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Abstract. Magma chambers and lava lakes are storage reservoirs of molten rock, which grad-
ually cools and solidifies after emplacement. The molten rock is a multicomponent silicate melt
that crystallizes to form a solid whose components differ locally from those of the original melt.
This difference in composition can drive strong convective motions in the melt and cause large-scale
zonation of minerals.

This paper considers a series of general, one-dimensional problems in which a layer of a one- or
two-component melt is cooled from above. We describe the fundamental fluid-mechanical processes
involved, which include: the influence of compositional effects on the solidification; the formation
of mushy layers — regions in which fluid and solid co-exist; and the kinetic effects associated with
disequilibrium thermodynamics. The solutions of the resultant mathematical models are compared
with data from laboratory experiments using aqueous solutions. The agreement between the two
sets of results is shown to be very good. Calculations using the simple, geologically oriented, two-
component anorthite-diopside system are presented and their geological interpretation discussed
briefly.

1. Introduction. Many, if not most, investigations in geophysics involve solving
inverse problems, though they are not always formulated as such. The continual
appearance of inverse problems occurs because our measurements of the earth are
mainly constrained to be taken on the surface, with only a few measurements, such
as the gravity field and the magnetic field, taken from satellites. This means that our
knowledge of the interior of the earth is gained almost entirely by inference rather than
by pure deduction. However, before the concepts and techniques of inverse theory
can be applied to any problem, it is necessary to have a complete understanding of
solutions related to the direct problem.

This general statement is true for the particular investigations of the physical and
chemical processes that occur in magma chambers, which are large storage reservoirs
of molten rock that are supposed to exist a few kilometres beneath all volcanoes, of
both the subaerial and submarine variety. No measurements have ever been made
within a molten magma chamber, and are unlikely to be made in the foreseeable fu-
ture. Our knowledge is thus based on measurements from the occasional outpourings
from such chambers, as seen, for example, in figure 1, and from the theoretical con-
cepts and calculations of the processes that are thought to occur within the chambers.
One process of considerable importance in the temporal evolution of magma cham-
bers is the slow transfer of heat from the chamber to the surrounding country rocks
and the resulting solidification that occurs. In order to investigate some aspects of
this evolution, the current paper presents the solutions to a series of one-dimensional
problems describing the solidification of an initially fluid layer due to cooling that
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takes place at the top of the layer. We sequentially build up the fundamental con-
cepts and then apply them in order to discuss quantitatively the thermodynamic and
fluid dynamic processes that occur in magma chambers.

The simplest situation to analyse, in which a one-component, or pure, melt solid-
ifies, is known as the Stefan problem [1,2]. A semi-infinite layer of liquid, which is
initially at a uniform temperature, is suddenly subjected at its base to a maintained
temperature that is below the solidification temperature. Because the subsequent
temperature in the liquid increases with height above the base it is assumed that no
fluid motion occurs. The (one-dimensional) temperature profile in both the liquid
and the resulting solid is determined by solving time-dependent diffusion equations
in both media, possibly with a different coefficient of thermal diffusion in each layer.
Because there is no length or time scale specified by the problem, the solution can be
expressed in terms of a similarity variable and the solid phase grows in thickness at
a rate proportional to t*/2, where t is the time from the initiation of the temperature
at the base.

Cooling a layer of pure melt from above, rather than from below, leads to a
temperature profile that increases with depth and hence, in most cases, is thermally
unstable. This generally results in fluid motions, in the form of convection, whose
vigour is determined by the Rayleigh number based on the (finite) depth of the liquid
layer remaining at any time. This situation was first analysed by Turner, Huppert
and Sparks [3] who explained all the essential features of the motion and evaluated
the rate of solid production. However, their analysis was presented in an appendix
whose primary aim was to aid the explanation of a series of experiments in which two-
component melts were solidified. In addition, the subject and its interpretation has
advanced since that time and the results of the calculations have been occasionally
misinterpreted. It thus seems sensible to present a new, careful description of the
problem in Section 2. We will also explain there what general principles can be learnt
from the analysis about the fluid behaviour and the solidification processes in lava
lakes.

In Section 3, we commence a discussion of the influence of compositional effects
on both the solidification processes and the resulting fluid motions. We consider
the cooling from above of a layer of a two-component melt that releases less dense
fluid upon solidification. As solidification proceeds, a mushy layer develops, which
consists of sparse interconnected solid with interstitial melt. Our initial analysis of
this mushy layer, following Kerr et al. [4,5], considers the solidification to take place
under strict thermodynamic equilibrium. In Section 4 we replace this constraint by
one that incorporates kinetic eflects into the solidification process [6]. Possibly the
most important conclusion of this section is that vigorous convective motions can still
result in the fluid even though there is no initial superheat; that is, even though the
fluid lies initially on the liquidus and carries no additional thermal energy.

We quantitatively consider the consequences of this conclusion, and the other
results that are derived from the model, for the two-component system made up of
anorthite and diopside in Section 5. This simple system can be considered to have
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Figure 2: A schematic diagram of a layer of fluid of depth H being cooled and solidified
from above. The upper boundary, z = 0, is maintained at a constant temperature
T4 that is lower than the solidification temperature of the melt T, while the lower
boundary is insulated. The temperature of the melt 7,,(t) is kept uniform by the
convective motions of the melt and decreases with time owing to the convective heat
transfer to the solidifying roof.

many preperties similar to those of a multi-component magma. In Section 6 we
extend this analysis to consider further the cooling and solidification of lava lakes.
The paper ends with a summarizing set of conclusions.

2. Cooling a pure melt from above. We consider in this section the
(one-dimensional) response of a layer of pure melt, at initial temperature Ty, which
is subject to a maintained temperature T4 at the top, z = 0, and, for simplicity, is
insulated at the base, z = H, as sketched in figure 2. The solidification temperature
is taken to be T, with Ty < Ty < Tp. Because thermal energy is continually being
removed from the system, the melt gradually solidifies and at a time, t, say, after the
initiation of the top temperature T4 the system is completely solid.

At the unknown interface, z = s(t), between the solid and liquid, two equations
must be satisfied. One is that the temperature at the interface is given by the solidi-
fication temperature, which is expressed mathematically by

(2.1) Tz = s(t),t] = T..

The other equation reflects the physical fact that there is conservation of heat across
the interface. On the assumption, subject to a posterior: verification, that the melt



convects vigorously, the conservation relationship becomes !

oT ds
(2.2) k,a’ 3 = Fr+ [Cm(Tm — T.,) + ‘C]E,
where
(23) FT . 7km(ag/'€my)1/3(Tm - T3)4/3,

k, and k,, are the thermal conductivities of the solid and the melt respectively, Fr,
the thermal flux from the vigorously convecting fluid to the interface, is given by
the oft-used four-thirds law (2.3) [7], ¢ is the specific heat per unit volume of the
melt, T,, is the mean temperature of the melt, £ is the latent heat released as melt
transforms to unit volume of solid, 4 is an empirical constant with a value of 0.14, o
is the coefficient of thermal expansion of the melt, g is the acceleration due to gravity,
Km is the thermal diffusivity of the melt and v is the viscosity of the melt, which is
assumed to be constant. The assumption has also been made that any change in
volume upon solidification can be neglected. The thermal flux Fr leads to a decrease
in temperature of the melt layer which is expressed by

(2.4) Fr=—cn(H — s)—.

The conductive flux which appears on the left-hand-side of (2.2) needs to be
evaluated from the solution of the diffusion equation in the solid. Alternatively, on
the assumption that the thickness of the solid s(¢), which is governed by the release of
latent heat, is very much less than the scale of thermal diffusion in the solid, (k,t)'/2,
the temperature profile in the solid is very nearly linear and

(2.5) ' T o= {Fom Talfs.

The mathematical problem thus consists of solving (2.2)-(2.5) together with the initial
conditions

(2.6a,b) T =15, s=10 (t =0).
It is convenient at this stage to define dimensionless variables by
(2.7a,b,¢) u= (T —T)/(To—T,), v=s/H and T =knt/H?,

where time has been non-dimensionalised by the conductive time scale, H?/x,,. The
variable u represents the remaining superheat of the melt, while v represents the
fraction of the layer solidified. Substituting (2.7) into (2.2)-(2.6), we obtain

1 =, dv
(2.8) Lo QM 4 (Qu+ §)L,
v dr
1The term involving c,, on the right-hand side of (2.2) was inadvertently omitted in [3]; however,
in most cases it plays a minor role. Further details of the differences between the current presentation
and that in [3] are discussed in footnote “2”.




LD e
(2.9) (1 —v)dT =—-Nu
and
(2.10) yu=]1 =0 (r =0),

in terms of the three dimensionless parameters that describe the system

= km (TO - Ts)
(2.11a) U AT =l
a modified Stefan number
f:_"l L

(2.11b) S =

and the initial Nusselt number for the melt

1/3
(2.11¢) N=~« [ag(To - TS)HS/me] /
(2.11d) = yRaf;,

where Ra;y;, is the initial Rayleigh number of the system. The physical interpretation
of the governing equation (2.8) is that the conductive heat flux through the solid
balances the three terms on the right-hand side of (2.8) which represent respectively:
the convective flux that is transferred from the melt; the sensible heat that is lost as
the melt is cooled to its solidification point; and the latent heat that is released upon
solidification.

In general, solutions to the non-linear coupled set of equations (2.8)—(2.10) can
only be obtained numerically. However, useful approximate analytical solutions can
be derived in the geologically relevant situation of A’ 3> 1, with Q and S fixed. The
analysis is based on the principle that, since each term in (2.8) is positive, the term
on the left-hand side is always important. Initially, because of the singularity of this
term, as indicated by (2.10b), it is balanced by the last two of the three terms that
make up the right-hand side of (2.8). As 7 increases and the rate of advance of
the interface dv/dr decreases, the first term of (2.8) becomes important. Later, its
influence wanes as the superheat u decays, and the balance of terms returns to the
initial one.

In physical terms, this variation is expressed as: an initial balance between a large
conductive flux through the thin solid phase and latent heat release; a period during
which the convective flux from the interior exceeds the latent heat release and retards
growth of the solid; and a final period during which latent-heat effects again overpower
the dwindling convective flux. The analysis below demonstrates that the initial phase
occurs for 0 < 7 < O(N~2), the intermediate stage for O(N~2) < 7 < O(N~%/7) and
the final stage for O(N'~%/7) < r < 7,, where 7, is the (dimensionless) time, of order
unity, for total solidification to occur.



The analysis proceeds in three stages. In the first, at early times, (2.8)-(2.10) can
be approximated as -

1 = dv
(2.12) == (Qu+8)—
du
(2.13) o= 0
(2.14a,b) v=0 u=1 (r=0),

the solution to which is

9 1/2
(2.15a,d) V= (m) /2 and  u=1
This solution is valid until
<. id

(2.16a) QN ~ (Q + 8=

dr

: <\ 1/2
(2.16b) e (QTM) 12
| that is, until
Q+S ..

(2.17) adeTer N2,
at which time
(2.18) v~ (QVM) T« 1.

For a while thereafter, the first term dominates the other terms of the right-hand side
of (2.8), and equations (2.8) and (2.9) can then be written as

1
(2.19) == QN i
du
9 . Ll 4/3
(2.20) e Nu

with matching to (2.8) giving the initial condition

(2.21) u(0) =1

to leading order. The solution of (2.19)-(2.21) can be readily obtained as
43

(2.22a,b) u= (1 + %NT) and v=(QNM)! (1 - %N‘T)4 .

This solution remains valid until

(2.23) QNu'? ~ §—,



with u and v given by (2.22). That is, until

302\7 .
(2.24) " (%) N
At this time
32\ s 1(3Q%\" s
(2.25a,b) u~ (-ZE) N~7 and v~6<-&5—~) N-T,

In the short period of time given by (2.24), convection causes the superheat u to
decay to the small value given by (2.25a) while little solid has grown, as indicated by
(2.25b).

In the final stage, the thermal balance is similar to that expressed in equation
(2.8), except that now u ~ 0 to leading order. Thus
1 zdv
(2.26) -=8—

v dr’

while equation (2.9) is most conveniently written in the form

1-vd
(2.27) AL Y% B

v dv

The solution to equations (2.26) and (2.27) that matches with the solutions at earlier
times is given by

(2.28a,b) T (%)% 77 and u= [1 - %Né(ln(l —v)+ v)]—a.

Note that this asymptotic expression for u is uniformly valid for all times 2.

Some results of integrating equations (2.8)-(2.10) numerically are shown in figures
3 and 4. The general behaviour of this system of equations is best seen in figure 3,
for which the parameter values used were S=1,Q=1, and N = 100. This value
of Q is much larger than would typically apply to magma chambers but the values
chosen here serve to illustrate the structure of the solutions. The curve for v in figure
3a has two points of inflexion, corresponding to the transitions between the three
stages of evolution represented by (2.15), (2.22), and (2.28). These transitions can
be seen more easily in figure 3b in which logv is plotted as a function of log 7. The
transition times of O(AN~2) and O(N~%7) are indicated with dashed lines. Note that
v increases like 71/? in both the first and third stages of evolution. During the second
stage of evolution, the large convective heat flux from the melt serves to slow down
the rate of growth until the superheat has decayed to small values and the convective

2Most of the solutions obtained in the current presentation have their antecedents in the so-
lutions derived in [3]. The two main differences in the presentations are, first, the different non-
dimensionalizations of time that are employed, and second, that, in [3], solutions for different ranges
of the dimensionless parameters are discussed, whereas, in the current paper, we consider all the

parameters to be fixed and determine the temporal evolution of the solutions under the assumption
that &' > 1.
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Figure 3: Results of numerical calculations of the solidification of a layer of liquid
cooled from above using dimensionless parameter values of S = 1, A" = 100, and
Q = 1. (a) The dimensionless temperature of the melt u and the depth of solid
at the roof v as functions of the dimensionless time 7. (b) The depth of the solid
layer as a function of time shown on logarithmic axes to illustrate the different stages
of evolution. The vertical dashed lines indicate the approximate transition times as
determined by the asymptotic analysis in section 2.
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Figure 4: Results of numerical calculations of the solidification of a layer of liquid
cooled from above using dimensionless parameter values of S = 1, A/ = 100, and
Q = 0.1. (a) The dimensionless temperature of the melt u and the depth of solid
at the roof v as functions of the dimensionless time 7. (b) The depth of the solid
layer as a function of time shown on logarithmic axes to illustrate the different stages
of evolution. The vertical dashed lines indicate the approximate transition times as
determined by the asymptotic analysis in section 2. Note that, in contrast to figure
2b, the growth is approximately proportional to 71/2 for all time. This is because the
dimensionless initial superheat is smaller in this case, which causes the convection to
have less influence on the solidification at the roof.
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Figure 5: The dimensionless time 7, for complete solidification as a function of the
initial Nusselt number A'. Note that, as the convective intensity increases, the solid-
ification time decreases relative to the timescale for thermal diffusion.

heat flux has diminished. The overall effect of convection, however, is to remove the
superheat rapidly and thus to allow the system to solidify more quickly. Figure 3a
shows the superheat u decaying rapidly to small values by the end of the second
stage of evolution. Note, however, that this decay is only algebraic and that the
Rayleigh number based upon these small values of the superheat remains large until
dimensionless times of order unity.

Figure 4 shows the results obtained with parameter values of a size appropriate
to magma chambers. In particular, the dimensionless initial superheat Q was taken
to be only 0.1, while the other parameter values were kept the same as used for
figure 3. We again see the superheat u decaying rapidly in figure 4a. Now, however,
although the Rayleigh number based upon the value of the superheat is still very large,
the convective heat flux is always small in comparison with the heat flux conducted
through the roof, and the growth of v is almost proportional to 7'/2 for all time,
as seen in figure 4b. Convection still plays a role in reducing the time for complete
solidification, however, as can be seen in figure 5, which shows 7, as a function of the
initial Nusselt number V.

The analysis above can be considered as an approximate model for the evolution
of a lava lake. These form when lava from an eruption flows into a depression in the
earth’s surface. The lakes may be a few meters to a few tens of meters deep [8,9]
and are cooled by contact with the atmosphere at the top surface. There are three
major implications of the model just presented when the results are applied to a lava
lake. The first is that any superheat is removed rapidly. It then follows that the lake
solidifies in a time comparable to the conductive time scale H%/«. Finally, during this
time, vigorous convective motions will take place in the interior of the lake. All three



of these conclusions are in broad agreement with field data obtained from lava lakes,
and remain valid even as we add more detail to the model in the following sections.

Further discussion of lava lakes is deferred until section 6.

3. Compositional effects. When the melt that is being cooled and solidified is
composed of more than one pure component, various interesting additional phenom-
ena occur. In general, the solid product is of a different composition from the melt.
Thus compositional gradients are generated in the melt as it becomes locally depleted
of the components forming the solid phase. The compositional gradients often result
in density gradients that can drive convection. These same gradients of composi-
tion can be the cause of morphological instabilities of the solid-liquid interface that
ultimately result in the formation of a mushy zone separating the completely solid
region from the melt (see figure 6). Mushy zones can also be anticipated from the
equilibrium phase diagram of a multi-component system. Whereas there is a single
temperature (the melting temperature) at which a pure solid is in equilibrium with
its melt, there is a range of temperatures in which solid can coexist in equilibrium
with a multi-component melt. This range is bounded by the solidus temperature, be-
low which the system is completly solid, and the liquidus temperature, above which
the system is completely liquid. These temperatures as functions of composition are
often plotted to form the equilibrium phase diagram for the multi-component system
that shows which phases are in equilibrium in a sample of given uniform tempera-
ture and bulk composition. The particular phase diagram for the anorthite-diopside
system is shown in figure 7, which is also a typical phase diagram for many simple
two-component systems that freeze to form an almost pure solid (i.e. the solidus
curves are vertical). Between the solidus and liquidus temperatures, solid and liquid
typically coexist in intimate contact, such that the microstructure has a lengthscale
that is very small compared with the lengthscale of the mushy layer as a whole. This
fact is the basis for our mathematical modelling of the mushy region.

In this paper, we restrict attention to systems that are cooled from above and
which leave a buoyant residual as solid is formed from the melt. Since the effect
of compositional variations upon the density of the liquid is typically much greater
than the effect of the associated temperature variations within mushy regions, the
interstitial fluid within the mushy layer that forms near the cooled roof is stably
stratified and we assume therefore that it is stagnant. The model presented here was
developed in reference [5], where a careful and detailed account of its assumptions
and conditions can be found.

The two-component system that we consider first is similar in many ways to the
single-component system analysed in section 2 . The solid region of figure 2 is replaced
by a mushy region in figure 6. The region of melt is modelled in the same way and its
temperature obeys equation (2.4) with the heat flux given by equation (2.3), except
that the solidification temperature T is replaced by the (unknown) temperature T;
of the interface between the mushy and liquid regions. If the diffusivity of solute D in
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Figure 6: A schematic diagram of a solidifying layer of binary melt that is cooled

from above.

A mushy layer comprising interconnected crystals and interstitial liquid

grows from the melt near the roof. If the temperature of the cooled roof is lower than

the eutectic

temperature then a completely solid, composite layer forms adjacent to

the roof, comprising crystals of both end members of the binary system. A layer of

crystals is observed to form near the insulated base in laboratory experiments and is

predicted by the theory once the kinetic undercooling at the mush-liquid interface is’

taken into account.

TEMPERATURE (°C)

1550

1500

1450

1400

1350

1300

T

1250 : 7

1 1 L 1 I £ | | 1
10 20 30 40 50 60 70 80 90

ANORTHITE DIOPSIDE
CONCENTRATION (WT% DIOPSIDE)

Figure 7: The equilibrium phase diagram for the anorthite-diopside system. The

eutectic temperature of 1274°C is attained on the liquidus curve at a concentration
of 58 wt% diopside.



the melt is small compared with the diffusivity of heat «, as is typically the case, then
the compositional boundary layer ahead of the mush-liquid interface is negligible and
the interfacial temperature is given by

(3.1) T; = To(Cm),

where T;(C) is the liquidus temperature of the two-component system and C,, is the
composition of the melt. Equation (3.1) is equivalent to equation (2.1) and is appro-
priate under the assumption of local equilibrium. In section 4 we shall replace equa-
tion (3.1) with a non-equilibrium growth law and discover important consequences of
disequilibrium. For now we use the simpler condition of equilibrium thermodynamics
in order to focus attention on effects related solely to having a multi-component melt,
rather than a single-component melt.

The equation expressing conservation of heat at the mush-liquid interface (2.2) is
replaced by

dh;
(32) kaz|h.~— = Fr+ (Tm — T,)E',
where z = h; is the position of the mush-liquid interface. Note that there is no

release of latent heat at this interface since the solid fraction in the mushy layer there
is zero when D/x < 1 and thermodynamic equilibrium is assumed [5,11]. Instead,
the release of latent heat is distributed throughout the mushy layer as expressed by
the thermal-diffusion equation, which now takes the form
T : .0 {-0F 0¢
(3.3) SRV A B, o
ot 0z \ 0z ot
The release of latent heat is proportional to the rate of change of the solid fraction
¢ within the mushy layer, while the mean thermodynamic properties of the layer are
functions of ¢, which are taken to be

(3.4a) ¢=¢c; + (1 - 9)em,

(3.4b) k= ok, + (1 — ¢)km.

Note that equation (3.4a) is exact, while equation (3.4b) is an approximation that
has led to good results in earlier studies [4,10,11]. An additional equation is required
in order to determine how the solid fraction varies within the mushy layer. Since the
microstructure of the mushy layer is so fine and the relative surface area of phase
boundaries within the layer is consequently so large, it is a very good approximation
to assume that

(3.5) T =T.(C)

within the layer; that is, the mushy region is considered to be in local thermodynamic
equilibrium. The concentration C of the interstitial liquid is found by conservation
of solute to satisfy

gEr il - g
(3.6) (1= o)5 = (C=Cg



where we have ignored the diffusion of solute.

Equations (3.1)—(3.6), together with equations (2.3) and (2.4), can be conveniently
combined into the dimensionless system of equations and boundary conditions [5]

a0 0 a0
. — e f s <z<h

(3.7a) cat 5 ( 02) (0 < z< hy),
(3.7b) 0 =-1 (z =0}
(3.7¢) 0=0 (z = h;),
where

ks
(38(1) k= ¢k— +1— 0,

’ S

(3.80) cz¢c—+1—¢+5(1-¢)2
and

—0
with
(3.9) o.hi=2L| e,

; 0z|,

(3.10) (1= hi)bm = —NO5,
(3.11a,b) he=0, 0,=10 {1 =10}

In these dimensionless equations, lengths and time have been scaled as in section 2,
while the dependent variable 6 is defined by

b k(o)

e " TG - T

Note that, here, the temperature has been scaled with the temperature difference
across the solidifying region, rather than that across the thermal boundary layer in
the melt as it was in section 2. Consequently, the parameter in equations (3.9) and
(3.10) is NV = 90_1/3JV, where A is the initial value of the Nusselt number, and should
not itself be misinterpreted as a Nusselt number. A new parameter is introduced in
these equations,

C"s i CO
3.13 C ==,
(3.13) Co—C,
where T (C4) = T4, which represents the difference in composition between the

solid and liquid phases relative to the variations in concentration of the liquid phase
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Figure 8: The dimensionless depth h; of a mushy layer grown at thermodynamic
equilibrium as a function of time 7 for various values of the concentration ratio C.
The other dimensionless parameter values used were § = 1, N =100, and 6, = 1.
Note that, as C increases, the solid fraction in the mushy layer decreases, which allows
the depth of the mushy layer to grow more rapidly.

within the mushy layer. The value of C is zero for a pure melt and is always positive
otherwise. In this system of equations, the Stefan number § = L/c,n (T1(Co) — Ta)
only appears divided by C, so we can deduce that positive values of C serve to reduce
the effective value of the Stefan number. This is because, as seen from equation
(3.8¢), the solid fraction in the mushy layer decreases as C increases, so less latent:
heat is required to be removed in order to increase the depth of the mushy layer. This
is the principal effect of composition on the solidification of a multi-component melt
and it causes the mush-liquid interface to advance more rapidly than the solid-liquid
interface in a pure melt. This is illustrated by the results presented in figure 8. Note
that increasing C produces similar results to those obtained by decreasing S [5].

A consequence of the fact that the release of latent heat is distributed throughout
a mushy layer, rather than just at the mush-liquid interface, is that the rate of
advance of the interface is controlled to a greater extent by a balance between the
heat conducted through the mushy layer and the heat flux from the melt. Indeed,
equations (3.7)—-(3.11) predict an infinite rate of advance of the mush-liquid interface
h; when the superheat g is zero [11] so that there is no convective flux from the melt.
In general, the decaying superheat of the region of melt can cause the interface to
advance very much faster than it would if latent heat were released there. However,
this runaway behaviour is associated with very small values of the solid fraction in
the regions of the mushy layer nearest the melt [12] and one must question whether
such regions will remain mechanically robust. In addition, we shall see in section 4
that kinetic effects at the mush-liquid interface restrict this runaway behaviour by
causing non-zero values of the solid {raction at the mush-liquid interface.



Numerical solutions of the equations presented in this section have been found to
agree very well with the results of laboratory experiments [5] in which mushy layers of
solid ice were formed from aqueous solutions of isopropanol. This agreement, which
can be seen in figure 9, gives support to the various approximations invoked in the
development of the model. However, these same authors found that the region of
melt became supersaturated during the course of the experiments (see figure 9b), an
observation that is inexplicable by a theory employing the condition of equilibrium
thermodynamics expressed by equation (3.1). Just as in section 2, the convection
associated with equilibrium solidification at the roof can only reduce the superheat
to small values; the melt cannot thereby be cooled below its liquidus temperature.

4. Kinetic effects. Mathematical models of convection driven by solidification
that assume equilibrium thermodynamics, such as the models outlined in the previous
two sections, show that the temperature of the melt decays towards the equilibrium
solidification temperature (liquidus temperature) that is assumed to pertain to the
solidification front. Convection ceases at some small value AT, of the superheat, which
is defined by the criterion that the Rayleigh number based upon that temperature
difference and the full depth of the melt is less than its critical value. Brandeis
and Marsh [13] coined the phrase ‘convective liquidus’ to apply to the temperature
that the melt has when this occurs. They found experimentally that the ‘convective
liquidus’ is almost equal to the actual liquidus temperature of the melt. Indeed, a
simple scaling analysis shows that AT is given by

3%

(4.1) AT, ~ Rac'&—g—]{—a,

where Ra. is the critical value of the Rayleigh number (Ra. =~ 10). This temperature
difference is extremely small in magma chambers owing to the very large typical values
of their depth H. For the parameter values in Table 1, AT. ~ 10~°°C.

Quantity Value Units

K 8% 1072 emfsT!

It 26 poise

v 10 cm?®s™!
10-4 °oC-1

g 103 cms™?

H L. cm

Table 1. Parameter values corresponding approximately to those appropriate to a
diopside melt in a layer 100m deep.

However, the assumption of equilibrium thermodynamics is only an approxima-
tion; the actual temperature of an advancing phase boundary must always be slightly
below the equilibrium liquidus temperature of the melt in order for the crystal to
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Figure 9: Comparisons of theoretical predictions with results of experiments on the
solidification of ice from a mixture of water and isopropanol [5]. The dashed curves
are the predictions of the model that assumes equilibrium thermodynamics, while the
solid curves are predictions of the model that includes kinetic undercooling at the
mush-liquid interface. Excellent agreement between theory and experiment is found
for the depth of the mushy layer (figure a), and the theory successfully accounts for
the observed supersaturation of the melt (figure b). Note that heat transfer from
the laboratory may have caused the experimental data of temperature to be slightly

higher than they would have been had the system been perfectly insulated.



grow [14]. This undercooling, AT}, is a function of the rate of advance of the inter-
face. So far as describing convection in the melt is concerned, the approximation of
equilibrium thermodynamics is only good while the superheat is much larger than the
kinetic undercooling AT,. However, we shall see in section 5 that AT} is typically
much larger than AT, so that the concept of the ‘convective liquidus’ rarely applies,
and convection in magma chambers continues until the depth of remaining melt is
very small, even in cases in which there is no initial superheat.

The relationship between the kinetic undercooling and the rate of advance of the
solidification front varies with the material that is being solidified and the molecular
nature of the solidification process. For a solid that grows by the method of continuous
growth [15], the relationship is linear of the form

(4.2) . hi = G(Ty - To),

where G is a constant, 77 is the liquidus temperature of the melt and T; is the
temperature at the solidification front.

Kerr et al. [6] conducted experiments to verify equation (4.2) for the case of ice
growing from a mixture of water and isopropanol. They found good agreement with
a linear law for undercoolings up to about 3°C and determined the constant G to be
approximately 2.2 x 107%*cm s~ °C~! for this system. They proceeded to incorporate
the kinetic growth law (4.2) into the general model for the growth of mushy layers as
follows.

A mathematical model for the solidification of a melt cooled from above that
takes account of the kinetics of crystallization follows that presented in section 3 very
closely, with equation (3.1) replaced by equation (4.2). The dimensionless system
of governing equations and boundary conditions is given by (3.7)-(3.11) with the
boundary condition (3.7c) replaced by

(4.3) 0=0; (z=h),

and equations (3.9) and (3.10) replaced by

(44) (S(Zsz =+ om - oi)ili = % e J(/’(gm el 61‘)%’
4 hi—
(45) (1 i hi)ém a0 _/'\7(0"1 o 91')%,

together with the dimensionless kinetic growth law
(46) jl,' = —"/0,'.

Note that, although kinetic undercooling is included at the mush-liquid interface
(equation (4.6)) it is still neglected in the interior of the mushy layer since the very
large specific surface area of solid-liquid interfaces in the interior allows for very rapid
relaxation to equilibrium there.



These equations are solved by treating equation (4.4), with h; replaced by the
right-hand side of (4.6), as an algebraic equation for the unknown interface temper-
ature #; and treating equation (4.6) as an evolution equation for h;. Note that, since
the interfacial temperature T is no longer zero, the solid fraction at the interface is
also non zero, and there is consequently a contribution to the thermal balance at the
interface (4.4) due to latent heat.

The incorporation of the kinetic growth law into the theoretical model makes only
a small correction to the prediction of the growth of solid from the cooled roof, which
is in excellent agreement with the experimental results of Kerr et al. [6], as can be
seen in figure 9a. Much more importantly, the model now predicts the observed
supersaturation of the melt that occurs after a finite time in experiments in which
the melt is initially undersaturated (figure 9b).

Apart from maintaining convection, this phenomenon has important consequences
for the formation of solid from the melt. Once the melt is supersaturated (super-
cooled), any nucleation sites within the body of the melt provide locations for further
solidification of the melt, regardless of their position relative to the cooled boundary.
This was seen dramatically in experiments in which sodium sulphate was crystallized
from its aqueous solution [6,16]; crystal growth took place at the floor of the experi-
mental tank, as well as near the roof of the tank, even though the system was cooled
only at the roof.

As crystals grow in the interior of the melt, latent heat and residual liquid are
released. The latent heat raises the temperature of the supercooled melt, while the
residual liquid, which is of a lower concentration, depresses the liquidus temperature
of the melt. These effects combine to cause the level of supercooling to be reduced.
The crystals at the floor in the laboratory experiments were observed to have a very
large surface area exposed to the melt, and this surface area would be even larger if,
for example, the crystals were to grow in suspension. In addition, since the residual
fluid is buoyant and rises convectively away from the crystals, the internal growth of
crystals is very efficient both at reducing the level of supersaturation and in keeping
the melt well mixed. A good approximation to the rate of internal crystal growth can
therefore be made by assuming that it is sufficiently rapid to keep the melt close to
equilibrium. We therefore assume that the uniform temperature T}, and composition
Cr of the melt are related by equation (3.1), while conservation of solute demands
that the composition of the melt is given by

(4.7) (Cs — Cm)hy = (H = hi — hs)Ch,

where Ay is the depth that the crystals would occupy if they were to form a solid layer
at the floor of the chamber. Note, however, that the mathematical description takes
no explicit account of where the internal crystal growth takes place and therefore
equation (4.7) is strictly a prediction f[or the volume of crystals grown, with the
interpretation that Ay is the volume per unit horizontal area.

As the composition of the melt changes due to the internal growth of crystals, so
the composition of the liquid incorporated into the mushy layer also changes. The
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Figure 10: Comparisons of theoretical predictions with experimental results for the
depths of various layers that formed during the complete solidification of an aqueous
solution of sodium sulphate. The kinetic-growth parameter G was adjusted in the
theoretical model in order to achieve satisfactory agreement with the experimental
results.

bulk composition Cy of the mushy layer at depth z is given by

(4.8) Cu(z) = Cm(t;) where h(t;) = =.
Thus there is macrosegregation of the solid caused by the internal growth of crystals.

Kerr et al. [6] used this mathematical model to predict successfully the rates of
growth of crystals at the roof and at the floor (figure 10). They could also predict the
compositional stratification of the solid [16] in experiments with aqueous systems that
were solidified completely by maintaining the temperature of the roof below the eu-
tectic temperature of the solution. A photograph of one of their experiments is shown
in figure 11. The kinetic coeflicient for crystals of sodium sulphate decahydrate grow-
ing from an aqueous solution of sodium sulphate was found [6] to be approximately
1.5 x 107*cms~!°C~!. In the following sections, we shall describe some calculations
made of the solidification of magma chambers using this same system of equations.

5. Magma chambers: the anorthite-diopside system. The previous
sections have used theoretical arguments confirmed by careful laboratory experiments
to present the main concepts involved when a binary solution is cooled from above
~ with the release of less dense fluid. A composite layer forms at the roof (as long as the
temperature there is less than the eutectic temperature) with a stagnant mushy layer
beneath it. At the interface between the mushy layer and the underlying convecting
fluid, the temperature is slightly below the liquidus temperature, as quantified by
the kinetic growth law, (4.2) for example, which is necessary for the solidification to
continue. After the temperature of the convecting fluid has decreased from its initial
(superheated) value to the liquidus temperature, solidification can also take place at



the floor, with the accompanying latent heat that is released being transported by
convection across the fluid layer and into the mushy layer. With these fundamental
concepts in mind, we can make some quantitative calculations appropriate to the
cooling and solidification that occurs in magma chambers. Our desire to carry out
such calculations acted as one of the major motivations behind the research.

Magma chambers come in a variety of shapes and sizes (see, for example,
[17,18,19,20,21]. Many, however, are believed to have a horizontal scale which is
considerably in excess of the vertical scale. This suggests that for these chambers the
two- (and possibly three-) dimensional effects which occur at the ends of the chamber
will be much less pronounced than those which occur at the floor and roof. We shall
consider these to be horizontal so that a one-dimensional problem results. However,
there may well be further details involved due to the irregular shape of the roof and
floor of all magma chambers, though this is beyond our present analysis. We shall
consider the base of the chamber to be insulated, though this too is an approxima-
tion, and note simply that any heat lost through the floor will only enhance the effects
discussed in this section. Some investigations of the purely thermal aspects of this
problem have been considered in [22,23]. At the top of the chamber, heat will be
transferred by pure conduction into the (supposedly infinite) country rocks above.
This necessitates coupling the partial differential equation of thermal diffusion to the
heat flux through the composite layer at the roof, as is described quantitatively below.

Magma is a very complicated, multi-component crystallizing silicate melt. The
composition of magma varies significantly with location within the earth and few
concise measurements of physical and chemical properties exist. A simplified system,
which has been studied considerably by geologists in the past, consists of a melt of
anorthite and diopside for which there are well-documented values for thermochemical
properties [24] and kinetic growth rates [25] and for which the phase diagram is
reproduced in figure 7. We shall confine our analysis to this particular system. We
concentrate on anorthite-diopside systems with more diopside than the eutectic value,
58%, which, above the eutectic temperature, cool to form solid diopside and release
a less dense (diopside-depleted) melt.

We shall assume that an appropriate anorthite-diopside melt, at its liquidus tem-
perature, is instantaneously emplaced in the chamber. The fact that the melt is at
its liquidus temperature, or in other words that there is initially zero superheat in
the system, is in accord with the standard geologists’ view of silicate melts within
the earth. That the melt be emplaced instantaneously is an oft-used theoretical sim-
plification. To our knowledge there has been no theoretical analysis of the effects
due to a continual input of magma, and indeed we know of only one experimental
investigation [26] of such a situation.

With these assumptions on the physical aspects of the system to be studied in
mind, we are ready to consider the quantitative analysis of the problem. This will
demonstrate that even with no initial superheat whatsoever, the kinetic undercooling
is sufficient to drive vigorous convective motions in the melt. Further, this leads to
solidification at the floor, even though there is cooling only at the roof, in agreement
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Figure 12: A schematic diagram of the solidification of a magma chamber that is
losing heat predominantly by conduction through the country rock at its roof. The
temperature T4(¢) at the upper contact of the magma chamber with the country rock
varies with time as the conductive temperature profile in the country rock decays. It
is assumed in the present study that no heat is lost through the floor of the chamber.

with geological observations which we shall discuss briefly at the end of this section.
A sketch of the solidifying system and the resulting temperature profile is presented
in figure 12.

The kinetic growth law for crystals of diopside growing into a supersaturated melt
was determined by Kirkpatrick et al. [25] to be quadratic of the form

(5.1) hi = Gu™ (T — T3)?,

where pu is the dynamic viscosity of the melt. Such a law is appropriate for crystals
growing by screw dislocations [15]. Thus, in a magma chamber of depth H, in which
crystals are growing by screw dislocations, the kinetic undercooling has a magnitude
of order

1
| AL
2 ATy .
(3 ‘ (m})



The value of G is approximately 5.6 x 10~°poisecms™! °C~2 for diopside [25], so a
typical value of AT} is about 0.6°C (using the values in Table 1). Convection will
continue until AT} is about equal to the critical undercooling AT, given by equation
(4.1), that is until the depth of the remaining melt k is about that given by

1

h g mg \*
This ratio is typically very small given the large dimensions of most magma chambers.
It is therefore appropriate to model the evolution of a magma chamber using the

assumption of vigorous convection of the melt driven solely by the small kinetic
undercooling in cases when there is no initial superheat.

The governing equations in the composite layer, mushy layer, convecting melt
and floor layer are given by (3.1)-(4.10) with the kinetic growth law (4.2) replaced
by (5.1). The dynamic viscosity p of the molten diopside, which varies with the
temperature of the melt, can be represented by

(5.4) u = exp[(12 — 52.5z + 62.5z%) In 10],

where £ = 1 — 10007"~! and T is the absolute temperature of the melt (in Kelvin), a

relationship obtained [27] by curve fitting the graphical data presented by Kirkpatrick
[28].

Since heat is conducted into the overlying country rock, the temperature at the
upper boundary of the magma chamber T4 is no longer constant. It can be found
in terms of a Green’s function solution [29] of the thermal diffusion equation in the
country rock, and is given by

(550) TA(t)—Twzk%\/?/Otj%dT
(5.5b) ‘ ke, 0 {2\/Zf(t) + \ﬁ/ol w du} ,

k. V v/
where T, is the far-field temperature in the country rock, subscript ‘r’ denotes prop-
erties of the country rock and

o 0~

is the heat flux through the boundary z = 0 at time ¢, which is evaluated in terms of
the temperature field and thermal properties of the solidifying roof below z = 0. The
second expression (5.5b) for T4, in which the singularity in the Green’s function has
been removed, was used in the numerical scheme.

Some of the results of our numerical integrations of the governing differential
equations described above are presented in figures 13-163. The curves in figure 13

3Since publication of [27], we have found an error in the computer program used to calculate
the results presented in that paper. The error produced results equivalent to giving a falsely low
value to the conductivity of the country rock, and therefore cooling and solidification times were
over predicted throughout, by about 40%. None of the general conclusions of that paper are affected
by the correction of this error. Figures 13-16 correspond to figures 2,3b, 4 and 6 of [27], and show
calculations made using the corrected program.
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Figure 13: The predicted solidification of a layer of pure diopside cooled at its roof.
The solid curves show the results of the model that includes convection and kinetic ef-
fects. The dashed curve shows, for the sake of comparison, the results of an unrealistic
calculation in which convection is ignored.

depict as functions of time, the depth of solid grown at the roof and the floor from
a layer of pure diopside initially 100m thick emplaced into country rock at 0°C. Also
included for comparison is the resultant thickness of the roof layer if convective (and
kinetic) effects are totally neglected, which means that no solid is grown at the floor.
We see that the presence of convection reduces the time for complete solidification by
about 56 % over the physically (and geologically) inappropriate case when convection
is neglected (c.f. Section 2). In addition convection allows approximately 45% of the
chamber to solidify at the floor. The reason that convection decreases the time for
complete solidification in this case is that it transports the latent heat of solidifcation
very efficiently from the growth at the floor to the cooled roof. In contrast, when all
the solidification takes place at the roof, all the latent heat must be conducted back
through the much-thicker, growing crust:

The result of the calculations for an initial 100m thick layer with a 20% anorthite
composition is shown in figure 14. Very rapidly after the initiation of the convective
motions, a mushy layer develops beneath the composite solid layer near the roof, with
a solid layer evolving from the floor. As the temperature in the melt decreases to the
eutectic temperature (1274°C), the mushy layer disappears, the layer growing from
the roof becomes completely solid, and a composite layer of diopside and anorthite
crystals begins to grow on the floor. With time a growing layer of eutectic composition
(42% anorthite) extends into the remaining melt until total solidification has occurred.

The dimensionless time xt,/H? for complete solidification of a layer of initial
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Figure 14: The predicted solidification of a layer of melt of composition AngDigg,

one hundred meters thick emplaced at its liquidus temperature 1352°C into country
rock at 0°C.

depth H is graphed in figure 15a The increasing importance of convection as the
layer thickness increases is seen from the decreasing time for solidification to take
place compared with the purely conductive timescale H?/x. Increasing the height H,
and thus the intensity of the convective motions, also increases the fraction of solid
deposited at the floor, as seen in figure 15b.

The gradual decrease in the temperature of the melt is presented in figure 16a.
Because the melt is constrained to lie on the liquidus, the decreasing melt tempera-
ture is related to the decreasing diopside concentration. After about 180 years, the
temperature.of the melt has decreased to the eutectic temperature and it then re-
mains at that value until solidification is complete. The temperature of the interface
between the mushy layer and the melt, which is always less than the temperature of
the melt itself, is also graphed in figure 16a with their difference presented in figure
16b. Note that, with typical geological parameter values, even though the depicted
temperature differences are of order of only a few tenths of a degree centigrade, this
leads to values of the Rayleigh number, shown in figure 16c, which are sufficiently
large for vigorous convective motions to occur until the layer has almost completely

solidified.

6. Lava lakes. The foregoing analysis can also be used, with only minor alter-
ation, to interpret the solidification history of lava lakes. The principal mathematical
difference between the models for lava lakes and magma chambers is in the boundary
condition that is applied at the upper boundary. Whereas for a magma chamber
the upper boundary condition reflects the conduction into the country rock (equation
(5.5)), the appropriate condition for lava lakes is that of constant temperature, since
they lose heat very efficiently into the well-mixed air or water above them, which is at
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Figure 15: (a) The ratio of the time for complete solidification ¢, to the conductive
timescale H?/x as a function of the initial depth H of a layer of melt of composition
AngoDigo. As the depth increases, the vigour of convection increases and causes
the solidification time to decrease relative to the conduction time. The stronger
convection also causes the relative depth of crystals grown at the floor to increase, as

shown in figure (b).
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Figure 16: (a) The temperature of the melt T}, and the temperature of the mush-
liquid interface T; as functions of time for a layer of melt of composition An,oDigg
emplaced at its liquidus temperature 1352°C into country rock at 0°C. Their difference
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degree Centigrade, it is sufficient to give the very large Rayleigh numbers shown in
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Figure 17: The predicted solidification of a lava lake of initially uniform composition
AnygDigg, ten meters thick, whose upper surface is maintained at a constant temper-
ature of 0°C. Also shown is the final compositional profile of the solidified lake, as
predicted by the theoretical model. Such macrosegregation of the components of the
melt is a consequence of the coupled effects of convection and kinetic undercooling.

approximately 0°C. This change in boundary condition affects the quantitative pre-
dictions of the model somewhat, but the general evolution is similar to that described
for magma chambers and the orders of magnitude of the results are not much altered.

More important differences may arise once the additional cooling through the
floor is taken into account and in response to different physical properties, such as
the viscosity and kinetic coeflicient, between various magmas and lavas. We intend to
publish such results in the near future. For now, we will present results based upon
the current model, with the parameter values of the Di-An system and a top bound-
ary condition of constant temperature. In addition, we shall briefly counter some
misrepresentations regarding lava lakes that have appeared in the recent literature.

The depth of the solidified crust, the depth of the mushy layer and the depth of
crystals grown internally are shown as functions of time in figure 17. The calculations
were made for a lava lake of initial depth 10m containing a melt of uniform compo-
sition DiggAngg and initial temperature equal to its liquidus temperature of 1352°C.
Also shown in the figure is the final compositional profile, which results due to the
differentiation that occurs during internal growth of crystals. This differentiation is
a consequence of the coupling of kinetic undercooling at the mush-liquid interface
with the convective stirring of the melt. It would not be predicted if either of these

physical phenomena were omitted from the mathematical model.

In figure 18a, we reproduce figure 17 of a paper by Marsh [30] in which some field
data on the cooling of lava lakes and a number of theoretical curves are presented.
Marsh does not make explicit what calculations or parameter values have been used
to construct these curves, and it is our belief that the initial and boundary conditions
used in each case are different, which invalidates the common scaling used to compare



them, as we explain below.

The field data are for cases in which the lavas contained phenocrysts initially
and hence were not superheated. These data are compared with a theoretical curve
(labelled ‘stagnant; latent heat; no overburden’) derived from a purely-conductive
model, which has the property that the interior temperature remains almost constant.
Marsh contrasts this with the measurements of Jaupart et al. [22] (labelled ‘JBA
(1984)’) and what is claimed to be a theoretical curve from Turner et al. [3] (labelled
‘THS (1986)’) which both show the temperature decreasing rapidly. However, both
these studies correspond to systems that are initially superheated, and the results
should correctly be represented on figure 17 of [30], which corresponds to our figure
18a, by curves starting above T, = 1.0 and decaying rapidly towards T, = 1.0. Such
rapid decay is shown in figures 3a and 4a of section 2. Correct application of the
model of Turner et al.- [3] (presented in 2) to the case of a lava that is initially at
its freezing temperature would predict that the interior temperature would remain
constant at the freezing temperature T, = 1.0, and that there would be no convection.

In contrast, the model of Kerr et al. [6,16] presented in sections 3 and 4, which
includes kinetic effects, can be applied to the case of a lava lake that is not ini-
tially superheated and, in that case, predicts vigorous convection driven by kinetic
undercooling and also predicts the dimensionless temperatures shown in figure 18b.
These results, for lava lakes of different initial depths containing melts of composi-
tion DiggAngg, show a slow decay of the interior temperature corresponding to the
slow evolution of the composition of the magma as crystals of diopside form in the
interior or at the base of the lake. Note that the calculations were stopped once the
temperature reached the eutectic temperature of the Di-An system.

These results, which are presented in terms of the same dimensionless variables
used in [30], are in approximate agreement with the field data reproduced in figure
18a. This is also true of the purely conductive model. But, whereas Marsh [30]
uses this agreement to argue against the existence of convection in magma chambers
and lava lakes we have shown that these particular field data are equally consistent
with a model that includes vigorous convection of the melt. Thus, given only the
presented field data of temperature, it is not possible to decide between a model
involving only conduction or one incorporating convective motions. However, if one
also incorporates the well-established, fluid-mechanical principle that large Rayleigh
numbers imply vigorous convection, then a distinction can be drawn. In addition, we
believe that the field evidence for the convective model will be found in terms of the
type of compositional segregation predicted and presented in figure 17, which cannot
be explained simply in terms of conduction and phase equilibria.

7. Conclusion.  This paper has discussed a series of one-dimensional math-
ematical problems that describe the cooling and resultant solidification of a one-
or two-component melt. (A partial introduction to the associated two- and three-
dimensional problems is presented in two reviews by Huppert [31,32]). The two most
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important concepts that run through the paper are that the timescale for solidifi-
cation in the described systems is given by the conductive time scale, while, at the
same time, convective motions in the solidifying melt play an essential role. For ex-
ample, the removal of superheat from the melt takes place on the much-more-rapid
convective timescale, and the presence of convection driven by kinetic undercooling
at the solidifying interface of a two-component melt allows cooling at the roof of a
system to lead to solidification in the interior of the melt and also at the floor. From
a quantitative point of view, the convective heat transfer decreases the actual time
taken for complete solidification, as indicated for particular examples in figures 5, 13
and 15. In addition, the combination of convection and kinetic undercooling results in
the vertical differentiation of the solidified magma or lava, an effect that is predicted
by the current model.

Many of the specific results of our mathematical models are in excellent agreement
with data obtained from laboratory experiments. In addition, the general results are
in qualitative agreement with the somewhat limited data available from geological
observations. Calculations that are based on the two-component anorthite-diopside
system predict a compositional gradient in the final solidified product which is sim-
ilar to that observed in sills and old magma chambers throughout the world. The
extension of the calculations made in order to describe the evolution of a lava lake in-
dicates that the fluid part of the lava is in vigorous motion, while the thickness of the
solidifying crust gradually increases. The observed rate of increase of the thickness
of this crust agrees well with the results predicted by the theoretical model.

Certainly, more research is still needed to explain many of the details of the
evolution of magma chambers and lava lakes. We look forward to the introduction
of new physical concepts, more powerful mathematical and numerical techniques and
fresh geological data to unravel the many chaotic features of solidification problems
in particular and geophysical problems in general.
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Figure 11: A photograph taken during an experiment in which an aqueous solution of
Na,SO4 was cooled from above to form a composite layer next to the roof of the tank
(the white region), a mushy layer below this and a layer of faceted Na,;SO4.10H,0
crystals at the base. The experimental conditions were Cy = 16wt% NaySOy4, Tp =
30.5°C, Tg = —17°C, and H = 18.8cm.



Figure 1: Lava fountaining duyi

ng the eruption of Pu’u O, Hawaii, on 2 June 1986.

The scale of the fountaining can he ascertained from the helicopter which appears

as a mere speck two-thirds of t]

¢ way up the fountain. Photograph by J. D. Griggs,

United States Geological Survey.
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