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Abstract—An analytic expression is presented fitting Turner’s experimental results on the flux
through a diffusive interface in a heat/salt system. This expression is then used in an explicit calcula-
tion of the positions of equilibrium and the stability of a system consisting of one intermediate layer
between two semi-infinite layers of constant properties. If both interfaces are in the regime for which
the nondimensional ratio of the salt flux to the heat flux is independent of the density ratio B4S/adT,
a family of equilibrium positions exists and is neutrally stable. If either interface is not in this regime
the system is unstable. The criteria for stability are obtained for general flux laws and it is shown
that these are also the criteria for any number of intermediate layers. A simple re-interpretation of
these criteria is presented which renders them valid also for fingering interfaces. The salinity field
is shown to be the destabilizing agent for diffusive interfaces, and the temperature field the destabiliz-
ing agent for fingering interfaces. Relevant oceanographic observations are presented and discussed.

INTRODUCTION

THE CONCEPT of a series of vigorously convecting layers separated by thin interfaces
has recently been introduced and accepted in oceanography. Various observations
under quite different conditions have been made of this microstructure. The layers
are regions of remarkably uniform temperature and salinity. The interfaces are very
much thinner than the layers and are regions of comparatively large gradients of
temperature and salinity. Laboratory experiments simulating such conditions have
also been undertaken and have led to an increased understanding of the phenomenon.

The formation of layers is a consequence of the stratification with respect to the
two different components: heat and salt, the diffusivities of which are different.
A fluid in which temperature and salinity decrease with depth forms tall, thin con-
vection cells, called ‘fingers’. In these cells, descending elements diffuse their heat
horizontally more rapidly than their salinity. They thereby become heavier than
their surroundings and continue to descend. A similar mechanism pertains to the
ascending clements. [A striking photograph of this phenomenon is to be found in
TURNER (1967)]. STERN (1969) shows that the fingers are themselves unstable when
the salt flux exceeds a critical value. He suggests that this instability restricts the
fingers to thin interfaces, separating turbulently convecting regions. Alternatively,
in a fluid in which both temperature and salinity increase with depth, buoyant elements
use the potential energy of the temperature field to rise against the stabilizing effect
of the salt. Elements can only rise a finite height before losing their positive buoyancy.
Linearised theory, as originally discussed by VERONIS (1965) suggests that these
elements now descend and the convection takes place as an oscillatory mode, as has
been documented by SHIRTCLIFFE (1967). When non-linear effects are significant,
however, the convection forms uniform regions bounded by interfaces across which
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there are substantial diffusive fluxes of both heat and salt. Almost all geophysical
observations fall within the non-linear range. In all these forms of convection viscosity
inhibits motions of sufficiently small amplitude.

These types of convection are not restricted to heat/salt systems. STERN and
TURNER (1969) showed experimentally that they can be produced in any two-
component systems; in particular in a solution of KC1 and NaCl, for which the ratio
of the diffusivities is 1-3 compared with 100 for heat and salt. For this reason the
term double-diffusive convection has recently been given as a generic name for any
form of convection involving two components of different diffusivities.

As a first step in detailing the transfer of heat and salt across a series of layers and
interfaces, TURNER (1965, 1967) carried out a number of quantitative experiments
with a single interface. He measured the heat and salt fluxes for a wide range of
density differences across both types of interface: the finger interface, for which the
destabilizing component (salt) is in excess above the interface; and the diffusive
interface, for which the destabilizing component (heat) is in excess below. His results
indicate that for temperature and salinity differences across the interfaces of magnitude
AT and AS, the heat and salt flux vary systematically with the density ratio SAS/axAT,
where o and f are the proportional density changes due to unit changes in temperature
and salt.

We employ these results to consider a series of layers and address ourselves here
to determining under what conditions such a series is stable. Are there circumstances
for which the interfacial flux, driven by the density difference across the interface,
causes that density difference to become zero, thus making the interface collapse and
the two adjoining layers merge as one? Or, can the destabilizing component equilibrate
across the interface, thereby halting the convection process? Can either of these
phenomena continue via adjoining interfaces, replacing a system of layers by a more
homogeneous situation ?

Using flux laws for diffusive interfaces determined from TURNER’s (1965) experi-
ments, we investigate the equilibrium positions and delineate the conditions for
stability of one intermediate layer between two semi-infinite ones. In the following
sections we show how the results obtained can be simply extended for: general flux
laws; many intermediate layers; and either diffusive or fingering interfaces. A sum-
mary of the results obtained is presented in the concluding section with a discussion
of the relevance of the theory to interpreting oceanographic data.

FLUX LAWS FOR A DIFFUSIVE INTERFACE

The stability conditions for a series of layers will be presented for rather general
flux laws in a later section. Much insight is gained, however, by first considering an
explicit example — the diffusive interface. Quite a number of investigations have
attempted to determine the equations governing the heat and salt transfer by purely
theoretical considerations; not one has yet been satisfactory. Almost all require some
ad hoc hypotheses and even then do not fit the available data. The approach used
here is quite different. From the investigations of TURNER (1965) we can determine
experimental flux laws. We find that a simple expression fits his data exceedingly well.

Consider two turbulently convecting layers of depth 4, mean temperatures 7'; and
T,(T,—T; = AT > 0), and zero salinity, separated by a solid plane. At high Rayleigh
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numbers the motion within each layer takes the form of a very nearly isothermal
central section and thin boundary layers at the boundaries. The structure of
these boundary layers, their thickness insensitive to the layer depths, determines the
heat flux across the plane, say Hgp. Such a motion implies that the heat flux is in-
dependent of the layer depths and is given by

Nu = Hgp(ky AT/h)™ = cRa'® = c(gaATh? [kpv)'7, )
where: Nu is the Nusselt number, the heat flux divided by the purely conductive value;
Ra the Rayleigh number; g the acceleration due to gravity; k, the thermal diffusivity;
and c a constant, determined either theoretically or experimentally. Equation (1) is
still slightly controversial; more comprehensive discussions with summaries of
theoretical and experimental investigations are contained in HOWARD (1966), SPIEGEL
(1967) and RossBY (1966, 1969).

Generalising the argument for two layers of mean salinities S; and S, (S,—S; =
AS > 0) separated by a thin interface, TURNER (1965) obtains on dimensional grounds
the formula

Nu = F(BAS/«AT)Ra'?, )

where F incorporates the dependence of some physical properties which are constant
for given components—molecular diffusivities for example. Equation (2) implies
that the ratio of the heat flux through the interface, say H, to that across a solid
plane, determined from (1), is given by
H|Hgp = ¢~ 'F(BAS/aAT) = G(BAS/aAT). 3)
Taking ¢ as 0-085, we plot TURNER’s experimental points in Fig. 1.
Through these points is drawn the curve
G(x) = 38x72 C))

Consider the function 4(x) = G(x)/(3-8x~2) elevated at each of the 63 data points.
This array has unit mean and a standard deviation of 0-21. We compare this figure
with the cited error of 309, for the experiments to conclude that equation (4) fits the
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Fig. 1. The ratio of the heat flux across a diffusive interface to that across a solid plane. Three experi-
mental points, (1:2, 9-5), (1-5, 8:5), and (1-5, 9:3), whose validity is in doubt (Turner; private com-
munication) have been omitted.
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data to within the experimental error. A sharper test, insensitive to the size of the
experimental error, is obtained by evaluating

1-02 (1—0-008x)

as the linear, least squares fit to ¢ over the experimental range of 1-3 < x < 6-8.
The magnitude of 0-008 compared with 1 and the standard deviation test above leads
us to assert that the function (4) fits the data exceedingly well. We propose this
function as one towards which future theoretical consideration should be directed.

An interesting feature of equation (4) is the value 3-8 of G(1). TURNER (1965)
notes that in the neighbourhood of x = 1, G(x) > 1 (the heat flux is greater than that
across a solid plane). He suggests that this is attributable to the distortion of the
interface, which increases the surface area, and thus leads to a larger heat transfer.
We propose a different, complementary explanation. HERRING (1963, 1964) considers
three-dimensional thermal convection between parallel plates. He numerically solves
the mean field equations after making the weak coupling approximation in which
the self-interactions of the fluctuating components are neglected. He considers both
free boundaries (zero stress) and rigid boundaries (zero velocity). At large Rayleigh
numbers equation (1) is obtained, with the heat flux for free boundaries determined
as 2-3 times larger than that for rigid boundaries. This is due to the weaker constraint
of free boundaries which allows fluid to flow along the boundaries, transfer heat, and
then complete the convection cycle. Such a process will obviously be more efficient
at transferring heat than the rigid boundary equivalent. We propose that a similar
mechanism is operative in heat/salt convection across a diffusive interface, as reflected
in the values of G larger than 1.

The most remarkable, and best known facet of TURNER’s results is the functional
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Fig. 2. The ratio of the potential energy gained by the salt to that released by the heat. Three points,
(1-2, 0-79), (1-5, 0-8), and (15, 1-7) have been omitted, as explained in the caption to Fig. 1.
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form taken by the salt flux, Fg, a non-dimensional representation of whichis fFg/aH = R.
The quantity R is the ratio of the potential energy gained by the elevation of sait
above the interface to that released by the accompanying transfer of heat. TURNER’s
measurements of this ratio and his suggested best-fit curve are reproduced in Fig. 2.
For values of SAS/aAT greater than two, R is a constant, 0-15, to within experimental
accuracy. As PBAS/aAT decreases from two the value of R increases, approaching
unity as the density difference across the interface approaches zero, where the experi-
ments indicate that heat and salt are transported by the same turbulent eddies.
We differentiate between these two regimes by calling the former the constant regime,
the latter the variable regime. The occurrence of these two regimes is not limited to
diffusive interfaces; the existence of a constant regime has been verified for fingering
interfaces (TURNER, 1967; STERN and TURNER, 1969) and a variable regime must
also exist.

The flux of density, F, = aH—pBF;, is most conveniently non-dimensionalised
with respect to aHgp. The quantity # = F,[aHgp: is never negative, because o > fFg;
is zero for BAS/aAT = 1, where aH = BFg; and tends to zero as SAS/aAT tends to
infinity. Hence, somewhere in the range 1 < BAS/¢AT < oo it is a maximum.
Evaluating & using (3), (4) and the functional form for R presented in Fig. 2, we
conclude that the maximum occurs at BAS/aAT = 2, exactly coincident with the
intersection of the variable and constant regimes. If (4) were replaced by G(x) ccx™",
the maximum would occur at x = 2 if r < 2, and at x = r/(r—1) if r > 2.

THE STABILITY OF ONE INTERMEDIATE LAYER
Specific flux laws

In this section we consider the stability of the simple, yet illuminating system of
one intermediate layer between two infinitely deep layers. The temperature and
salinity of the layers are as depicted in Fig. 3, the properties of the two infinitely deep

TEMPERATURE SALINITY
0 0
T(1+8) S(i+e)
l
21 25

Fig. 3. The geometry and physical variables for one intermediate layer.

layers remaining constant. We restrict attention to diffusive interfaces by confining
the moduli of 6 and ¢ to be less than unity. Using the heat-flux law obtained by
combining (1), (3) and (4), we define a non-dimensional time

t = 3-8cky T3S~ 2h~ Y(a/B)*(gar/kv) /3t (6)
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to obtain

3—3 = (1=0"P(1-0)*~(1+0)"*" (1 +0) %, i

h dé
where we have neglected a term 6%'—: with respect to A a In physical terms, we
T

neglect the effect the convection may have in moving the interface, and concentrate
solely on the change in the layer properties resulting from the transfer through the
interface. A rigorous argument supporting this approximation cannot be given.
Intuition and all laboratory experiments performed so far, suggest that such an
assumption is valid, and we shall invoke it throughout this investigation. The existence
of equilibrium solutions, for which d%_ = 0 will, of course, not depend on this approxi-
mation. A numerical simulation of high Rayleigh number thermal convection with a
moving interface is presently being undertaken (D. O. Gough, E. A. Spiegel,
J. Toomre; private communication), and it is anticipated that the techniques employed
therein will be used to study two-component systems. In writing down (7) we have
assumed that the equilibrium flux laws can be used to describe time-dependent
situations. This is valid if the typical overturning time scale for the convecting eddies
is much less than 7, defined by (6).

Temporarily restricting attention to situations where both interfaces are in the
i constant regime, we find that

do do @)

dr =7(—1—;,

where y = 0-15 «7/S. From (7) and (8), we deduce that equilibrium configurations \‘
are specified by |

0P =10 _

l _—— (1+0)5/3+(1 __0)5/3 = g(e) (9) |
~ 30 0 - 0) (10a)
~ +1F2-231F0)3 6 - +1). (10b, ¢)

The function g(6) is displayed in Fig. 4. The points [0, g(0)] represent configurations
for which there are equal fluxes through the two interfaces, but generally not equal
temperature and salinity differences.

Are these equilibrium positions stable? Will a small perturbation in either
temperature or salinity (or both) cause the ensuing interfacial flux to restore the system
to its initial position, or drive it permanently away from an equilibrium position? We
test for stability of the autonomous system (7) and (8) by the usual method of deter-
mining the solutions of the equations of motion linearised about the position of
equilibrium (see SAATY and BRAM, 1964 or BELLMAN, 1953 for a more complete
description). Expanding the right-hand-side of (7) about the equilibrium curve (9),
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Fig. 4. The equilibrium positions ¢ = g(f), as defined by (9).

linearising, denoting the coefficient of the 0-variation by J,{d6/dz}, and using similar
notation for the o-variation, we find that

{3} = —ita+0 0= Fa-it =y T i

5, {:‘g} = H+0)*3+(1-0)3]H(1 -5 = ?_15’{3_:}' )

The perturbation solutions of (7) and (8) are of the form e**, where A is an eigen-

Yalue of
do do
- s e 12
M 69{(11} 5,,{(11} (12)

do do
4 {a} ’ {d—,}

Substituting (11) into (12), we evaluate the eigenvalues as

dé do
0 and yd, {a}+5, {d—‘t} ;

Hence (6,0) represents a position of stable equilibrium if and only if

< —0 {g—f}/&, {g—g} (13a)

= 2 (1-03P[(L+0)*P+(1-0)%*]72 (13b)

= g'(0). (13c)
From (13) we deduce that there could be instability only for [0] > 6,, where g'(6,) = 7.
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This range of 6 is excluded, however, for other reasons. The constant regime exists
only for values of BAS/«AT > 2. One of the interfaces will not be in this range, and
will hence violate the conditions leading to the above result, for |6| > 0,, where

8(62) = 1-2(aT/BS)(1—6,). (14)

Because g(0) has negative curvature for positive 0, and the slope of the straight line
(14), 20T/BS, is larger than 7, 0, is less than 0,. No equilibrium position is, in fact,
possible for [6] > 6,.

Thus, if both interfaces are in the constant regime a family of equilibrium positions
exists and these equilibria are stable. We note, however, that one of the eigenvalues
of M is 0, and hence the equilibrium is neutrally stable in the sense that a small
perturbation will return to equilibrium but not to the same position from which it
was originally perturbed.

Considering, now, the situation in which both interfaces are in the variable regime,
we adopt the salt-flux law

BFseH = 1-85—0-85 BAS/xAT (15)

BS[xT=15

0 =1-T/BS)1-6)

G = 1+(eT/ES)1+0)

-1.0

Fig. 5. The solution curves of (7) and (16) for 8S/aT = 1:5. The intervals between the open circles
represent 0-2 units of the non-dimensional time defined by (6). The origin of time has been taken,
for convenience, along AY and CX, with the direction of time indicated by the arrows. SS’ and TT’
are the separatrices of the system.

As the solution crosses the line YC the intermediate layer becomes heavier than the layer below it,
the lower interface breaks down, and the adjacent layers merge. A similar mechanism involving the
intermediate and uppermost layers occurs as the solution crosses the line AX.

Within the parallelogram ABCD both interfaces are in the variable regime. Within the dotted
regions one of the interfaces is in the constant regime and the other is in the variable regime. The
upper interface is in the constant regime within the left-hand dotted region and the lower interface

is in the constant regime in the right-hand dotted region.
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and replace (8) by

‘;_‘: = (1—6)!°3(1— ) 2[T—0-85(1—)(1—6)"*]

—(1+6)1°3(1 +06)"2[T—0-85(1 +0)(1+6)"'], (16)

where I' = 1-85 «7/fS. The only equilibrium point of (7) and (16) is 8 = o = 0.
Testing for stability about this point by the method outlined above, we find that the
stability parameters 4 are the solutions of

322+ A(25'1—-121")—13-6 = 0, amn

one of which is positive and the other negative. This implies that the equilibrium is
unstable and of the saddle point type. The solution curves of (7) and (16) are presented
in Fig. 5 (where appropriate (16) has been changed to allow for the fact that one of
the interfaces is in the constant regime). All solutions lead to overturning. The
density of the intermediate layer and one of the adjacent layers becomes equal, the
common interface breaks down, and two infinitely deep layers remain.

g
( 10

| _8S5/e1=5.0

A== -1.0

Fig. 6. The solution curves of (7) and (8) for 8S/aT = 5:0. The intervals between the open circles
represent 0-2 units of the non-dimensional time defined by (6). The origin of time has been taken,
for convenience, along AZ and CX, with the direction of time indicated by the arrows.

That part of the 6, ¢ plane for which the moduli of § and ¢ is less than 1 is divided into three
regions: region 1, the curvilinear quadrilateral WXYZ, any point in which leads to the (stable)
equilibrium curve EE’; region 2, the two hatched regions, which lead to overturning; and region 3,
the remainder, for which the initial position violates static stability.

Within the parallelogram ABCD both interfaces are in the constant regime. Within the dotted
regions one of the interfaces is in the variable regime and the other is in the constant regime. The
lower interface is in the variable regime within the upper dotted region and the upper interface is

in the variable regime within the lower dotted region.
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The above analysis has concentrated upon small departures from equilibrium;
large departures can also be examined. Consider, in particular, the system initiated
at some point in the 0, o plane with the modulus of both 6 and o less than one. Does
the subsequent motion, driven purely by the fluxes through the interfaces, tend to a
position of equilibrium ? If the overall stability ratio, fS/aT, is less than 2, the question
is answered in Fig. 5—in the negative. If BS/aT > 2 the 0, ¢ plane is divided into
three regions: region 1, from which a neutral equilibrium position is attained ; region 2,
which leads to overturning; and region 3, for which the initial position violates the
static stability criterion. These regions are displayed in Fig. 6 for fS/aT = 5, from
which we see that for this value a major part of the plane is occupied by the first
region. The proportion so occupied monotonically increases with BS/aT and is
graphed in Fig. 7.

0% 2 % 6 8
/3S/exT

Fig. 7. The relative proportion of the regions defined in Fig. 6. A; is the area of 1 divided by the
total area of 1+2-+3, A, is the area of 1 divided by the area of initial stability, 1+ 2.

General flux laws

Criteria for stability can be succinctly stated for a general class of flux laws.
Consider two arbitrary, dimensionless, continuous functions ¢(x) and y(x) defined
such that the heat and salt fluxes are given by

H = A (AT)*¢(BAS[aAT) 2 (u > 0) (18a)

and
R = Y(PAS[aAT). (18b)

The depth independent argument, as explained previously, implies that pu = 4/3;
nevertheless the analysis presented here is independent of this value. We constrain
u to be positive, however, since a non-positive value would imply that for fixed
density ratio, the heat flux is a non-increasing function of the temperature
difference, which would violate basic energetics. Defining a non-dimensional time
7’ by

B L b ol (19)

we apply (18) to the situation depicted in Fig. 3 to obtain (after dropping the prime
associated with 1)
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= (=079 — )1 ~0) T =(1+ Y41 + o)1 +0)""] (200)
and
d
1 = (1=0y9[nL—oX1—0)" (1 —oX1-0)"]
—(L+0/9[n(+o)1+0)” Wn(1 +o)14+0)'],  (200)
where
n = BSfaT. 21)

Except for special functions ¢ and y, ¥ equals a constant, for example, the only
equilibrium point of (20) is 6 = ¢ = 0.* We analyse for stability about this point as
before, to obtain the perturbation equations

= 2g' )01, ()
do .
a. = 2@y —pn 'oY10-2¢y) o (22b)
and the equation satisfied by the stability parameter 1:
A2 +2[pud+(¢¥) —n¢'] A+4ud®y’ = 0, (23)

where a prime denotes differentiation with respect to n, the understood argument of
¢ and . Three cases can be distinguished :

(i) Y’ < 0, the equilibrium is unstable and of the saddle point type;
(ii) Y’ = 0, there is neutral stability if

= pudp+(¢Y)' —ng’ >0 24

and instability otherwise; and
(iii) Y’ > 0, there is stability if £ > 0 and instability otherwise. The equilibrium
point is a nodal point if £2 > 4u¢?y’ and a focal point otherwise.
Condition (iii) is physically unlikely as it implies that the ratio of the potential energy
gained by the salt to that released by the heat is an increasing function of the (stabiliz-
ing) salinity difference for fixed temperature difference. We hence deduce that for
physically acceptable y/’s, a necessary condition for stability is that /' = 0.

Physical explanation

The physical mechanism of the instability, which is the destabilizing action of the
salinity field, can be clearly seen with the aid of a specific example. Referring to
Fig. 8, consider a salinity field at equilibrium, with the salt flux through either inter-
face marked by one of the 0’s. We differentiate between case A for which ' < 0
and case B for which v/’ = 0 and perturb the salinity in the intermediate layer by a

*A sufficient condition for § = o = 0 to be the only position of equilibrium is that i be strictly
monotonic. Because, equating the two terms on the right-hand-side of (20) and dividing the resulting
equations, we deduce that the equilibrium curve is the solution of

(1=0)"¢[n(1 —o)(1 —0)71] = (1+6)*¢[5(1+0)(1+6)7"]
Pn(1—a)(1—0)7*] = ¢ly(1+a)(1+6)71].

If 4 is strictly monotonic, the latter of these implies that § = o, which, when substituted into the
former implies that § = ¢ = 0.

and
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1 n 2 A
| A+
2 1 B
| | R
(@) (b) ﬂAS/O(AT

SALINITY

Fig. 8. (a) The salinity distribution at equilibrium plus a small, positive perturbation in the inter-
mediate layer (dashed). (b) The function ¢ and the values taken by the interfaces. 0 represents the
value taken by both interfaces in the equilibrium position. For case A " < 0, while for case B’ = 0.

small, positive amount, as shown in Fig. 8a. Momentarily neglecting the ensuing
temperature change, we mark the values of y for the two interfaces on Fig. 8b. In
case A, interface 2 transfers an increased amount of salt, while interface 1 transfers a
decreased amount. Such changes are in the direction of enlarging the salinity perturba-
tion. Further change involves considering both temperature and salinity fields,
leading to the curves mapped out in Fig. 5 for particular functional forms of ¢ and .
In case B, there is no initial change in the salt flux, so the change in the heat flux and
the resulting temperature change of the intermediate layer must be considered. From
this we find that the temperature field counteracts the salinity variation, and the net
result is given by the quantity &; if ¢ < O the destabilizing effect of the salt exceeds
the stabilizing effect of the temperature, while if £ > 0 the reverse is true.

This describes the mechanism of instability for any initial perturbation. If we
restrict both ¢’ and (¢y)’ to be negative—for fixed temperature differences both the
heat and salt flux are decreasing functions of the salinity difference—the coefficients
of the 0 variations in (22) are negative, those of the ¢ variations positive. The salinity
is hence the destabilizing agent, opposing the stabilizing effect of the temperature.
If ' < 0, the effect of the salt is always dominant. For )’ > 0 the net effect of the
two components is expressed by the quantity &.

THE STABILITY OF MANY INTERMEDIATE LAYERS

The concepts introduced in the previous section can be simply extended to en-
compass a series of intermediate layers. Consider N such layers of thickness Ad,,
temperature 70; and salinity So; (i = 1,2, ..., N, the layer numbers increasing with
depth). The series of layers is bounded above by an infinite layer of temperature and
salinity 0 and below by one of temperature 7, salinity S. We still restrict attention
to diffusive interfaces by specifying that8;,, > 0,,6,,, > 6,20y =06,=0, Oy, =
Onyg = 1).

Using the flux formulae (18) and the non-dimensional time defined by (19), we
deduce that

de
di = = a1 =091~ 0= 0,-1)'9, (252)
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and
do;
nd; i (0141 —0Y'is 1Wi4 1 —(0:—0i- ) D, (25b)

where the subscript i implies evaluation for the function at #(c;—0o,_;) (6;—0;_,) .
From the similarity of (20) and (25) one would anticipate that the conclusions for
N intermediate layers mirror those for one, and indeed this is so.

The positions of equilibrium are given by

(0i41—0)'bis1 = (0;—0;,-1)'¢; and Y4y = ¥, (26a, b)
which for strictly monotonic i/ have only the solution
0; = o; = i/(N+1). @7
For constant i, the solution is of the form o; = 00, 0,, . . . , 8y). For example,
for u = 4/3, ¢(x) oc x~2 and Y(x) constant, the solution of (26) is
i N+1
o= 30-00" 3600, )" @8)
r+1 r+1

We immediately deduce from (25) that the equilibrium positions are independent of
the individual thickness; in an equilibrium position each layer may be of any thickness.
The nature of the stability of these equilibrium positions is exactly as outlined above
and, as before, ' < 0 implies instability, and /' > 0 implies (in)stability if £(<) > 0,
independently of the layer thicknesses. A rigorous proof of this statement is presented
in the Appendix.

This extension, combined with the physical explanation of the instability, implies
that it is a local effect. A number of layers belonging to a larger series may merge,
independently of the conditions many layers away.

Fingering interfaces

We have so far concentrated attention on diffusive interfaces solely because there
are a large number of controlled, laboratory experiments for this case. The adaption
of the above presentation to a fingering interface is immediate. We need only invert
Fig. 3 to consider hot, salty fluid above cold, fresh fluid and everywhere interchange
‘heat’ quantities, H, «, 7, . . . , and ‘salt’ quantities, Fg, f, S, . . .; in particular # be-
comes a7/fS. The general stability conditions are then exactly as above, the ¢ and Y
being considered as functions of this altered #, and instability is due to the destabilizing
action of the temperature field. A sufficient number of experiments have not yet been
undertaken to completely specify the functional form of ¢ and . It is known,
however, (TURNER, 1967) that  is a constant, 0-56, for 2 < «AT/BAS < 10. Further
experiments are presently being planned at the University of Cambridge.

CONCLUSIONS AND OCEANOGRAPHIC IMPLICATIONS

We have shown that the stability characteristics of a series of double-diffusive
layers can be expressed in terms of the functions ¢(n), V¥(y), and &(n) = ud(n)+
[pw(m)] —nd'(n), where 7 is the ratio of the overall density change resulting from
the stabilizing component to that resulting from the destabilizing component.
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If  is constant, a continuum of equilibrium positions exists. In these positions
for a given component there is the same flux through each interface, but not necessarily
the same increment across each interface. The layer depths need not be equal. The
series of layers is stable for ¢ > 0 and unstable otherwise.

If Y’ is negative, equilibrium occurs only if there is the same increment of a given
component across each interface. The equilibrium is always unstable. The density
of adjacent layers becomes equal, the common interface breaks down, and the two
layers merge. This continues throughout the whole series of layers.

If Y is positive, a condition not yet observed in any laboratory experiment and
physically unlikely, the position of equilibrium is as for negative y’, and the layers
are (un)stable if ¢ > (<0).

Oceanographic observations of double-diffusive layering to which the instability
theory would apply are now quite plentiful. A clear set of some dozen diffusive
interface has been observed by HOARE (1966, 1968) and SHIRTCLIFFE and CALHAEM
(1968) in Lake Vanda, an Antarctic lake of approximately 6 km x 1 km x 65 m. The
temperature increases, in steps, from 0° C below the 3-metre thick ice cover to 25°C
at the bottom. There is a corresponding salinity increase from 0 to 109, by
weight. From the quoted measurements, we calculate fS/aT to be 10. We would
thus expect the layers to be stable, and indeed they have been consistently observed
during the past decade. An exciting series of measurements has also been undertaken
in the hot brine layers recently discovered at the bottom of the Red Sea. Much of the
work is reported in DEGENS and Ross (1969). Using data presented therein, we
calculate the various values of $S/aT all to exceed 10.

Layers with hot, salty water overlying cold, fresh water have been observed by
CooPer and STOMMEL (1968) near Bermuda, by AMos (private communication) off
Barbados and by TAIT and Howe (1968) beneath the Mediterranean outflow. The
value of a7/pS extracted from Tait and Howe’s measurements is 1-15. The implication
is that either Y(n) is constant for n > 1-15, or the time taken for the instability was
sufficiently large that the series of layers did not appreciably vary during the time
the measurements were taken. The calculation of a time for the instability requires
more specific knowledge of ¢ and s for fingering interfaces than presently available,
and further, the answer depends markedly on the initial perturbation, as can be seen
from Fig. 5. A time scale can be obtained from (6), after replacing 3-8 by 50— °
Turner’s experiments indicate that ¢(1) ~ 50 for a salt-fingering interface —setting
n = 1 therein and interchanging all heat and salt values as indicated above. Using
the values ¢ = 0085, kg = 107>, h = 22x 103, B = 0:66, « = 9x107%, g = 980,

= 1-3x 1072 (all in c.g.s. units), T = 1-1°C and S = 0-18%,, we find that

T ="14x%10"%,

Thus, the instability, if it exists, has a time scale of approximately 5 days. Tait and
Howe’s measurements extended over a considerably shorter time than this.

APPENDIX

We prove in this Appendix that the conditions governing stability of (25) about
the equilibrium point (27) are exactly those governing the stability of (20) about the
equilibrium 6 = o = 0.
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Appropriately differentiating (25) and substituting (27) into the result, we obtain

as the determinental equation for the stability parameter 4

|B — HJ| =0,
B bk e Agy
e el

e )

are 2N x 2N matrices given in terms of the N x N matrices

where

and

D = dl 0 0
0 dstan0
0 0 d,
0 0 0
and
Ci = Ci 2 -"1 0 0 = C‘E
-1 2 -1 0
0 -1 2 -1
0 0 -1 2
with
¢y = no'—po,
Cy'= -'m/"a
c3 = (@Y) —un~" ¢y,
and
C = _(¢¢)"

sach function being evaluated at 7.

(A1)

(A2)

(A3)

(A4)

(A3)

(A6a)
(A6b)
(A6c)

(A6d)

Defining the Kronecker product, A ® B, of two matrices A and B by (MARCUS

and MINc, 1964, p. 8)

A®B = auB alzB a13B
a, B a, B a3 B
a31B a32B a33B

we write (Al) in the form
Bx = L ® Ex = AHXx,

L = cl C2 .
C3 Cy

where

(A7)

(A8)

(A9)
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A direct consequence of the definition of the Kronecker product is that if the vectors
v and w and the corresponding numbers « and f satisfy

Lv = av and Ew = fHw; (A10a, b)
then
LRE)(v®w =Lvy® Ew (Alla)
= av ® fHW (Allb)
= gfH (v ® w). (Allc)

The A’s satisfying (A8) are hence the product of the «’s and f’s satisfying (A10).
The latter are (real and) positive, since from (A10b)

wiEw
wiHw’

p= (A12)

and both numerator and denominator are positive quadratic forms (W' Ew is positive
definite because all the eigenvalues of E, 4cos® [Lsn/(N+1)] (s=1,2,...,N)
are positive). Thus the sign of 1 is equal to that of «, the eigenvalue of L, which
satisfies (23).

The stability conditions for N intermediate layers of arbitrary thickness are hence
exactly the same as those for one.
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