Buoyancy-driven motions in particle-laden fluids

By HERBERT E. HUPPERT
Institute of Theoretical Geophysics; 20 Silver Street, Cambridge CB3 9EW, UK.

Many fluid flows, in both natural and industrial situations, are driven by the
suspended particles in the fluid. This paper briefly reviews a number of such
flows. The convective overturn that occurs when a suspension layer of small heavy
particles is heated from below is described and quantified. Results from laboratory
experiments, which are in good agreement with the theoretical predictions, are
discussed. A description is given of the convective mixing that arises when a
clear fluid layer overlies a suspension layer with the density of the upper layer
intermediate between that of the interstitial fluid and the bulk density of the lower
layer. The interface between the two layers is shown to descend at a constant rate
which is much more rapid than if the upper layer was absent. The effects of adding
a forced turbulent flow to the lower layer are also described. A unifying theme
which runs throughout the paper is the recognition that the slow descent of small
heavy particles at low Reynolds number can lead to large-scale convective motions
at intrinsically high Reynolds numbers.

1. Preliminary remarks

The large-scale motion of a fluid which contains suspended particles is a frequent
occurrence in many natural and industrial situations. Examples include: the smog
layer which is now seen almost continuously off La Jolla and which emanates from
Los Angeles; turbidity currents in the ocean; haboobs which are initiated over hot
deserts; snow avalanches; and the sludge outflows from many industrial plants. In
numerous situations the particles act merely as passive tracers and do not affect
the flow directly. Recently 1 have become interested in flows for which the actual
presence of particles is essential. In this paper I will briefly bring out the highlights
of some of my current research in this area.

A few introductory remarks about the suspension of particles in steady two-
dimensional flows will be followed by a discussion of particle motions in turbulent
flows. A series of experiments that we have conducted in this area, and the
theoretical interpretation of them, will be discussed in §2. The next section will
consider the fate of a fluid layer which suspends a polydisperse distribution of small
heavy particles and above which is placed a clear fluid layer, where the densities
are arranged such that the density of the upper layer lies between the density of the
interstitial fluid and the bulk density of the lower layer. Vigorous convective motions
are generated above the interface as the relatively light interstitial fluid rises into the
upper layer, and the interface descends at a constant velocity. This velocity can be
considerably larger than that if the upper layer is absent, but because particles are
entrained by the convective motions into the upper layer the time taken for complete
sedimentation can be considerably increased. The penultimate section will describe
rather briefly some preliminary experiments and related theory that I am currently
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working on with Stewart Turner and Mark Hallworth on the effect of mechanically
stirring the lower layer with a mixing grid. A few tentative conclusions will be
drawn together in the final section.

An early investigation of particle-laden fluid motions was carried out by Stommel
(1948). He considered whether small heavy particles could remain suspended inde-
finitely in a steady two-dimensional flow” with closed streamlines, such as a two-
dimensional Bénard roll. Even today his results are not well known by the general
fluid dynamical community, despite the concepts having been rederived, to some
extent independently, by others (see, for example, Merry & Davidson 1973; Marsh
& Maxey 1985; Weinstein, Yuen & Olsen, 1988 and also Huppert 1984 for the
results of an amusing survey investigating knowledge on this- point).

Consider the fluid flow to be specified by the sufficiently smooth stream function
F1i; so that with respect to horizontal and vertical axes = and z respectively, the
horizontal and vertical velocities, v and w, are given by

g = (u,w) = F(0,¢7,—0z%y), (1.1a,b)

where ; has been normalized so that

max | Viy |= 1 (12)

with the maximum taken over the flow domain. Thus F represents the maximum
velocity in the flow. Let the Stokes velocity of each particle in a quiescent fluid
be vg, which is assumed to be independent of the presence of any other particles.
Then the stream function ¢, describing the motion of the particles is given by

Yy = Fipy +uge. (1.3)
Thus
Vipp = F[Vip; +5(1,0)], (1.4)
where the Stommel number
S =uvg/F (15)

is the ratio of the free fall velocity to the maximum fluid velocity. Because
streamlines of the pure fluid flow are closed curves, Vi; = 0 somewhere in the
flow field, and thus, for sufficiently small S, V), is also zero somewhere. Some of
the particle streamlines must hence also be closed; that is, for sufficiently small S
some particles will remain in suspension indefinitely.

To evaluate the region to which the particles are bounded, and also its variation
with S requires ¢, to be specified and (generally) numerical calculation. Stommel
(1948) carried out such a calculation for ¢ = sin 7z sin 2. Figure 1 shows the fluid
streamlines and particle trajectories for S = 0.5. The stippled region, in which the
particles are maintained in suspension, occupies one-third of the total area for this
value of S and decreases monotonically to 0 as S increases to 1.

In their investigations of crystal motions in magma chambers, Huppert & Sparks
(1980) considered the motion of small dense particles in an intensely turbulent flow.
Equating the upward turbulent transport flux to the downward concentration flux,
they argued that a steady-state particle concentration C(z) would be set up of the
form
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Ficure 1. Fluid streamlines (——) and particle streamlines (......) for the steady two-dimensional
fluid flow described by % = sin wx sin 7z with the Stommel number S = vgs/F = 0.5, where
vg is the intrinsic Stokes velocity of the particles and F' is the maximum velocity of the fluid.
Particles in the stippled region follow closed streamlines and remain in suspension indefinitely. (The
curves have been adapted from figure 2 of Marsh & Maxey 1985.)

C(z) = Cyexp(—Siz/h), (16)

where Cj is the particle concentration at the base of the layer of height h and the
turbulent Stommel number

Sy = vs/W, (1.7)

where W is the root-mean-square vertical velocity at the mid-depth of the layer.
Determining W qua function of the buoyancy flux from previous work (Townsend
1976 and Deardorff & Willis 1967), Huppert & Sparks (1980) found that for the
system they were considering S; < 1. They hence argued that strong turbulent
motions kept all the particles in suspension with an almost uniform concentration.

I can report here that Sparks was slightly unhappy about this conclusion at
the time. He wondered about the effect of the lower boundary layer and whether
particles might not-be lost to the flow because of the low velocity there. I replied
in rather vague phrases like: small mean flows but relatively large fluctuations at
the bottom; saltation; S; was so very large, etc.

Our results became well known to the geological community, though they were
not uncritically accepted. Showing a healthy scepticism of our ideas, Martin &
Nokes (1988, 1989) carried out a series of experiments at the Australian National
University in which polystyrene particles at very low concentrations were initially
placed uniformly throughout a fluid-filled box in which turbulent convection was
driven by cooling the box from above. They found that the number of particles N
remaining in suspension gradually decreased with time. They argued that particles
fall out to the base of the container, of area A, at a rate given by

dN

- = — Ay Cy. (1.8)

For large S; the particle concentration is nearly uniform throughout the interior of
the box, and so
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Co = N/Ah. (19)
Inserting (1.9) into (1.8) and integrating the result, they obtained

N = Noexp(—vst/h), (1.10)

where N, is the initial number of particles in the box. The experimental results for
S, less than about 0.5 agreed quite well with the prediction (1.10).

At the time of the work, I wondered if additional effects occurred at higher
concentrations than those they employed. However, 1 could well understand the
experimental difficulties involved in using higher concentrations: Martin & Nokes
determined N by visually counting the number of particles (small dots) from
photographs taken of a representative area throughout the experiments!

After they had turned their research pursuits to other topics and indicated that
they were not interested in extending their work, I decided with my colleagues
at Cambridge to investigate the matter further. Our work on flows with higher
concentrations which are driven by either heating from below or cooling from above
(but not yet both) are described in the next section.

2. Convective overturn at moderate concentrations

The experiments and related theory of Martin & Nokes (1988, 1989) which were
described in the last section were based on such small particle concentrations that
their presence had no influence on the background convective motions of the fluid.
In order to overcome this constraint, we conducted a series of experiments in a 20
x 20 x 20 cm tank either heated from below or cooled from above (Koyaguchi et
al. 1990). The tank was filled with water laden with relatively well-sorted silicon
carbide grinding powder (carborundum). The irregularly shaped particles have a
density of 3.217 g cm~> and a medium diameter of 16 ym with a standard deviation
of about 3 um. The Stokes free-fall velocity, vs, of such small particles in water is
of order 0.02 — 0.04 cm s~!, which implies that the particle Reynolds number
is of order 10-3. The initial temperature differences between the fluid and the
heated or cooled surface was typically between S and 15°C, which implies that
the initial Rayleigh number was of order 10°. The suspension was well mixed
at the start of each experiment and then left to evolve. Temperature and particle
concentration data were obtained at several heights in the tank using thermistors
and a specially designed and built optical transmission device respectively. Our
experiments concentrated mainly on the situation of heating from below since the
behaviour in this situation is more interesting; and we shall emphasize this situation
hereinafter.

At very low initial concentrations (less than about 0.003 vol.%), the particles
remained distributed fairly uniformly throughout the tank during an experiment,
while a sediment layer built up exponentially with time at the base. All this is
in agreement with the experiments and related theory of Martin & Nokes (1988,
1989). However, at higher, but still quite low, initial particle concentrations a
totally different behaviour was observed (figure 2). The particles settled through
a convecting lower layer leaving behind a clear fluid upper layer. These two
layers were separated by an interfacial zone (figure 2b, c¢) due to the (unfortunate)
polydisperse distribution of the particles. The interfacial zone descended at approx-
imately the Stokes settling velocity, during which time particles sedimented at the
base of the tank and the mean temperature of the lower layer gradually increased.
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Ficure 2. A schematic sketch of small heavy particles sedimenting through a fluid layer which is
turbulently convecting owing to being heated from below. The details of the motion are described
in the text.

After some time the lower layer abruptly overturned into the upper layer and the
fluid in the tank returned to its initial, well-mixed state, except for the layer of
sediment on the base (figure 2d). The cycle could be repeated several times (figure
2e, f) with a smaller particle concentration in the fluid after each overturn. The time
interval between overturns decreased with each successive overturn. Eventually, both
the particle concentration and the temperature difference between the fluid and the
base became sufficiently low that the behaviour reverted to the previously described
exponential deposition of particles from a suspension of uniform temperature and
concentration. A movie sequence of an experiment was taken and part of it shown
during the John Miles Symposium. The cause of the overturn is the decrease
in density of the lower layer due to the heat flux at the base. Eventually the
negative thermal contribution to the density of the lower layer overcomes the positive
contribution due to the particles, and the bulk density of the lower layer is no longer
greater than that of the upper layer.

Based on the experimental observations, we developed a simple physical model
of the phenomenon. For simplicity, we assume that the particles are all of one size
and that the resulting interfacial zone is of zero thickness. The evolving lower layer
is assumed to convect due to a fixed temperature 7 at the base with the heat flux,
Q, from the base given by the well known four-third’s law (Turner 1979)

Q = pey(agr®/v) 3Ty — TL)*3, (2.1)

where p is the fluid density, c its specific heat, « its coefficient of thermal expansion,
« its thermal diffusivity, v its kinematic viscosity, ¢ the acceleration due to gravity,
Ty, the temperature of the lower layer and v is a dimensionless constant which has
been determined empirically to be about 0.1 at high Rayleigh numbers (Denton &
Wood 1979). Note that in writing down (2.1) we have assumed that the particle
concentrations are sufficiently low that they do not affect either the heat transfer
rate or the value of any of the physical parameters of the fluid, such as viscosity or
specific heat.

The governing equations are obtained by considering the change in heat contents
of the upper and lower layers over a small time interval 6¢ during which time the
top of the particles settle at velocity vs while the warm fluid left behind mixes with
the upper layer (figure 3). Using the notation shown in figure 3, we see that for the
upper layer

hyTy + ohyTy = (hU == 6hU)(TU 1 (STU), (2.2)
which in the limit §¢ — 0 becomes
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time t Qst time t +6t

Ficure 3. A schematic sketch of the changes in time 6t of the temperatures of the upper and lower
layers, Ty and T respectively, and the height of the upper layer hyy. A small amount of lower
layer fluid of thickness 6hy and at temperature 17 is cleared of particles and mixes with fluid of
the upper layer during this time.

d _ dhy
T(hoTy) = — =T (23)
In a similar fashion the governing equation for the lower layer is
dT’
(H = hy)—= = Q/pe, (24)
or
dT, 2\ 1/3
(-~ vst)d—f = V(Q? > (Ts - T0)*?, (25)

where H is the total depth of the two layers. The two initial conditions required to
solve (2.4) and (2.5) are

Ty=T,=To (t=0), (2.6)

where T; is the initial temperature of both layers.

Equations (2.2) — (2.6) are only valid until either ¢ = H/vg, at which time particles
will have totally sedimented without the lower layer having overturned, or until the
time, say t., at which the bulk density of the lower layer first equals that of the
upper layer. A relationship for the bulk density, p., of the lower layer is derived by
considering the contributions made by the particles and fluid separately to obtain

pr=[Cpp 't + (1= C)p; 'Y, (27)
where C' is the particle concentration expressed as a mass fraction p, is the density
of the particles and p;(77) is the density of the interstitial fluid of the lower layer
qua function of its temperature. Representing this function as

ps = poll — a(T1 = Tv)), (28)
employing a similar expression for the density of the upper layer, and expanding
(2.7) for C <« 1, we can show that the condition for overturn is

Ty — Ty = C(pp — po)/(app). (2.9)
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Ficure 4. The theoretical non-dimensional temperatures of the upper (- - - - - ) and lower (
layers as functions of the non-dimensional time 7 for A = 0.1, 1.0 and 10.0.

)

Introducing the non-dimensional variables
v = (Ty — To)/ A, 6r = (Tt —Ty)/A and T =vst/H, (2.10a,b,c¢)

where A = Tg — Tp into (2.4) — (2.6) and (2.9), we obtain the nondimensional
governing equations

do
T-(—ITE-FQU—GL =0 (2.11)
(1—r)d_;-TL-:A(1—0L)4/3 (2.12)
Go =0 =10, (7'=10) (2.13a,b)
where
A = yu5t(aAgr? V)3, (2.14)
which are valid for ‘
0 <7 <min(l,7.), (2.15)
where 7. is the time at which
0L — 0u = Clpp — po)/(alpp). (2.16)

While it is straightforward to obtain a closed-form analytic solution of (2.12) and
(2.13b) which can then be substituted into (2.11) and (2.13a) to obtain a solution
for 6y in terms of exponential integrals, it is easier these days to obtain numerical
solutions of (2.11) — (2.13) using standard packages. The results of such a procedure
are shown in figure 4 which presents graphs of 6y (7) and 6. (r) for three values of
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Ficure 5. The theoretical value of t.vs/H qua function of concentration for A = 0.284. The
solid circles represent the corresponding experimental points.

A. Figure 5 then displays 7. qua function of C for the most often used experimental
value of A = 0.284, which corresponds to A = 15°C. Recalling that 7. = vst./H
is the ratio of the time for the lower layer to overturn to the time for the particles
to settle to the base of the tank, we see that for very small C' no matter what the
value of A the timescale for the overturn is short compared to the settling time,
and on this latter timescale the overturn appears to occur almost continuously. This
is in agreement with the concepts and experiments presented by Martin & Nokes
(1988, 1989). For larger, but still quite small, values of C the overturning takes
place before the particles have sedimented to the base. A critical value of C is
reached beyond which 7. = 1 and no overturning takes place. The theoretical results
obtained using the mean Stokes velocity of 0.03 cm s~! are seen to agree well with
the experimental data, despite the polydisperse nature of the particles employed.
Nevertheless, we hope to repeat the experiments with more uniform particles in the
future.

3. Convection and particle entrainment due to polydisperse sedimentation

While I was visiting the Australian National University late in 1988, Stewart
Turner and I started an investigation in which we were later joined by Ross Kerr
and John Lister. The question we posed was as follows. How does a well-mixed
suspended layer of small heavy particles behave if it is overlain by a large clear
fluid layer whose density py lies between that of the interstitial fluid of the lower
layer p; and its bulk density pp? Such a situation can arise when a silt-laden fresh
water river intrudes into a salt-water environment. Other examples include the flow
of hot, ash-laden pyroclastic flows in the atmosphere and the settling of crystals in
light released magma in a magma chamber.

After a number of false starts, we carried out a series of experiments with two
types of carborundum grinding powders whose size distributions are graphed in
figure 6. Most of the experiments were carried out in a Perspex tank which consisted
of a working section 19.5 x 3 x 20 cm high joined at its top to the base of a very
much larger region which was 19.5 x 40 x 20 cm high, as sketched in figure 7.
This large region allowed the experiment to continue without any significant change
in the properties of the upper layer. An experiment was commenced by pouring an
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Ficure 6. The distribution of particle sizes of the two batches of carborundum that we used to
investigate effects of polydisperse sedimentation. The effective diameter is the diameter of the small
spherical carborundum particles that would have the same settling velocity. Also shown are these
settling velocities in water.
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Ficure 7. The Perspex tank used for most of the experiments on polydisperse sedimentation. The
wire mesh helped shield the convective motions in the lower region from the large-scale circulation
in the upper region.

aqueous sugar solution of known density into the tank. The more dense suspension
layer was then added under the sugar solution by the use of a long vertical pipe
emanating from the base of a continuously stirred reservoir. Further details are to
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Ficure 8. Reproduction of a photograph taken after 26 s of convection in an aqueous sugar solution

driven by the sedimentation in an underlying suspension of polydisperse carborundum in pure water.

be found in Huppert et al. (1991), which also presents an expanded version of the
experimental results obtained and a theoretical description of them.

The experiments were followed by eye and by both movie and still cameras.
A sequence of the movie was shown during the Symposium and a typical frame is
reproduced in figure 8. As the particles settled in the lower layer, buoyant interstitial
fluid was left behind, which rose in thin streamers and sheets and carried with
it some of the suspended particles. There was vigorous convection in the upper
layer, which extended all the way to the top of the large tank. Careful observations
with a microscope revealed that below a sharp interface the particles fell vertically
with little additional motion in the lower layer. The experiments thus combined
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Figure 9. The measurements of interfacial height qua function of time for experiments which used
type-1 particles so that the bulk density of lower layer, pp, was initially 1.079 g cm™3. The
experiments were conducted at various values of the density of the upper layer py. Also shown is
the value of the dimensionless ratio R = (pu — pr)/(pB — pr1), where py is the density of the
interstitial fluid, here (pure) water. The data shows both that the interfacial velocity is essentially
constant during an experiment and that it is a monotonically increasing function of R.

sedimentation at low Reynolds number in the lower layer of ever decreasing depth
with convection at high Reynolds number in the upper layer.

The level of the interface between the two layers was recorded qua function of
time. The results for various densities of the upper layer with a fixed bulk density
of the lower layer are presented in figure 9. It was noted that in each experiment
(and not just the ones presented in figure 9) the interface fell at a constant velocity,
which systematically increased as the density of the upper layer increased (with all
other variables held fixed).

Measurements of the refractive index of the interstitial fluid of the lower layer
throughout an experiment confirmed that no sugar was transported into the lower
layer, while measurements of the sediment content revealed that the local concen-
tration of the particles decreased monotonically with time. This decrease at any
point, as well as the rate of accumulation at the base, was shown to be independent
of the presence of the upper layer.

The explanation of all these observations is as follows. Consider first a single
layer of initially well-mixed polydisperse heavy particles. Each particle will fall
through the layer at its own Stokes free-fall velocity, diminished by all the effects
of particle-particle interactions. In this physical description we shall ignore the latter
interactions since they are typically small and do not affect the essential aspects of
the motion. (These interactions are, however, discussed and included in Huppert et
al. 1991). The larger particles will fall more rapidly and leave behind the smaller
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Ficure 10. (a) Trajectories of particles of different sizes, and hence fall speeds, which emanate from

the top of the sedimentary layer. (b) The resulling density or concentration gradient at that time
indicated by the dashed line on (a).

particles, as indicated in figure 10a which indicates the trajectory of the particle
of given size which starts at the top of the layer. No particle of this size can exist
above the line. By this process of differential sedimentation a concentration gradient
is set up in the layer, which at any time looks like that sketched in figure 10b.

We now add an upper clear fluid layer whose density lies between that of the
interstitial fluid and the initial or maximum bulk density of the lower layer, as
indicated on figure 10b. The initial sedimentation will be as just described, with a
region near the top of the lower layer, whose thickness grows linearly with time,
which is less dense than the overlying fluid. When a local Rayleigh number based
on the unstable stratification and the increasing thickness of this region becomes
sufficiently large, the region will rise and mix convectively with the overlying fluid
and may also take some of the underlying suspension with it. The essentials of the
process are similar in concept to those suggested by Howard (1966) in his famous
paper modelling the instability of an evolving thermal boundary layer from a heated
horizontal surface. Just as Howard envisaged a series of repeated detachments, so
we envisage that the process we have just described continues to repeat itself. An
unstable region develops at the top of the sedimenting layer, in which the rate of fall
of the individual particles has been unaffected by the previous unstable processes.
After a certain time this region rises into the upper layer and the cycle is repeated
yet again. The period of each cycle is very short compared to the timescale of the
sedimentation and so the instability appears to be continuous. Since the cycles are
identical, the velocity of the top of the sedimenting region, say V, must be constant.

Although this description explains many of the features observed in the experi-
ments, we have not yet been able to derive an exact quantitative expression for
V. We have, however, using clear physical arguments been able to obtain an upper
and lower bound on V; and almost all of the experimental data lie between these
bounds.

It is convenient first to introduce two non-dimensional representations of the
density. The first is given by

R=fPu—rr
PB — PI
which is a constant of each experiment and lies between 0 and 1. The second is

(3.1)
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Ficure 11. The observed interfacial velocities in experiments with type-1 particles qua function
of the density ratio I for pp = 1.059 g cm™3. The error bars, where sufficiently large to be
displayed, are evaluated from the variation of the interfacial position with time. The curves indicate
the upper and lower bounds on the velocity determined as explained in the text.

pP—PI
PB —PI’
where p is the bulk density at any particular point in the sedimenting layer (cf.
figure 10b). The function r, which is a function of the distance ¢ from the top of
the sedimenting interface, increases monotonically from 0 at ( = 0 to the value at
the base, which is 1 or less. The function » may also be considered as a function of
the Stokes free-fall velocity, v, of the particle that arrives at ( from the top of the
sedimenting layer in time ¢. The function R—r is proportional to the local buoyancy
of the suspension relative to the fluid in the upper region.

The first bound on V arises from the assertion that at least the region with
positive buoyancy must rise. The buoyant region is specified by p < py, or in
non-dimensional terms » < R. Thus a lower bound, V,,,, is given by the velocity
that separates » < R and r > R.

The second bound on V arises from the alternative assertion that at most the
region with net positive buoyancy must rise. This means that the upper bound to
V, Vimax, 1 given by

=

(32)

Vinax
/O R — ru) o=’ (33)

A typical graph of Vi, and Vi,ax qua functions of R is presented in figure 11
along with data from the relevant experiments. Further plots, for different physical
parameters, are presented in Huppert et al. (1991) and almost all the experimental
data lie within the theoretical bounds.

153



154

H. E. Huppert

l l | | l
0 0.2 0.4 0.6 0.8 1.0
R

Ficure 12. Measurements of the fraction X qua function of R of lifted particles in experiments
with a suspension of type-2 particles with pp = 1.0157 g cm™3. The curves represent the upper
and lower bounds predicted by the theoretical model.

A consequence of the convective mixing of the buoyant entrained region into the
overlaying fluid is that some of the suspended particles are carried into the upper
layer. The volume fraction X of the initial particle load of the lower layer that rises
and mixes into the upper layer will be given by

vl [
X= —V-/O r(v)dv. (3.4)

A plot of the minimum and maximum values of X, evaluated by inserting the
minimum and maximum values of V in (3.4), is presented in figure 12. Also
included are the experimental data obtained by decanting the upper layer immediately
after the sedimentation of the lower layer had ceased and obtaining separately the
weight of the lifted and deposited particles. It is seen that the data obtained agrees
well with the theoretical lower bound.

While this study has uncovered a number of interesting features, there is clearly
more to be understood; in particular, exactly what parameters V' depends upon and
how to calculate it explicitly. I and my colleagues hope to be in a position to provide
some further answers in the future. For example, Ross Kerr and John Lister are
currently investigating the increase of V' with increasing flux Rayleigh number based
on the density difference and viscosity. They are also investigating the temporal
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variation of V caused by the evolution of the density of the upper layer in the case
where the initial depths of the two layers are comparable.

4. Mechanically generated turbulence in a sediment layer

In this penultimate section, I should like to describe briefly some current, and
still incomplete, experiments and related theory being undertaken in collaboration
with Stewart Turner, during a two-month visit to Cambridge, and my Technical
Officer, Mark Hallworth. Undoubtedly not all that I report will be correct. However,
in well-practiced traditional style, I offer up this draft to Johnnie Miles who will
scribble all over it with red pencil in a penetrating way that will allow me to
proceed.

A much employed technique for studying turbulent motions, especially those in
which there is a density interface, has been to use a mixing box that contains a grid
of horizontal bars which are oscillated vertically. (For discussions of this technique
see, for example, Turner 1979, 1986; Hannoun, Fernando & List 1988; Hannoun &
List 1988; and Fernando 1991). We are employing this technique to investigate the
behaviour of a sediment layer in turbulent motion beneath a clear stagnant layer;
we particularly want to investigate the conditions under which all, or at least some,
of the heavy particles can be held in suspension indefinitely by the mechanically
generated turbulent motions.

In one series of our experiments we first filled a 30 x 8 x 30 cm high Perspex
tank with a layer of water to a nominal depth of 14.0 cm. We then used the same
technique described in the last section to add beneath the pure water layer a layer
of carborundum particles suspended in water of the same depth. The bulk density
of the suspended layer was 1.032 g cm~3. A grid was constructed from a thin plate
of aluminium, measuring slightly less than 30 x 8 cm, by punching out 1.0 cm
square holes with a 1.5 cm spacing between the centres of the squares in the long
direction. Each adjacent long row of squares was offset by 0.75 cm. The grid was
oscillated with a total stroke of 2.50 cm which was centred 2.55 cm from the base.
The frequency of the oscillations we have employed so far range from O to over 3
Hz.

We observed that as the frequency increased, each experiment attained a steady
state which ranged through: all the particles being precipitated on the base; some of
the particles being precipitated, while others were held in suspension; and, finally,
for sufficiently high frequencies, all the particles remaining in suspension. The final
thickness and particle concentration of the suspension layer, if it existed, were
monitored and both were fairly strong functions of frequency.

Before discussing further details and results of the experiment, it is appropriate to
present some general theoretical concepts. Consider first the situation in which no
particles are precipitated. Assume further, as was observed in the experiments, that
the intensity of the motion was sufficiently large for the particle concentration to be
uniform (S; < 1) and for the small variation in particle size to be irrelevant. Then
the sediment layer is described entirely by its height, say h. (The concentration,
say C, is then given immediately by - C' = Ny/Ah, where N, is the constant number
of particles in the system and A is the area of the base). The behaviour of h qua
function of time will be given by processes at the top of the sediment layer. From
the long history of previous investigations, it is known that these processes involve
velocities, such as entrainment velocities, horizontal velocities at the interface
and Stokes settling velocities, but not accelerations or higher derivatives. Thus,
mathematically, the relevant governing equations must be of the form
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Ficure 13. The height, ho,, concentration, Coo, and number of particles Ny, at equilibrium qua
function of w for a mechanically driven sediment layer. The concentration is measured in wt%
while the number of particles are in arbitrary units.

% = f(h,w;geometry), (4.1)
h = hg (t=0) (4.2)

for some f, where ¢ is the time since the initiation of the turbulent stirring, w is
the grid frequency, ho the initial height and ‘geometry’ indicates that the geometry
of both the containing box and the grid is relevant. Our investigations, however,
restrict attention to one particular geometry and so we will not examine its explicit
influence. Note, however, we eschew the dependence of f on Ny and hy on the
grounds that the relationship will be derived by considering the change in height 6h
in time é¢ and the initial state of the system cannot be relevant.

Now, independent of the exact relationship for f, as h | 0 with w fixed f becomes
large, and will monotonically decrease as h increases, to approach —vs (the negative
free-fall velocity of the particles, which will be independent of the concentration in
this limit) as h | oco. It follows immediately that there is one stable equilibrium
point, say he(w), which attracts all initial conditions. It can further be argued that
f must be a monotonically increasing function of w for fixed h and hence h(w) is
an increasing function of w for the range of w for which all the particles are held
in suspension. Figure 13 presents the experimental data we have so far obtained on
hoo(w).

Consider now the situation in which particles can be precipitated. Then in addition
to an equation analogous to (4.1), the system will be governed by an equation
describing the rate of loss of particles at the base. Mathematically this means that
the governing equations are of the form
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dh

= F(h,N,w;geometry), (4.3)
‘Z—J:]; G(h, N,w;geometry), (4.4)
h=hy, N=Np, (t=0) (4.5a,b)

for some F and G, where N(t) is the total number of particles in the box, with
initial value N,. Note that in some circumstances it may be that G is constrained to
be non-positive, reflecting the fact that saltation, or the lifting of particles once they
have settled on the base, is impossible. (Without doubt, N cannot exceed N,.) While
it is possible to make rather vague general statements about the shape of the surfaces
F and G qua function of h and N, it seems reasonable to say that generically the set
(4.3) and (4.4) can be expected to have one, or possibly more, attractors in addition
to the longtime solution N = 0, which lies on the boundary of the solution domain.
It is seen from the experimental data plotted in figure 13 that for w < 1.6 = w; in
our system the energy put into the turbulent motions is not sufficient to maintain
the particles in suspension and N | 0 as ¢ | co. For wy < w < 28 = w, some
of the particles can be maintained permancnily in suspension and both the final
concentration and number of particles, C,, and N, increases with w while A
decreases to a minimum at w = 2.8. Beyond w,, h,, increases, while C,, decreases
because N, = Ny remains constant.

Figure 14 presents plots of A(t),C(t) and N(t) for three different values of w, one
in each of the three regimes. In all cases h is initially a decreasing function of time.
For w < wy, h attains a minimum and then rises monotonically, either until N =0
for w < w; or until a non-zero limit is reached for w; < w < ws. For wy < w, h
steadily declines to a minimum, which is also the equilibrium value, as is seen in
figure 14b. In all these cases C(t) initially increases as the decrease in the thickness
of the sediment layer dominates the decrease, if any, in the number of particles.
Beyond some time it begins to decrease and either falls to zero for w < w;, or to a
non-zero equilibrium value for wy < w. For all values of w, N(t) is a non-increasing
function of time.

We have obtained somewhat similar sets of results when sugar is added to the
upper layer so that its density lies between that of the interstitial fluid and the bulk
value of the lower layer. Mechanically generated turbulent motions driven from
the base of the lower layer then accompany the convective motions in the upper
layer driven by the release of the less dense interstitial fluid. In contrast to the
sedimentation taking place in an otherwise quiescent lower layer, as described in
§3, the motions in the lower layer entrain sugar from the upper layer. The density
difference due to composition gradually decreases with time. Again for sufficiently
low frequencies all the particles fall out, while for higher frequencies some or all
the particles remain in suspension and a non-zero equilibrium value of the depth of
the lower layer is reached. This cannot occur, however, until the sugar difference
across the interface has become vanishingly small.

It is clear that a lot more study is needed on this problem, including the explicit
evaluation of the functions f,F" and G. It would also be fun to try to apply the
results to some of the many natural and industrial situations in which a sediment
laden fluid is in turbulent motion.
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Ficure 14. (a) The height, h(t); (b) the concentration, C'(%); and (c) the number of particles, N (t),
for w = 0.98, 1.67 and 3,04.
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5. Summary

This brief review has touched on a number of problems of current interest to
me. The unifying thread has been the active effect of particles on convectively and
mechanically driven turbulent motions. The literature on this subject is of course
large, but I believe that there are still many exciting situations to be.investigated
and solved. Some may be presented at meetings on December 1, 2000, 2010, ....
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