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Abstract—Some deficiencies in a recent paper by Howard, Malkus and
Whitehead are examined. The problem is reformulated in terms of an
integro-differential equation, from which both asymptotic and numerical
solutions are obtained.

1. Introduction

In a recent publication Howard, Malkus and Whitehead (1970)
(herein referred to as HMW, followed by the appropriate equation
number) consider the motion of two infinite, line heat sources in a
viscous fluid of infinitely large Prandtl number. The sources are
constrained to move at a fixed depth between two stress-free,
horizontal planes held at zero temperature. The ensuing velocities
are considered to be sufficiently small that the equations can be
linearized. The model is motivated by a desire to understand the
mechanism involved in the plate-like motion of the earth’s crust as
investigated recently by McKenzie and Parker (1967), Isacks, Oliver
and Sykes (1968), McKenzie (1969) and others.

HMW deduce that if the Peclet number, R, which is proportional
to the thermal source strength per unit length, is larger than a
critical value R,, the sources attain a constant, non-zero velocity
after a sufficiently large time. What happens if the Peclet number is
less than R, is not considered. HMW performed some experiments
which did not altogether confirm their conclusions. The experi-
mental velocities were constant for some time, but subsequently
became zero.

With examination, the arguments upon which their conclusions
are based are open to objections. An expansion [HMW (1.29)] is
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made which is actually an a priori assumption of constant velocity.
How this affects the final answer is not clear. Further, the analysis
leads to an equation for the final velocity, U (HMW (1.29); b = «
therein). This equation has not only the cited, non-zero solution,
but also the solution U = 0. In view of the experimental result one
wonders if U = 0 is not the correct solution. Unfortunately, the
approach used by HMW does not allow one to decide between the
two possible alternatives.

We reformulate the problem in terms of an integro-differential
equation, from which it is possible to determine analytically the
solution for both small and large times, for all Peclet numbers. The
integro-differential equation is ideally suited for numerical inte-
gration, and solution curves for two Peclet numbers and a variety
of initial displacements are presented. From these calculations, we
find that the final velocity is indeed non-zero, constant and given by
HMW’s formula (1.30) if R > R,, while if R < R, the sources, after the
initial motion, continue to separate with an ever decreasing velocity.

2. Analysis

The problem in non-dimensional form is shown in Fig. 1, which is
assumed symmetric about = 0. We seek a(t) given a(0), d and R,
where: « is the coefficient of expansion; g the acceleration due to
gravity ; () the strength of the heat source per unit length situated
at [a(t), —d]; hthe distance between the upper and lower boundaries ;
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Figure 1. The geometry, equations and boundary conditions.
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v the kinematic viscosity ; and k the thermometric conductivity. A
detailed explanation of the non-dimensionalization and the as-
sumptions involved is contained in HMW.

Introducing the Fourier transforms

0 0
0(k, m) = J cos kx dxj T (x, z) sinmnzdz (1a)
0 -1

and

¢k, m) = r sin kx da JO V(z, z)sinmnz dz, (1b)
-1

0

solving the resulting equations, carrying out the Fourier inversion
for y, differentiating with respect to z and setting = a(t), z = —d,
we obtain

d(t) = B 3 msin (2nmd) f ” l(k? + mem?) -2 dk
m=1 0
. j’exp [ (4 emd)lPE, Ay, (2)
0
where
n=1t-= (3a)
and
F(t, ©) — sin {(k[a(t) +a(z)]} +sin {(Ka(t) - a(z)]}. (3b)

A very good approximation is obtained by considering only the
m =1 term in the right-hand-side of (2); HMW state that for
d = }, the first term is typically 989, of the total sum. Making this
approximation and interchanging the order of integration, we
obtain the integro-differential equation for a(t)

¢
i) = B | {6160 +a(0), 1+ 6lal) -ate), i dn, ()
where
Gz, n) = jw k(k?+n%)~2exp [ — (k2 + n%)n]sin kx dk (5a)
0
= 1[(x — 2nn) exp ( — nz)Erfe (nnl/2 — Jan=112)
+ (x + 27n) exp (nx)Erfe (nn'/? + an=112)] (5b)
and

R’ = Rsin 2nd. (6)
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From (4) and (5) we immediately obtain
a(t) = 1R'[a(0) — Intltexp [ — 2ma(0)][1 + O(?)] (t—>0) (7)
and hence
a(t) = a(0) + +R'[a(0) — Int]t2exp [ — 2ma(0)][1 + O(t2)] (t—0). (8)

Considering large f, since G/(z, ) is an exponentially decreasing
function of 5, we use the concepts employed in Laplace’s method of
evaluating the dominant term in the asymptotic expansion of certain
integrals to write

d(t>~R'j:{G[2a<t), Al +GE0n ildy G o). (©)

Using the integral representation (5a) and interchanging the order
of integration, we evaluate the first integral in the right-hand-side
of (9) as

8i7r2 Ra(t)[1+2ra(t)] exp [ — 2ra(t)] (10)
and the second integral as
R T1 1
T Fan B~ g e g . ]. ].
a(t) [4712 27 Nad(t) + 4nJ ()

If d(t) tends to zero as ¢ tends to infinity, the dominant term of
(11) becomes

R
Substituting (10) and (12) into (9), we obtain
] R R \-1
d(t) N8_7'52( —5274) a(t)[1 + 2na(t)] exp [ — 2na(t)]

[a(t) = 0, - o], (13)
which has the solution
;o 327t — R’
° 4nR’
—e WHi[2na(t) + 1] + e Hi[2ra(t,) + 1]}. (14)
This is the large-time solution for R’ <32zn*= R, the critical
Peclet number as determined by HMW. It would clearly be con-
venient if #, could be set equal to zero in (14). However, the
approximation (9) is invalid for small ¢, and (14) with ¢, = 0 does not
compare well with the numerical solutions obtained below. An

{— {Hi[2ra(t)] — Bi[2ra(t,)]
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Figure 2. The displacement as a function of time, as obtained by numerically
solving the integral Eq. (4).
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appropriate value of £, can be obtained from (8), from which af(t,)
can be calculated.

If d(t) does not tend to zero as t tends to infinity, the quantity
determined by (10) becomes exponentially small and (9) becomes

. i I | 1 .

The only solution of (15) is that d(t) is a constant, and given by
a*(t) = n*{[(R'[4n*) + 1]12 + LH{[(R'[4n*) + 1]1/2 - 3}, (16)
the formula obtained by HMW.
Equation (4)is in a form ideally suitable for numerical integration.

Solutions for two values of R’ and various values of a(0) are pre-

sented in Fig. 2. The numerical solutions augment the asymptotic
analysis presented above.

3. Conclusions

We conclude that with the assumptions invoked by HMW, the
displacement between two line heat sources is a monotonically
increasing function of time. The velocity of the line sources in the
initial motion increases with time and is given by (7). The form of
the final velocity depends on the parameter R’. If R’ << 32zn* this
velocity continually decreases and is given by (13). If R’ > 32x¢,
this velocity is constant, and can be evaluated from (16).
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