this result in the
trast, micro-segregation on the scale of individual limit D/K —* 0, which is appropriate for most
dendrites is determined by the local processes systems, we have been able to draw some impor-
involved in maintaining the interior of the mushy tant conclusions that can be expressed quite sim-
layer near equilibrium. In particular, the segrega- ply. Principal among these is that the solidifica-
tion coefficient k plays a central role in deter- tion rate is controlled by the diffusion of solute
mining how the solute is partitioned between the away from the solid—liquid interface when the
solid and the liquid fraction of the mushy layer. temperature of the cooled boundary is greater
The similarity solution has the features that the than the initial solidus temperature of the alloy.
liquid concentration depends only on Si while the Once the boundary is colder than this, solutal
solid concentration is independent of Si~ diffusion is no longer rate controlling and the

As solid grows within the mushy layer, solute is interface advances as if it were growing from a
rejected into the interstices. For larger values of pure melt of freezing temperature equal to the
the segregation coefficient k, less solute is re- solidus temperature.
jected and this allows a greater fraction of the The composition C5 of the solid that forms can
mushy layer to be solid (Fig. 7). Variations in k be estimated simply as follows. In the regime
do not, however, alter the thickness of the mushy limited by solutal diffusion C5 kCB, where CB
layer much since there is little accumulation of is the concentration on the liquidus correspond-
rejected solute ahead of the mush—liquid inter- ing to the temperature TB of the cold base and k
face. Note that the solid fraction tends to unity as is the segregation coefficient. Once solutal con-
k — 1 —, as expected, but remains bounded away trol is lost, C5 kC0, where C0 is the initial
from unity throughout the mushy layer when k < concentration of the melt.
1. This is a consequence of the total neglect of Our results indicate that, except when the mi-
diffusion within the solid phase. tial concentration is small, as expressed by

(1 — k)C0 = O[(D/K)1/2],

6. Conclusions
the liquid becomes supercooled whenever

We have determined a very general expression 2

for the rate of advance of a planar solidification TB < TL( C0) — (D/K) / [T0, — TL( C0)].
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Since D/k is typically very small, constitutional [2] L. Rubuistein, The Stetan Problem, Translation of Math-

supercooling is clearly a common oceurence. It ~ ematieal Monographs, Vol. 27 (Am. Math. Society, Provi-
dence. RI, 1971).

alleviated by the formation of a mushy layer. [3] MG. Worster, The dynamics of mushy layers, in: Interac-

The difference in density between solid and tive Dynamics of Convection and Solidification. NATO

liquid drives a non-solenoidal flow of the intersti- ASI Series E219, Eds. SF1. Davis, HE. tiuppert. tI.

tial fluid within the mushy layer, even when no Muller and MG. Worster (Kluwer, Dordrecht. 1992) pp.

external forces are acting. There are two signifi- 113—118.
[4] lIE. Huppcrt. J. Fluid Mech. 212 (1990) 209.

cant consequences of the transport of solute by [5] MG. Worster, J Fluid Mech. 167 (1986) 481
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convection within the interstices, for example. and MG. Worster (Kluwer, Dordrecht. 1992) pp. 195--
197.The other is that it causes macro-segregation of

[7] A.R. timantsev, Soy. i’hys.-Cryst. 3)) (11)85) 87.
the alloy that cannot be eliminated by forming [8] iN. Dewynne, S.D. Howison. JR. Ockendon and W.
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